LINEAR REGRESSIONS

Creator: Dr Patrick English

This guide takes you through two examples of linear regression analysis - including one bivariate
and one multiple linear regression. Data comes from the OECD: https.//stats.oecd.org/.

Gross Domestic Product (GDP) and Health Spending

The following example looks at the bivariate relationship between a country's wealth and
their healthcare expenditure. We will go through the process of fitting an Ordinary Least
Squares (OLS) regression model to some real world data - including testing and examining
the linear modelling assumptions - and how to interpret and report the findings.

Let's suppose we have a research question which is as follows: does greater average wealth
in a country mean higher rates of spending on public healthcare?

As we would have pretty sensible grounds to assume that countries with more money will
be able to spend more on health (making health care a priority over say poverty reduction
or infrastructure investment), we hypothesise that: countries with greater wealth will spend
more on healthcare. We must test this hypothesis in a regression model in order to answer
our research question.

Hypothesis testing involves collecting data from the world (our ‘population’) and using
statistical methods to examine the relationship we are hypothesising about. The ‘null
hypothesis' is that there is no relationship between wealth and health care expenditure. The
null hypothesis could either be rejected by the data (suggesting that there is some
relationship), or not rejected (implying that there is no relationship at all between our
variables).
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To fit a regression model and test our hypothesis, we need some data. We can call up the
following CSV file named ‘OECDData’ which contains information on the socio-economic
situation in 40 countries around the world from the year 2015. The file contains information
on country GDP per capita in thousands of US dollars (GDPPC), reported unemployment rates
(Unemployment), average life expectancy at birth (LifeExpectancy), and public spending on
health as a proportion of GDP (HealthSpending). The data comes from the OECD's country
statistical databases: https://stats.oecd.org/

my_data <-
read.cav{"https://dl.dropboxusercontent . con/ s/ i0gtusT010n5Twd /OECDdata . cavidl=0")

head(my_data)

# Country CDPPC Unemployment LifeExpectancy HealthSpending
##% 1 Australia 46.54403 G.057820 B2.5 2.321
# 2 Austria 4905225 E.723468 1.3 10,343
#% 3  Belgium 45.56118 8.481071 1.1 10. 106
# 4 Canada 44.54737 6.008333 1.9 10377
# 5 Chile 22.42970 6.213719 9.3 8.022
# 6 Colombia 13.83318 8.960834 T6.2 6101

When statistically analysing data we must be confident that we are using the correct tools -
horses for courses, if you will. Some statistical techniques are simply inappropriate to use on
certain types of data, and linear regressions are no different. These are the three ‘'most
important’ assumptions for modeling using OLS:

1) The dependent variable is continuous.
2) The residuals (errors) from the fitted model are non-patterned and independent.
3) The residuals from the fitted model follow a normal distribution.

Briefly, a model residuals is the ‘error’ between the estimated value of the dependent variable
that the linear regression predicts for a given (set of) value(s) of the independent variable(s),
and the actual value that the dependent variable takes at this fitted value. OLS models work by
fitting regression equations which a) reduce the overall size of the total errors in the model to
be as small as possible, but also b) keeping the ‘mean value’ of these residuals at 0 (so that the
errors ‘balance out’ above and below the regression line).
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To check the residual assumptions, we plot them directly after running our models. The two
most common problems regarding non-patterned residuals are clusters/patterns in the
residuals - such as a scattered or heaped collections of residuals in different sections of the
plot - and non-constant variance (known as heteroscedasticity) - whereby as we move along
the fitted values (x axis), the range of residuals significantly changes and meaning that the
model is explaining substantially different amounts (or ranges) of variation.

As we move through the two examples below, we will address each assumption in turn. If the
assumptions are not met, then we must either make changes to our model (by adding in new
variables), or use a different type of model (more on this below).

In order to examine whether or not our data is suitable for linear regression modeling, we
should first investigate the summary statistics of our data and plot its distribution. This checks
the first assumption: The dependent variable is continuous.

In this example, as we are testing the relationship between country wealth and health
spending, we will be using HealthSpending as our dependent variable and GDPPC as our
independent variable. Our OLS regression analysis will thus report to us the impact of a one-
unit change in GDP per capita on health spending, according to our sample data.

To familiarise ourselves with the data, and test the first assumption, we summarise our
dependent variable and then plot a histogram using the ggplot2 package:

summary{my_datafHealthSpending)

#H# Min. 1lst Qu. Median HMean 3drd Qu. Max.
#E 3.433 G.T7T1 B.415 B.510 10.150 16.816

library{ggplot2)}
g <- ggplot(my_data, asa(r=HealthSpendingl}}

## Set the number of bins using the Freedman-Diacomis rule
x <- my_datafHealthSpending
bw <- diff{range(x}) / (2 * IQR(x) / length{x)"{1/3})

## Plot graph
{graph <- g + geom_histogram(bins=bw)
+ labs(title="Distribution of Health Spending Variable®))
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Distribution of Health Spending Variable
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From the summary statistics, we can see a nice continuous range which looks approximately
normally distributed around a fairly centrally placed mean and median. From the histogram,
though the variable does not follow a perfect normal distribution (i.e. we cannot draw a
perfect ‘bell curve’ over it), it does show a central cluster of values with a decreasing count of
observations either side. This is encouraging for later requirements regarding a normal and
unpatterned distribution of errors. We can confirm that our dependent variable is continuous,
and move on from here.

We now move to fit an OLS model to the data, using GDPPC as our independent variable. The
R command for linear models is Im(), and inside the command we must specify the dependent
(y) variable, which is predicted (~) by an independent (x) variable, and the data frame from
which the variables originate (data).
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1 _model <- lm{HealthSpending - GDFFC, data=my_data)

summary{1_model)

Regidual standard error: 2.212 on 38 degrees of freedom
Multiple R-squared: ©0.2162, Adjusted R-squared: O.1955
F-statistic: 10.48 on 1 and 38 DF, p-valuwe: 0.002505

&

#%# Call:

## Ilm(formula = HealthSpending - GDFPC, data = my_datal
##

## Residuals:

## Min 10 Median 20 Max

#%# -G.066E -1.2662 0.4618 1.0927 T.1055

EE

## Coefficients:

## Estimate Std. Error t walue Pr{>|t|)}

## {Intercept} 5.93198 0.86581 G.820 4 .32e-08 #==*
## GDPPC 0. 06590 0. 02067 3.237 0.002581 ==
# —_—

## Signif. codes: O "#xx' 0.001 "+=+' .01 '+' Q.06 "." 0.1 " " 1
&

##

&

##

The regression output contains a number of important pieces of information. The first row of
text displays the command we used to generate the model. The second line reports the
distribution and average value of the model residuals. Recall that a residual is the distance
between the predicted value of the dependent variable (according to the line of best fit) and
the actual position of observed values. The ‘median’ value of the residuals is 0.5, which we can
be quite pleased with. The wide range (relative to the distribution of the variables) in residual
sizes however (between around -6.5 and 7.0) suggests that more work could be done (and,
specifically, that we might have outliers to look into).

The third set of information concerns the model coefficients and their associated reliability,
robustness, and significance estimates.

The ‘Estimate’ column contains two coefficient estimates. The first is for the model intercept
(which is the value of our dependent variable y when the independent variable x is zero. Note
that this may or may not be a sensible thing to consider - do countries have GDP per capita
equal to zero?!l). The second is the coefficient associated with the independent variable itself:
the estimated (average) impact on our dependent variable (health spending)from a one-unit
increase in our independent variable (GDP per capita).

So, from the model summary we can see that - according to our sample data - there is an
average 0.1% increase in health spending (as a proportion of GDP) for each one-thousand
extra dollars in GDP per capita (note how important it is to know the units of measurement for
the dependent and independent variables in order to be able to interpret the magnitude of
the regression coefficients).
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Importantly, there are standard error (2nd column) and significance estimates (or p-values)
(4th column) for both coefficients. The significance estimate [Pr(>|t])] for our relationship
between GDP per capita and health spending is given as a value of 0.00251, meaning we have
a statistically significant relationship at the p < 0.01 level. This is represented by two stars
(significance codes). This result means that we have enough evidence to reject the null
hypothesis (that there is no real relationship between the two variables) in favour of there
being a positive relationship between these variables.

P-values represent the probability that we would observe the same or a more extreme (larger)
estimated relationship (as in our regression output) under the ‘null hypothesis’ situation. So,
this means we have a probability estimate regarding how likely it is that our estimated effect of
the independent variable on the dependent variable does not represent a ‘real’ relationship,
but rather a ‘sampling event’ (a random-chance event which, if repeated on a different sample,
would most likely not occur again). If the probability is sufficiently small (i.e. passes the 'lower
than 0.05 convention), we can reasonably reject the suggestion that the relationship would
also be observed under the null hypothesis situation.

Finally, the last two lines show us statistics about the model itself regarding how well it
describes the data. Firstly, the R-Squared statistics show us the proportion of the variance in
the dependent variable which is explained by the variation in the independent variable in our
model. In this case, it is around 20%.

The second line gives a p-value for the model overall. This tests the hypothesis that our
specified model is better at explaining the variance in the dependent variable than a null
(completely empty) model. Here, a p-value of 0.0025 tells us that our specified model is
significantly better than a null model (as p < 0.01).

Finally, a word of caution. The relationshiop between GDP per capita and health expenditure
that we have identified in the data can only be interpreted as a postive association. We cannot
ascribe any causal relationship between the two variables (‘correlation does not imply
causation’). While we may think that the relatioship goes from richer countries being able to
spend a greater share of their income on health, and that is the relationship that we have
implicitly estimated, it is also plausible that countries which spend more on health are likely to
grow richer (for example because they have a healthier workforce able to work more
productively and longer into old age. That is, the relationship may run rom health expenditure
to income as well as from income to health care. In practice, the relationship may go both
ways.

Methods for identifying causal relationships are more advanced and beyond the scope of this
note.
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Recall the second of the two most important assumptions required for OLS modelling: The
residuals (errors) are non-patterned and independent.

To test this particular assumption, we need to inspect a residuals plot. We will use a base R
residuals plot and add an abline (a straight line across y=0). Remember, what we are looking
for here is any patterning or clustering around the plot (which would violate linearity), or any
changes in the amount (or range) of variance explained across the fitted values (which would
violate homoscedasticity).

plot(1l_medelf§fitted.values, residuals(l_medel), main="Linear Model Residuals"};abline{0,0, col="red")

Linear Model Residuals
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As we can see, there isn't a perfect random patterning to the residuals, but overall the
distribution is not too bad. We have two significant outliers in the plot which ought to be
investigated further, but the centrsl cluster of resdiuals looks fairly randomly assigned across
the fitted-values.

Moving on, we recall the third ‘'most important’ assumption from above: The residuals follow a
normal distribution.

Sheffield
Methods
Institute.




We can check this by using a QQNorm (Quantile-Quantile plot for normal distributions) plot,
which tells us whether or not the error term in our model is (approximately) normally
distributed. This is important for the tests of statistical significance described above (if the
errors are not normally distributed, we cannot trust the p-values reported). Here we are
looking for our residual values to mostly line up well along an ‘ideal fit' value line. If there is
some level of deviance, we want it to be mostly balanced on either side.

1 _resids <- ratandard(l_model)
gqqunorm{l_resids, main="Linear Model QQFlot”)};qqline(l_resids)

Linear Model QQPIlot
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Theoretical Quantiles

Again, we can see our outliers represented strongly at the top and tail of the QQNorm plot,
but all other residual values lie close to the ‘normality line’ fitted through the middle, thus
suggesting a normally distributed model error term.

Now that we are confident our model and data passes the linear and normality assumptions,
we can visualise the relationship between our dependent and independent variables by fitting
a scatter plot with a linear line of best fit (geom_smooth).
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E <- ggplot({my_data, aea(x=GDFPC, y=HealthSpending))
(graph <- g + geom_point()
+ geom_smooth({method="1m")
+ labs{x = "GDP Per Capita (1000= USD)",
y = "Health Spending (¥ of GDF)",
title ="Linear Model Scatter Plot®))

Linear Model Scatter Plot
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The scatter plot and smoothed line of best fit nicely illustrate the relationship reported in the
regression estimate. By and large, there is a linear association between increasing GDP per
capita and health spending as a proportion of GDP. There are two outliers in our graph which

are of note. We can add country labels to the scatter plot to give further information about
them.

g <- ggplot(my_data, aes(x=GDFFC, y=HealthSpending))
(graph <- g + ggplot2::geom_point()
+ geom_smooth(method="1m")
+ geom_label (label=my_datafCountry, label.size = 0.1, hjust = "inward”)
+ labs({x = "GDF Per Capita (1000s USD)",
¥ = "Health Spending (¥ of GDFI™,
title ="Linear Model Scatter Plot with Country Labels®)})
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Linear Model Scatter Plot with Country Labels
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We can see that the United States and Luxembourg (and also to some extent, Indonesia) are
very much outliers to the bivariate linear relationship. Though they are significant outliers, as
they are almost polar opposites of each other the overall net effect’ on the regression
estimate will actually be fairly close to zero. Therefore, we do not have to be too concerned
about them.

Plotting the descriptive statistics is an important part of the process of data analysis. Not only
does it allow us to check for the performance of the line of best fit and to inspect outliers and
potential issues with model residuals, it also is important for convincing the reader that our
statistically estimated associations can be easily spotted in the raw data.
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Though our bivariate linear model reported a statistically significant relationship which passed
the assumptions required for linear modeling, we cannot reasonably conclude that we have
uncovered a real world relationship through our data without first also testing for (or read:
controlling for) other factors which might affect health care spending. In other words, we must
also examine other factors which might cause increases in health spending and see if our GDP
effect ‘survives'.

Adding additional variables into our model turns a bivariate OLS into a multiple linear
regression. Given the power and flexibility of regression analysis, this process is very simple to
do but it is important to understand and be able to interpret the impact on the regression
outputs that additional variables will have.

Consider that we might expect higher life expectancy to also correlate with higher health
spending - if people are living longer, we will need to spend more on health care (particularly
as older people often require more care than their younger counterparts). Also, let's imagine
that we think unemployment rates might also have something to do with healthcare spending
- perhaps when unemployment is higher, so a population’s quality of life and ability to remain
healthy might be negatively impacted, and so the state ends up spending more on healthcare.

N.B. The above model specification is not supposed to represent an exhaustive list of factors
which relate to healthcare spending, but constitute a demonstration of the thought process
for the purposes of this exercise. Additional variables for linear regression models should also
be added with the aid of previously published work and theoretical argument wherever
possible. Keep in mind the rule of thumb on overfitting regression models - there should
never be less than around 10x as many observations as there are variables (including the
dependent variable) in a regression.

We can specify a further regression model to test the extent to which life expectancy and
unemployment also explain variance in health spending. Here, we not only estimate the
relationship between multiple variables and the dependent variable, but the coefficients for
each variable become partial coefficients which are accounting for the effects of other
variables in the regression on the dependent variable. This allows us to isolate variation (and
significance) associated with our variable(s) of interest, while ‘controlling for’ the effects of
other, competing explanations.
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The command to run a multivariate linear regression is exactly the same as for the bivariate
regression, the only difference is that we include additional variables from our dataframe after
GDPPC:

ml_model <- Im{HealthSpending - GDPPC + LifeExpectancy + Unemployment, data = my_datal

summary {ml_modal)

Call:
lm{formula = HealthSpending - GDFPC + LifeExpectancy + Unemployment,
data = my_data)

Resziduals:
Min 10 Mediamn ag Hax
-5.702 -1.073 -0.043 1.081 T7T.691

Coefficients:

Estimate Std. Error t value Pr{>|t|)
(Intercept} -5.32061 6.88443 -0.772 0.445
GDPPC 0.04T50 0.02525 1.881 o.0o88 .

LifeExpectancy O.14535 O OBt 6 1.613 0.115
Unempl oyment 0.05269 0.07333 0.T1i& 0.47T

Signif. codes: O "+xx' 0.001 "= 0.01 '*' 005 '." Q.1 " " 1

Rezidual standard error: 2.191 on 36 degreez of freedom
Multiple R-squared: 0.2714, Adjusted R-squared: ©0.2107
F-statistic: 4.471 on 3 and 36 DF, p-value: 0.0000381

EEEELREEEREERRTERRERRR

There are some substantial changes in the results when we include life expectancy and
unemployment rate in the model. Most importantly, both the coefficient and statistical
significance for GDP per capita have changed. The model R-Square value has increased as it
must do - as more variables are included in the model, more of the variance in the dependent
variable will be ‘explained’. Better to look at the Adjusted R-squared, since this measure
accounts (compensates) for the number of added variables - it has increased slightly as
compared to the bivariate regression above.

The reason why the coefficients for the model intercept and GDP have changed is because
they are now being calculated with regard to levels of the other additional variables (in our
case, life expectancy and unemployment). This creates a multi-dimensional space of data
points through which a line of best fit is placed.
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In other words, this means that our reported coefficient for each variable (and associated
reliability and significance estimates) constitutes the direct relationship between said variable
and the dependent variable while also controlling for levels of all other independent variables
in the regression. This allows us to test our hypothesis between GDP and heathcare whilst
controlling for (taking into account) competing determinants of the level of health care
expenditure.

So, what has happened in terms of our model results?

Firstly, it appears that neither life expectancy nor unemployment levels significantly relate to
variance in health spending. Though we have positive coefficient estimates, they are not
statistically significantly different from zero. Therefore, the null hypothesis is not rejected and
we cannot suggest that the positive coefficients observed in our data are caused by other
than chance.

Secondly, our GDPPC coefficient has been reduced by around 30%, from 0.07 to 0.05. This has
had an important consequence for the significance estimate. The p-value for our GDPPC
coefficient has increased to 0.068, meaning our relationship is now only statistically significant
at the p < 0.1 (10%) level. This is represented by the . significance code in the table. Though
normally failure to reject the null hypothesis is defined when p > 0.05 (5% sifnificance level),
given we are working with only a small sample of data (40 observations), we would probably
still report this as a finding.

In all, the addition of further variables has improved the variance explained by our regression
model but has had a detrimental impact in terms of statistical significance - reducing certainty
of null hypothesis rejection from 99% (p < 0.01) to 90% (p < 0.1). The p-value of the model
itself is still statistically significant at the p < 0.01 level.

Again, we need to inspect the residuals plot to check that the model is still an appropriate fit
for our data:

plot(ml_modelf§fitted.values, residuals(ml model), main="ML Model Residuals”};abline{0,0, col="red")
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ML Model Residuals
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The residual plot this time looks a little more problematic, as we can see a fairly evidence
different in the range of variance explained between the fitted values around 6.5 and 9 as we
can 9 and 10.5. Substantively speaking, the former cluster is mostly ‘undershot’ by the fitted
values (consistently lower than the actual values, represented by the 0,0 line), while the former
cluster is mostly overshooting. What this means is that our model estimates are potentially
unreliable, and the finding regarding the effect of GDP being significant at the p < 0.1 level
should be treated with scepticism.

The QQNorm plot for the model looks as follows:

ml_resids <- ratandard{m]l model)
gqnorm{ml_resids, main="ML Model QOFlot”)};qgline{m]l_resids)

ML Model QQPIlot
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However, though ideally we would prefer not to see large outlier values, as they are mostly
cancelling each other out (and there are so few of them) there is nothing substantially wrong
with the QQNorm plot. We can thus be confident in our standard errors. That said, given that
our estimates may be biased (as above), it would be unwise to make too-strong conclusions
from this model. Instead, the onus would be on us as researchers to test new combinations of
variables to try and eliminate this problem and come to more reliable conclusions.

When fitting multiple linear regressions, ao aid our interpretation of the results we can call
upon another plot. As the ‘line of best fit' estimated by the OLS is operating through a multi-
dimensional space, we can't make use of a scatter plot. Instead, we can visualise the
regression results through a summary coefficient plot. This requires the “jtools” package:

library(jtools)
plot_summs{ml_model, ci_lewel=0.8, color.class = "blus")
GDPPCH ; O
LifeExpectancy O
Unemployment - ' O
0.0 0.1 0.2 0.3
Estimate

The plot demonstrates nicely the findings. We can see the statistically significant positive
impact of GDP per capita, with a relatively tightly bounded confidence interval which does not
include zero (using the ci_level of 90%). The reported effect of the other two variables cross
zero (and so do not reject the nul hypothesis of no effect) and have very wide intervals.
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Of course, most often in social science we will not end up working with data which conform
nicely the necessary assumptions for linear modelling - as indeed arguably happened in this
example. Though OLS models can handle a fair amount of non-normality (i.e. things don't have
to be perfect for OLS estimates to be reasonably reliable), there are certain situations which
require us to use different approaches.

For example, oftentimes we work with time series data. This violates the assumption of
independent errors, as the values (and model residuals) of a time series are heavily correlated
upon previous values. This requires us to use specialised time series analysis techniques in
order for us to avoid spurious results.

As another example, sometimes our dependent variable will not be continuous, and instead
come in the form of say dummies or integer counts or as a discrete Likert scale. An example
of a dummy dependent variable would be whether a person voted at a given election or not -
this can only take two values, yes (1) or no (0). An example of a count variable would be the
number of goals scored in football matches by a given Football Club - the distribution of this
variable can never pass below zero, is unlikely to take significantly higher values than around
5, and will be heavily clustered around an off-centred mean (toward 1). Measures of well-being
and satisfaction are often recorded on a Likert-type scale ranging from 1 (completely
unsatisfied) to 5 (completely satisfied), which we could not consider to be continuous (even if
normally distributed). Working with these types of variables require fitting generalised linear
models of whcih there are many variants.

Finally, we might find that observations in our data are not at all independent from one
another, and that there is some form of ‘grouping’ or ‘clustering’ going on around our
observations which will impact the extent to which their characteristics and thus model
residuals can actually be independent of one another. For instance, if we are examining
student performance in tests across multiple schools, we must consider that a given students’
performance may depend on the class and then school in which they are taught. This means
that students in the same class will have a lot more similarity (and dependency) on one
another in terms of their test outcomes than students from different classes - and even more
so from different schools. This ‘hierarchical’ structure of data requires us to make use of
multilevel models.

There are many other types of data that we might come across, and it is important to always
examine and re-examine dependent variables and residual plots in order to make sure we are
fitting the right kind of models to test our hypotheses.
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