
Distributed Self-Assembly of Cantilevers by Force-Aware Robots

Edward Bray and Roderich Groß

Abstract— Inspired by how ants construct bridges out of their
bodies, this paper investigates how a swarm of autonomous
robotic agents could self-assemble into cantilevers as a first step
towards constructing bridges. Two distributed self-assembly
algorithms are presented that consider local force information
to ensure links between agents do not break: one in which
agents move one at a time, and another where multiple agents
move simultaneously. The algorithms are tested in simulation
for a variety of allowable link strengths, and are verified to be
able to construct cantilevers of a near-optimum length. A slight
decrease in cantilever length is observed when multiple agents
move concurrently, but construction is completed significantly
faster. Prototype hardware to measure the forces in links
between real agents is also presented, demonstrating how the
concept could be applied to the real world.

I. INTRODUCTION

Swarms of robots have been proposed as a possible solu-

tion to a wide range of problems, due to the advantages they

offer in completing tasks that encompass a large physical

space in a robust manner [1]. A closely related field to swarm

robotics is modular robotics, where groups of autonomous

robots are able to assemble their bodies into a synergistic

collective [2]. The requirement for large numbers of robots

to comprise an effective swarm or modular robotic system

means their design must be cost-effective, which in turn leads

to most systems comprising physically small agents with

bodylengths in the order of centimeters, such as Kilobots

[3], SMORES [4], 3D M-Blocks [5], or HyMod [6]; at such

scales, obstacles that would be trivially overcome by large

robots can become insurmountable.

Research into groups of robots is often inspired by the

behaviour of insects [7]. To enable ants to thrive in a world

of obstacles many times greater than their body size, they

have evolved to assemble their bodies without any external

overseer (referred to as self-assembly) into a variety of

temporary structures, such as rafts [8], bivouacs [9], and

towers [10]: of particular interest to this paper is how ants

construct bridges [11]–[13]. Members of the colony self-

assemble into these bridges, which other ants can travel over;

when the bridge is no longer necessary it is dismantled and

the insects that constituted it continue with other tasks.

Inspired by the behaviour of ants, this paper considers

how a group of robots could self-assemble into cantilevers,

as shown in Fig. 1a, as a first step towards construct-

ing bridges. This would allow the collective to explore a

larger and more complex environment without the need for

This research was funded by the Engineering and Physical Sciences
Research Council through a Doctoral Training Partnership Scholarship.

The authors are with the Department of Automatic Control and Systems
Engineering, The University of Sheffield, Sheffield, UK [enbray1,
r.gross]@sheffield.ac.uk

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2)

F
ix

ed
su

p
p

o
rt

w

(a) (b)

Fig. 1. (a) An example cantilever constructed from square self-assembling
robotic agents, starting from a fixed support, who aim to extend as
far as possible while keeping the links between agents from breaking.
The numbers show the agent location coordinate system. Each agent has
weight w (shown once for simplicity). (b) A proof-of-concept force-aware
construction module.

specialised building materials or tools, or to permanently

sacrifice individuals to such assemblies. Two distributed self-

assembly algorithms are presented and tested. Four prototype

force-aware construction modules are also designed and built

to validate the approach (Fig. 1b). The source code and

prototype hardware design files are available on GitLab [14].

A. Related Work

Bridge construction arising in robot collectives as a result

of simple, local rules has been demonstrated for a group of

soft-bodied robots by Malley et al. [15]. Other researchers

have developed algorithms that construct bridges in similar

scenarios while optimising bridge length and cost [16]. These

works assume that connections between robots never break,

potentially reducing their applicability to the real world.

Incorporating force sensing into robotic construction sys-

tems has previously been shown to be an effective way of

ensuring structures do not collapse. Genetic algorithms have

been used to invent structures that satisfy high-level design

criteria while remaining stable, such as to build the longest

possible cantilever [17], [18]. Other research shows how the

assembly sequence of a wide range of predefined structures

can be automatically generated to ensure stability at all stages

by always choosing the most stable valid construction step

to make next [19]. In these works, construction was either

completed by a human or a single robot.

A team of robots has a choice when building structures:

they could either use an external building material, or their

own bodies. The benefits of a force-aware approach have

been explored for truss-building robots, requiring only a

few robots to build large structures out of force-aware

components [20]–[22]. A group of self-assembling robots

does not need to rely on the availability of external materials,

but at the cost of requiring a larger number of autonomous

robots. A force-aware self-assembly algorithm for structures

such as cantilevers is developed in [23] in which agents place

as soon as they reach a position near a link that is close to

failure. The work we present in this paper considers the self-

assembly of cantilevers similar to this, but here we enable

multiple robots to build on the structure concurrently, and

also allow robots to explore more of the structure than just

the first link that is close to failure.

II. PROBLEM FORMULATION

This paper considers a homogeneous swarm of N robots

(referred to as agents) that self-assemble into cantilevers as

shown in Fig. 1a. Agents are squares of side length l and

weight w that reside in a 2D grid for simplicity. Agents are

assumed to be able to connect to each other on any face,

and also to any point of a fixed support surface lying within

the grid. Positions are referred to in (row, column) format,

where position (1, 1) is the first cantilevering agent, row

number increases downwards, and column number increases

away from the fixed support, in this case to the right. The

fixed support occupies positions {(r, c) | r > 0 ∧ c = 0}.
An agent can move one step along the perimeter of the

existing structure in each timestep by stepping into an empty

space in its Moore neighbourhood, as long as this space is

in the von Neumann neighbourhood of another agent or the

fixed support. Construction is only permitted for positions

{(r, c) | r > 0∧ c > 0}. The length of the structure L is the

number of columns in the structure. Cantilevers are restricted

to have continuous rows and columns, meaning each column

must be filled from row 1 without any gaps, and nc ≥ nc+1

where nc is the number of agents in column c. Connections

between agents are termed links: links between agents on

the same row and column are called row and column links

respectively, and the links of column c are defined as the row

links on the left of c and the column links within c.

A continuous supply of agents is available at position

(0, 0), each of which must find its place in the structure. Each

agent has the ability to sense the moment M and axial force

F in the links on each of its four faces. These are compared

to allowable limits Mallowable and Fallowable respectively to

calculate the criticalness γ of each link as:

γ = max

(

|M |
Mallowable
︸ ︷︷ ︸

γM

,
max(F, 0)

Fallowable
︸ ︷︷ ︸

γF

)

(1)

Each combination of Mallowable and Fallowable is referred to

as a limit pair. Links with γ ≥ 1 are described as critical and

deemed to be near to but not necessarily at failure, analogous

to how civil engineers consider safe stress levels in a building

to be considerably lower than the failure strength of the

materials. If no links are critical, the structure is defined

as stable, else it is unstable. The objective of this work is

to self-assemble cantilevers from a limited supply of agents

that are as long as possible, while aiming to correct unstable

configurations as soon as they occur during the construction.

Note that (1) implies that links are strong to moments in

all directions, and strong in compression but weak in tension.

Fixed
support

w

4

w

4

w

4

w

4

Fig. 2. Conversion of the cantilever in Fig. 1a to a truss, showing agents as
blue members and links as orange members; a weight of w

4
acts downwards

from each agent node (only shown for one agent). Unmade links are hidden.

We also assume that the shear strength of links is large in

comparison to the axial and moment capacity, thus is not

included in the calculation of γ. These strengths are similar

to those of a simple mechanical connection such as a press

stud, or existing modular robots such as SMORES [4]. While

this work considers only M and F for simplicity, the exact

failure criteria of a real robotic system will be unique to the

mechanical design of its linkages.

A. Simulation Environment

The agents are simulated in a custom environment written

in Python. The structure is modelled as a 2D truss as shown

in Fig. 2, a method inspired by [18]. The forces within

truss members are calculated using the anaStruct module for

Python [24], and converted into a value of M and F for

each link. This is fast to calculate, but does not take into

account dynamic forces as robots move about the structure.

A side length of l = 0.1m is used to reflect an estimate

of existing modular robotic platforms, and the weight is

conservatively calculated as if each agent were a solid cube

of aluminium, giving w = 19.3N, significantly greater than

existing modular robots [4]–[6].

III. STRUCTURAL OPTIMISATION

Optimal cantilevers should be calculated to measure the

performance of the self-assembly algorithms against. A con-

figuration of N agents and length L is considered optimal if it

is stable and no other stable configuration of N agents exists

that has length > L; there may be multiple optimal config-

urations of N agents. A different optimisation procedure is

used for small (N ≤ 50) and large (N > 50) structures.

A. Small Structures

For small structures, the process of finding optimal struc-

tures begins by listing all the cantilever configurations for a

given N using the number theory concept of integer parti-

tioning [25]. A cantilever configuration may be represented

by the number of agents in each column as [n1, n2, ..., nL],
hence

∑

c nc = N , and this vector is a partition of N . Since

rows and columns are assumed to be continuous, this vector

uniquely describes a cantilever configuration. For example,

the structure in Fig. 1a can be represented as [3, 3, 2, 1, 1],
and this is the only valid configuration for this partition.

All cantilever configurations of N ≤ 50 agents were listed,

and each modelled to find the maximum M and F in all

links. A limit pair was then specified and these precomputed

data analysed to find the configurations that result in the

longest stable structures of N agents for all N ≤ 50 for this

limit pair. This exhaustive search guarantees optimality.

B. Large Structures

The previous approach becomes intractable for large struc-

tures as the number of configurations ∝ exp(
√
N). Another

method is therefore used to reduce the number of configura-

tions that need to be tested. This is based on the observation

that the optimal arrangement of agents at the tip remains

constant as N and L increase.

The optimisation procedure for large structures begins by

specifying a limit pair and a number of agents Ntest that is

believed might be able to build a stable cantilever Lmax+1
agents long, where Lmax is the length of the longest optimal

configuration that has been previously found for this limit

pair. Exploiting the observation about the configurations at

the tip, we first consider all known optimal configurations

of N < Ntest agents and L > (Lmax − 5). The number

of agents in each column of each stable configuration are

compared to find the longest portion at the tip that is common

across all these configurations. All configurations of Ntest

agents are enumerated as for the small structures, but those

that do not include this shape at the tip are removed from

this list. Exhaustive search again ensures these cantilevers are

optimal, under the given assumption about tip configuration.

Once the reduced list of configurations has been generated,

each one is modelled and any stable configurations of the

specified Ntest agents are saved. The procedure is repeated

with different Ntest until the minimum number of agents

required to build a stable structure of length Lmax + 1 with

links of the given strength is found.

IV. ALGORITHM DESIGN

This section describes the self-assembly algorithms, be-

ginning with a discussion of the theoretical basis behind

them. Two algorithms are presented, called the sequential

and parallel algorithms. Both algorithms begin with an agent

placed in position (1, 1). Future agents initialise in position

(0, 0), and are referred to as active agents until they are

placed, whereupon they are no longer able to move. In the

sequential algorithm, new active agents are released only

once the previous one has found its place, whereas the paral-

lel algorithm allows for multiple active agents concurrently.

Both incorporate measurements of M and F within each link

to construct stable structures, and run in a distributed manner

on each agent. Active agents keep track of their movements

to calculate their positions in the coordinate system.

A. Theoretical Basis

Here, a result from structural mechanics which influences

the design of the self-assembly algorithms is introduced.

Theorem 1: Consider a cantilever of length L whose

height h(x) is a continuous and monotonically decreasing

function of the distance x from a fixed support, as shown

in Fig. 3a. The cantilever has constant breadth b into the

F
ix

ed
su

p
p

o
rt

ρ

Cut

x

h(x)

L

(a)

S(x)

M̃(x)

ρ

h(x)

L− x

y

(b)

Fig. 3. (a) Profile of a beam under a uniformly distributed load of
magnitude ρ per unit horizontal length, with continually-varying height
h(x) a distance x from the root; and (b) a cut through this cantilever at x,

showing the internal shear force S(x) and moment M̃(x) on the exposed
cross-section. The dashed line shows the neutral axis, which is assumed to
be in the centroid of the cross-section.

page, and the only load is a uniformly distributed force of

magnitude ρ per unit horizontal length. For such a cantilever,

increasing the height h(x) at a distance x = x0 from the

support causes a decrease in the maximum longitudinal stress

experienced in the cross-section here, σmax(x0).
Proof: Such a cantilever can be analysed using elastic

beam theory [26]. A cut through the cross-section is made

at x (Fig. 3b) to reveal the internal moment M̃(x). For each

x, σmax(x) occurs where the distance y from the neutral

axis (assumed to be at the centroid of the cross-section) is

as large as possible. Therefore, we obtain:

σmax(x) =
M̃(x)y

I(x)
=

ρ
2 (L− x)2 · h(x)2

bh(x)3

12

=
3ρ(L− x)2

bh(x)2
(2)

where I(x) is the second moment of area of the cross-

section. Thus σmax(x0) decreases as h(x0) increases.

These equations are derived for beams where the height

is a continuous function along its length, under a uniformly

distributed load. The work presented in this paper concerns

cantilevers made of discrete agents under the self-weight of

each agent. The exact equations are therefore not applicable,

although the trends are used to inform the design of the self-

assembly algorithms.

B. Sequential Algorithm

In the sequential self-assembly algorithm, the agents in the

structure sample their sensor readings once an active agent

places itself, and hold these values to communicate to the

next active agent. Two variants of the sequential algorithm

have been developed, called the message-passing and local

variants, which differ only in how the active agent receives

the force information from the existing structure.

The message-passing variant is shown in Algorithm 1.

Lines 1 – 12 detail the operation of the agent while it is

active. It first travels to the tip of the cantilever, receiving

data from the agents in row 1. These data contain the

maximum M and F observed for any links belonging to

the corresponding columns, which allows the active agent to

create four arrays {γα,β | α ∈ {M,F} ∧ β ∈ {row, col}}
for the M and F in row and column links respectively.

These arrays are arranged such that the cth element of the

appropriate array contains the maximum γM or γF in row

or column links belonging to column c, which is given the

symbol γα,β
c .

The algorithm aims to construct cantilevers that are as

long as possible, thus the active agent places at the tip if it

believes the structure is stable based on the force information

it has received (line 5). Otherwise, it chooses a column to

reinforce at the bottom of the structure to better transfer the

load onto the fixed support. Placing in a column will increase

the column’s height, which according to Theorem 1 causes a

reduction in the maximum longitudinal stress on its left-hand

face. A good approach would thus be to add to the bottom of

columns that have high γα,row such that this reduced σ also

causes a reduction in M and F . However, the case analysed

in Theorem 1 is that of a cantilever of continually varying

height and a constant weight per unit length: to exploit this

information in the case of a structure built of discrete agents

with their own self-weights, we use a probabilistic approach

where the active agent is more likely to place in columns

with links of high γ, but not guaranteed to. A probability

mass function pcol(c) describing the probability of placing

in column c is calculated from the γ
α,β arrays as follows

(line 7):

1) For each member γα,β
c of each array γ

α,β , calculate

an urgency distribution νi where 1 ≤ i ≤ 4L. This

is calculated as the Gaussian distribution centred on

column c with variance (γα,β
c)−2, then scaled by a

factor of (γα,β
c)2. The area underneath this curve is

equal to (γα,β
c)2, so this spreads the impact of the

criticalness in column c across the whole cantilever,

but prioritises the region around column c the most.

It is chosen to square γα,β
c to magnify the effect of

critical links, for which γα,β
c ≥ 1.

2) For a cantilever of length L, there will be 4L urgency

distributions, which are summed to calculate the com-

bined urgency distribution ν̂ =
∑4L

i=1 ν
α,β
i .

3) pcol(c) is calculated by dividing each element in ν̂ by

the sum of all the elements.

The distribution is sampled from without replacement

in line 9 to produce a target column ctarget. The active

agent travels to the bottom of column ctarget, and if this

placement is locally determined to be valid (meaning row

and column continuity is maintained) it places here. If not,

another sample is drawn from the distribution. This repeats

until a valid location is chosen: column 1 is always valid,

thus the while loop terminates after at most L iterations.

Once the active agent has placed itself, it remains sta-

tionary and runs the message-passing procedure in lines 13

– 16. Each agent receives the M and F that the agent

below either measures in the links on its own bottom and

left faces, or larger equivalent values from an agent below.

These measurements are compared to measurements in the

equivalent links of the agent in question, and the maximum

Algorithm 1: The message-passing variant of the

sequential self-assembly algorithm.

1 while row = 0 and column < L do

// Active (gathering data)

2 Step one right;

3 Record M and F from element below
(
γα,β
c

)
;

4 if No link is critical then

// Active (placing at tip)

5 Place at tip;

6 else

// Active (placing to reinforce)

7 Calculate pcol(c) from γ
α,β ;

8 while Not placed do

9 ctarget ← sample pcol without replacement;

10 Move to column ctarget;

11 if Valid location then

12 Place here;

13 while True do

// Placed

14 Ml, Fl,Mb, Fb ← M & F in left & bottom links;

15 for α in [M,F] and β in [l, b] do

16 Send upwards max(αβ,self , αβ,element beneath);

values are passed to the agent above. If any link is not

currently made it reads a value of zero. The agent in the

top row thus receives the maximum M and F in all row and

column links of this column. These messages are passed after

one active agent places itself and before another initialises,

therefore the weight of the active agent is excluded.

The message-passing variant requires coordination be-

tween agents that have been placed to transmit informa-

tion within the structure. The local variant was developed

to reduce the coordination required by incorporating more

knowledge from Section IV-A. For the beam considered in

Theorem 1, σmax(x) occurs on the top and bottom of the

cross-section as |y| is greatest. In the case of a beam of

discrete agents with their own self-weights, we therefore

predict that the maximum M and F in links of a given

column is likely to occur in a link connected to an agent on

the edge of the cantilever. This means that the active agent

can reasonably approximate how the maximum M and F

vary along the length of the structure by only receiving the

sensor measurements of these exterior agents, without the

need for passing messages.

The local variant is similar to Algorithm 1, but in lines 1 –

3 the active agent must traverse the full perimeter of the beam

and communicate with all exterior agents. It compares the

M and F values measured by agents at the top and bottom

of each column and saves the maximum ones to γ
α,β . This

makes the message-passing behaviour described in lines 13

– 16 obsolete, but requires the active agent to traverse a

longer distance to obtain the necessary data. Agents are still

required to coordinate to sample their sensors once an active

Algorithm 2: The parallel self-assembly algorithm.

1 switch mode do

2 case gathering do

3 Record M and F from placed element

above or below
(
γα,β
c

)
;

4 if Below cantilever in column 1 then

5 Calculate pcol(c) from γ
α,β ;

6 ctarget ← sample from pcol without

replacement;

7 mode ← placing;

8 else

9 Make step*;

10 case placing do

11 if In column ctarget then

12 Attempt placement;

13 if Placement succeeded then

14 mode ← placed;

15 else

16 ctarget ← sample from pcol without

replacement;

17 if mode is placing then

18 Make step*;

19 case placed do

20 Do nothing;

21 case swapping do

22 mode ← previous mode;

23 if Agent stationary for > δ steps then

24 Attempt placement;

25 if Placement succeeded then

26 mode ← placed;

* Steps made if the agent is not another’s sole support

agent has placed itself and hold this value to communicate

with the next active agent. It would be possible to read the

sensors as the active agent traverses instead, but this is not

done so that the two variants are more comparable. The local

variant is important as it validates the assumption that only

the sensors of exterior agents are salient, and is built upon

in the parallel algorithm.

C. Parallel Algorithm

The sequential algorithm has two drawbacks. Firstly, con-

struction takes a long time as only one agent is active at

once. Secondly, the ‘sample and hold’ procedure used in

communicating the force information to the active agent

increases the inter-agent coordination required.

In the parallel algorithm, agents follow a procedure based

upon the local variant of the sequential algorithm, but with

allowances to enable multiple agents to move at once. Active

elements are released at fixed intervals δ. If the initialisation

position is still occupied, they are released at the next

possible timestep. The agents advance in a random order

→ ↓

ւ

↑

F
ix

ed
su

p
p

o
rt

Fig. 4. Examples of special cases when the active link is set to the left
face. Blue agents are stationary and yellow agents are active with the default
active link (lower face when above row 1, and upper face otherwise). Agents
of other colours are active with an active link on their left face. Links have
orange borders and are filled the same colour as the active agent they are
controlled by. Arrows show salient directions of motion.

each timestep to simulate synchronisation inconsistencies in

a real system, and we assume sensing is instantaneous.

The procedure agents use when it is their turn to advance

is presented in Algorithm 2, which shows they transition

through four modes. On initialisation, they are in the gather-

ing mode (lines 2 – 9), where they move around the perimeter

of the structure and communicate with exterior agents to

obtain the maximum M and F currently experienced by their

links. When a gathering active agent begins advancing below

the cantilever in column 1, it calculates the probability mass

function pcol(c) in the same way as the sequential algorithm,

samples from it without replacement to set a target column

ctarget, and transitions to the placing mode.

In the placing mode (lines 10 – 18), active agents first

check if they have reached ctarget. If they have, they attempt

to place here. If this placement is valid, the agent transitions

to the placed mode where it no longer moves, and instead

waits to communicate force information to passing active

agents (lines 19 – 20). Otherwise it chooses another ctarget
without replacement. The agent moves towards ctarget at the

end of the advancement if it is still placing.

In the event of two agents attempting to occupy the

same location, they communicate to swap internal states and

‘become’ one another. For two agents to swap requires that

each remains stationary for one timestep, modelling the time

cost this communication would have in real life: in the next

timestep, each agent is in the swapping mode on lines 21 –

22, therefore does not move. If an agent tries to swap with

another agent that is already swapping, it instead remains

stationary for this timestep.

To avoid active agents blocking each other from moving,

they attempt to place if they have been stationary for too

many steps after advancing (lines 23 – 26). The number of

steps before timeout is chosen as δ.

Instead of only updating M and F after agents place

as in the sequential algorithm, the parallel version does

so at the end of every timestep, thus the weight of active

agents is measured. However, if active agents attach to all

available contact surfaces they could reinforce the structure

before their location is finalised and thus hide critical links.

Active links are introduced to counter this by ensuring that

active agents only make one link to the fixed portion of the

cantilever. We restrict each active agent to only control of

one of its four possible links at a time, referred to as its active

0 20 40 60 80 100
0

1

2

3

M
ax

im
um

 st
ab

le
ca

nt
ile

ve
r l

en
gt

h
(m

)

Weak links

0 20 40 60 80 100
Number of agents in structure

Medium links

0 20 40 60 80 100

Strong links

Message-passing
Local
Optimal

Fig. 5. Mean lengths of the longest stable structure as more agents are added produced by the message-passing (blue) and local (red) variants of the
self-assembly algorithm for 400 trials, compared to the optimum achievable (green). Error bars show the 5th and 95th percentiles.

link. By default, the active link is set to be on the lower face

of each active agent if the agent is above row 1, and on the

upper face otherwise. Fig. 4 illustrates the exceptions to this

rule where the active link is set to the left face instead. If

the active agent is above row 1, this only occurs when the

agent left of it is also active and there is no placed agent

underneath (green agent). If the active agent is below or in

row 1, this occurs if either there is no agent above (red agent),

there is an active agent above and a placed agent to the left

(purple agents), or there is an active agent above that is not

swapping, an active agent to the left, and the active agent in

question is moving upwards (cyan agent). Each active agent

in Fig. 4 is only connected to the placed agents through a

single chain of links, therefore not providing any additional

support to the structure. In a real system, the structure would

deflect and potentially cause robots to rest on each other, but

this effect is not considered here. Additionally, if an active

agent is connected by more than just its active link, it knows

it is supporting another active agent and thus cannot move.

V. SIMULATION RESULTS

A. Limit Pairs

The algorithms are tested for three limit pairs to examine

their applicability in a range of scenarios. Each pair is

generated by choosing a number of agents Ng , arranging

Ng + 1 agents in a cantilever 1 row thick, and measuring

M at the root, which will be the largest across all the

links [26]. Mallowable is set to be 10% less than this

value, thus a single-thickness cantilever of length Ng is

just stable. A single-thickness cantilever has F = 0 at the

root, thus cannot be used to calculate Fallowable, which is

instead calculated as 10Ngw. These limits reflect how certain

connections are better able to hold structures vertically than

horizontally: the SMORES robots described in [4] can hang

an average of 11 agents vertically from a single connector

without failure, but only cantilever 3 agents. We chose to

use Ng ∈ {3, 6, 9} agents: the corresponding links are

referred to as weak, medium, and strong, and correspond

to limit pairs [Mallowable, Fallowable] = [13.9Nm, 579N],
[42.6Nm, 1159N], and [86.9Nm, 1738N] respectively.

B. Optimal Structures

The optimisation described in Section III was carried out

for N ≤ 100 agents for each of the three limit pairs.

(a)

(c)

(d)

(b)

Fig. 6. Optimal structures with a given number of agents for different
limit pairs. (a) A 1.2m cantilever with weak links requires 33 agents. (b)
Increasing length to 1.5m requires 62 agents and results in three stable
configurations as shown. (c) Strong links can reach 1.5m with only 21
agents. (d) An optimal structure of strong links reaching a length of 2.5m,
which requires 62 agents. The common portion at the tip for weak links is
shown in cyan, and for strong links in purple.

The results can be seen in Fig. 5, which shows that higher

allowable limits lead to longer possible stable structures, and

the rate of increase in L slows as agents are added. Fig. 6

shows examples of these optimal structures chosen as the

minimum N that can reach the specified L. In Figs. 6a

and 6b, weak links are used, and short, deep cantilevers

are constructed; there is only one optimal configuration for

L = 12, N = 33, but three for L = 15, N = 62. Note

also how the portions at the tip are the same for all these

structures as observed in Section III-B. Figs. 6c and 6d show

structures with strong links, where fewer agents are required

to reach equivalent lengths as more slender cantilevers are

possible.

C. Sequential Algorithm Performance

Both variants of the sequential algorithm were tested for

all three limit pairs up to N = 100 agents. A total of

400 trials were performed with each limit pair to test the

performance of the stochastic algorithms. The average length

of the longest stable structure that was produced for a given

number of agents in each trial is shown in Fig. 5. We see

that both variants of the algorithm require similar numbers

of agents to reach a stable structure of a given length, which

on average is slightly below the optimum number, with

relatively little variation between trials. In all intermediate

unstable states, the two variants exceed the allowable limits

by similar amounts within each limit pair. The local variant

hence achieves comparable performance to the message-

passing variant, despite requiring significantly less coordina-

21 agents 22 agents 29 agents 30 agents

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

1.4

1.0

0.5

0.0

L
in

k
cr

it
ic

al
n
es

s

Distance along cantilever (m)

Fig. 7. Frames from a sequence produced by the local variant of the sequential algorithm for weak links. Links are coloured by their criticalness.

tion between agents. We thus predict that performance of the

parallel algorithm will not be hindered by only transmitting

link forces of exterior agents to active agents.

The Supplementary Material contains animations of the

self-assembly sequence of a number of trials. Fig. 7 shows

selected frames of the sequence generated during one trial

of the local variant. At N = 21 agents, the only critical link

is a row link in column 4. This belongs to an external agent,

so the next active agent receives this information and has

a high pcol(4): the active agent places here, which makes

the structure with N = 22 agents stable. When N = 29
agents, the most critical link in column 3 does not belong to

an external agent, so the next active agent does not become

directly aware of it. However, the link left of the agent at the

top of the adjacent column 2 is critical, so the combination

of the urgency distributions causes the next agent to place in

a location that reduces the criticalness of the link in column

3 regardless. In all these structures, the top left corner has

links of high γ compared to the rest of the structure.

An example structure with the maximum N tested of 100

agents constructed by the message-passing variant for links

of medium strength is shown in Fig. 8. We can see that at

this point γM is larger than γF in most columns, and that

row links experience higher M and F than column links;

all four traces will, however, influence pcol(c). Theorem 1

showed how the longitudinal stress can be reduced on the left

face of a given column by increasing the number of agents

in that column, which will lead to a reduction in M and F

in row links. An approach akin to the proof for Theorem 1

can be taken to show that M and F in column links will be

similarly affected, but is not shown here as the criticalness

of column links is less significant than that of nearby row

links in the scenario considered in this paper.

D. Parallel Algorithm Performance

In the previous section, it was demonstrated that the

sequential algorithm can construct stable cantilevers of near-

optimum length, and the idea that agents should place near

columns of high γ was validated: the parallel algorithm

extends these concepts. Fig. 9 shows a comparison of the

sequential and parallel algorithms in which 100 trials of

up to N = 100 agents were performed for each δ ∈
{4, 6, 8, 10, 12, 14} timesteps. Two minor modifications are

made to the local variant of the sequential algorithm to allow

a fairer comparison to the parallel algorithm. Firstly, sensors

are no longer sampled and held until the active agent passes

over them: instead the active agent has an active link as in

-1.0

-0.5

0.0

Ca
nt

ile
ve

r d
ep

th
 (m

)

0

20

40

M
ax

im
um

 m
om

en
t

m
ag

ni
tu

de
 (N

)

0.0 0.5 1.0 1.5 2.0
Distance along cantilever (m)

0

500

1000

1500

M
ax

im
um

 p
os

iti
ve

ax
ia

l f
or

ce
 (N

)

0.0

0.5

1.0

1.4

Li
nk

 c
rit

ic
al

ne
ss

Row
links—

Column
links—

Allowable- -

Fig. 8. A structure of 100 agents produced by the message-passing variant
of the sequential algorithm with links of medium strength.

the parallel algorithm, and its own weight is included in the

measurements. Secondly, the active agent remembers which

locations are valid for it to place in as it moves over the

structure and draws from pcol until a valid column is found

before starting to move, so it can travel directly there.

Fig. 9a shows that the final L increases as δ increases,

and is greatest in the sequential case. The construction time

is significantly lower for the parallel algorithm (Fig. 9b).

Stronger links tend to require a larger δ before they can

achieve a comparable L to the sequential algorithm. This is

partly because agents are more likely to timeout and place

where they are due to congestion for small δ: when δ =
4 steps, around 70% of the agents place in this manner,

but this drops to near zero for δ ≥ 10 steps, regardless of

link strength. Increased agent timeout leads to short and tall

structures, which as shown in Section V-B are good for weak

links, but sub-optimal for stronger links.

Another consideration is the maximum γ in the structure

as it is assembled (Fig. 9c). For weak links, the paral-

lel algorithm creates structures that exceed Mallowable and

Fallowable by a greater amount during construction than

in the sequential case, but this exception decreases as δ

increases. For strong and medium links, the maximum γ

during the construction sequence is usually less than in the

parallel case, and increases with larger δ. This is another

result of the greater agent timeout at low δ creating short

and tall structures. For all link strengths, the maximum γ

(a)

Weak Medium Strong
Link strength

0

1

2

3

Fi
na

l l
en

gt
h

(m
)

(b)

Weak Medium Strong
Link strength

0

2500

5000

Ti
m

es
te

ps
 ta

ke
n

Sequential

Parallel delay

(timesteps)

4

6

8

10

12

14

(c)

Weak Medium Strong0

1

2

M
ax

im
um

cr
iti

ca
ln

es
s

Moment

Weak Medium Strong

Axial force

0.0 0.2 0.4 0.6 0.8 1.0
Link strength

0.0

0.5

1.0

Fig. 9. Performance comparison between the local variant of the sequential
algorithm and the parallel algorithm with varying delay between when
agents are added, presented for 100 trials of each setup. Bars show mean
values, and black lines show one standard deviation from this mean.

during construction tends to that of the sequential algorithm

as δ increases.

VI. HARDWARE VALIDATION

The approach demonstrated in this paper assumes that

agents are able to sense force in their links. This is not

commonly employed in existing modular robotic platforms,

but a method of detecting forces between connected agents is

demonstrated in [21]. A proof-of-concept prototype connec-

tion mechanism inspired by this work is presented here. It

is shown in Fig. 1b, and employs permanent neodymium

magnets to connect modules together with force-sensitive

resistors (FSRs) in between to measure force. FSRs are a rel-

atively inexpensive component whose resistance changes as

pressure is applied: they are not as accurate as strain gauges,

but do not require expensive signal processing hardware to

use and so are acceptable for this proof of concept.

One 3D printed frame was designed for the agents and

another for the fixed support. Each agent face contains a

male and female connection. Male connections have magnets

that protrude from the surface of the frame and have an

FSR attached to them, whereas the magnets in the female

connections are recessed, and feature an FSR and a paper

spacer. Protrusions of the magnets in this manner ensure the

link is strong in shear but weak in tension and bending, as is

the case in the simulation environment. Only one face of the

fixed support has connections on it, and these connections

exclude the FSRs; the depth of the magnet is adjusted so

that the module spacing at agent–support interfaces is the

same as at agent–agent interfaces. The frames are hollow to

reduce cost, and filled with steel washers to provide enough

weight such that each agent has a mass of 280 g.

The FSRs are connected to an ATmega2560 microcon-

troller which analyses the information from them. When the

moment at a joint increases, one sensor will be compressed

and the other pulled apart. A measurement of moment can

(a) (b)

Fig. 10. Cantilevers built from the hardware prototype: (a) a single-
thickness cantilever 2 modules long has a critical link at the root, as indicated
by the lit LED. (b) Adding support in position (2, 1) allows the length to be
increased by 1 module, and causes the link to the right to become critical.

therefore be made by taking the difference between these two

readings. This is used to control an LED on each connection

face to turn on when the moment exceeds a prespecified

value, and thus the link gets closer to failure.

The Supplementary Material includes a video of the sys-

tem under operation, and Fig. 10 shows the configurations

with two and four agents from this demonstration; note only

salient connection faces are equipped with sensors to reduce

cost. This video shows that when two modules are connected

in a line, the link at the root is close to failure, indicated

by the lit LED in Fig. 10a, and a third module in this row

will break it. Placing this module in position (2, 1) instead

provides support so the link is no longer critical, allowing

another module to be placed in position (1, 3) (Fig. 10b).

This supports the idea used in the self-assembly algorithms

that modules should place near critical links.

VII. CONCLUSIONS

This paper examined how cantilevers can be constructed

from force-aware robotic agents. Two distributed self-

assembly algorithms that exploit local force information were

presented. The algorithms are able to induce self-assembly

into stable cantilevers, the length of which was shown to

be near the optimal length for a given number of agents.

The parallel algorithm was shown to result in cantilevers of

comparable length to the sequential case, but considerably

quicker. Prototype hardware was presented to demonstrate

how sensors could be added to links to measure forces.

There is considerable scope for future work. This paper

focused on cantilevers, but when the other side of the chasm

is reached, agents should redistribute to make a more optimal

bridge. The cantilevers in this paper are only attached to a

vertical support surface, but could be improved by allowing

construction above the support surface too. The simulator

could be modified to account for dynamic forces as the

agents move. The final goal of this work is to apply the self-

assembly algorithm to a modular swarm robotics platform

to demonstrate a fully-autonomous system, which should

include more accurate force-sensing hardware, such as strain

gauges, in addition to a method of autonomous locomotion.

REFERENCES

[1] B. Khaldi and F. Cherif, “An overview of swarm robotics: Swarm intel-
ligence applied to multi-robotics,” International Journal of Computer

Applications, vol. 126, no. 2, pp. 31–37, 2015.
[2] K. Stoy, D. Brandt, and D. Christensen, Self-Reconfigurable Robots:

An Introduction. Cambridge: MIT press, 2010.
[3] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-

assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[4] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots
- design of the SMORES system,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2012, pp. 4464–4469.
[5] J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, “3D M-Blocks:

Self-reconfiguring robots capable of locomotion via pivoting in three
dimensions,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA), 2015, pp. 1925–1932.
[6] C. Parrott, T. J. Dodd, and R. Groß, “HyMod: A 3-DOF Hybrid

Mobile and Self-Reconfigurable Modular Robot and its Extensions,”
in Distributed Autonomous Robotic Systems: The 13th International

Symposium. Springer International Publishing, 2018, pp. 401–414.
[7] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press, 1999, no. 1.
[8] N. J. Mlot, C. A. Tovey, and D. L. Hu, “Fire ants self-assemble

into waterproof rafts to survive floods,” Proceedings of the National

Academy of Sciences, vol. 108, no. 19, pp. 7669–7673, 2011.
[9] C. Anderson, G. Theraulaz, and J.-L. Deneubourg, “Self-assemblages

in insect societies,” Insectes Sociaux, vol. 49, no. 2, pp. 99–110, 2002.
[10] S. Phonekeo, N. Mlot, D. Monaenkova, D. L. Hu, and C. Tovey, “Fire

ants perpetually rebuild sinking towers,” Royal Society Open Science,
vol. 4, no. 7, p. 170475, 2017.

[11] B. Hölldobler and E. O. Wilson, “The Multiple Recruitment
Systems of the African Weaver Ant Oecophylla longinoda (La-
treille)(Hymenoptera: Formicidae),” Behavioral Ecology and Socio-

biology, pp. 19–60, 1978.
[12] S. Garnier, T. Murphy, M. Lutz, E. Hurme, S. Leblanc, and I. D.

Couzin, “Stability and Responsiveness in a Self-Organized Living
Architecture,” PLoS Computational Biology, vol. 9, no. 3, pp. 1–10,
2013.

[13] C. R. Reid, M. J. Lutz, S. Powell, A. B. Kao, I. D. Couzin, and
S. Garnier, “Army ants dynamically adjust living bridges in response
to a cost–benefit trade-off,” Proceedings of the National Academy of

Sciences, vol. 112, no. 49, pp. 15 113–15 118, 2015.

[14] E. Bray, “Distributed Self-Assembly of Cantilevers by Force-
Aware Robots,” 2021. [Online]. Available: https://gitlab.com/
natural-robotics-lab/distributed-force-aware-cantilever-self-assembly

[15] M. Malley, B. Haghighat, L. Houe, and R. Nagpal, “Eciton robotica:
Design and Algorithms for an Adaptive Self-Assembling Soft Robot
Collective,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA), 2020, pp. 4565–4571.
[16] M. Andrés Arroyo, S. Cannon, J. J. Daymude, D. Randall, and A. W.

Richa, “A stochastic approach to shortcut bridging in programmable
matter,” Natural Computing, vol. 17, no. 4, pp. 723–741, 2018.

[17] P. Funes and J. Pollack, “Computer Evolution of Buildable Objects,”
in Evolutionary Design by Computers, P. J. Bentley, Ed. Morgan
Kaufmann, 1999, vol. 1, pp. 387–403.

[18] L. Brodbeck and F. Iida, “Automatic real-world assembly of machine-
designed structures,” in 2014 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2014, pp. 1221–1226.
[19] M. McEvoy, E. Komendera, and N. Correll, “Assembly path planning

for stable robotic construction,” in 2014 IEEE International Con-

ference on Technologies for Practical Robot Applications (TePRA).
IEEE, 2014, pp. 1–6.

[20] N. Melenbrink, P. Michalatos, P. Kassabian, and J. Werfel, “Using
local force measurements to guide construction by distributed climbing
robots,” in 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2017, pp. 4333–4340.
[21] N. Melenbrink, P. Kassabian, A. Menges, and J. Werfel, “Towards

Force-aware Robot Collectives for On-site Construction,” in Proceed-

ings of the 37th Annual Conference of the Association for Computer

Aided Design in Architecture (ACADIA), 2017, pp. 382–391.
[22] N. Melenbrink and J. Werfel, “Local force cues for strength and stabil-

ity in a distributed robotic construction system,” Swarm Intelligence,
vol. 12, no. 2, pp. 129–153, 2017.

[23] P. Swissler and M. Rubenstein, “ReactiveBuild: Environment-Adaptive
Self-Assembly of Amorphous Structures,” in 2021 International

Symposium on Distributed Autonomous Robotic Systems (DARS).
Springer International Publishing, 2021.

[24] R. Vink, “anaStruct,” 2020. [Online]. Available: https://github.com/
ritchie46/anaStruct

[25] D. Guichard, An Introduction to Combinatorics and Graph

Theory. CC BY-NC-SA 3.0, 2020. [Online]. Available: https:
//www.whitman.edu/mathematics/cgt online/cgt.pdf

[26] S. H. Crandall, N. C. Dahl, and T. J. Lardner, An Introduction to the

Mechanics of Solids, 2nd ed. McGraw-Hill, 1978.

