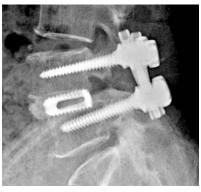
Marie Skłodowska-Curie Actions (MSCA) Innovative Training Networks (ITN) H2020-MSCA-ITN-2017

Spinner next generation spine experts **Development of osteoinductive coatings** for spinal implants (fusion cages)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 766012



Introduction

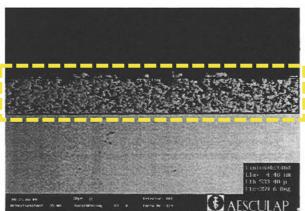
Stock photo

DOI: 10.4184/jkss.2012.19.4.123

1 in 5 patients need revision!

© BBraun

Introduction


Coating: Surface modification by deposition of different material.

For Orthopaedic implants:

- Used to improve osteointegration
- Other possible objectives:
 - Wear Resistance
 - Antibacterial properties

Standard compositions:

- Titanium
- Calcium Phosphates Hydroxyapatite (HAP)

DOI: 10.1063/1.58204

© BBraun

DOI: 10.1111/j.1708-8208.2012.00469.x

Aims

Development of TiO₂/sHAP coatings

Spanner next generation spine experts

Low temperature crystallization of TiO₂

Synthesis of Mg and Sr substituted hydroxyapatite Serum-free Osteogenic Differentiation of Mesenchymal Stem Cell Line

Design of Experiments

Statistics-based experimental method that aims to extract the most information from a minimum number of conditions.

- Identifies how individual factors affect experimental results
- Identifies how factors interact with each other
- Creates mathematical model that identifies optimal experimental conditions/range of conditions

Well designed DoE results in well organized, more useful and more precise data.

Design of Experiments How to validate a model

1. $R^2 - Q^2 < 30\%$ 2. $Q^2 \ge 50\%$

SS

3. Validity > 25% $Val = 1 + 0.57647\log(p_{lof})$

$$R^{2} = 1 - \frac{FRESS}{SS}$$
$$Q^{2} = 1 - \frac{PRESS}{SS}$$

4. Reproducibility > 50% $Rep = 1 - \frac{MS_{total \ error}}{MS_{total \ SS \ corrected}}$

Model is only valid if it passes all four criteria!

Low temperature crystallization of TiO₂

Objectives

Low temperature crystallization of TiO_2 – Design of Experiments

TiO₂ synthesis optimization

Background

Why TiO₂:

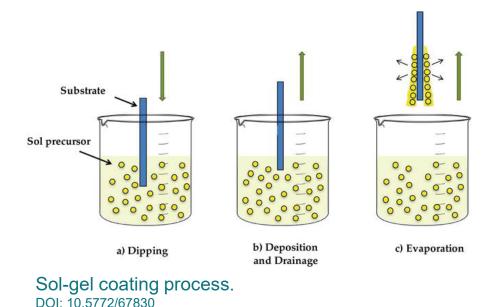
- Naturally occurs on Ti-based implants
- Enhances implant osteointegration

Why crystallized TiO₂:

 Further enhances osteointegration

Why Low-temperature Crystallization:

- TiO₂ crystallizes at 400 450 °C
- Service temperature of PEEK at 250 – 260 °C
- Synthesis conditions can lower crystallization temperature



Why Sol-Gel:

- Simple, inexpensive technique
- High quality coatings
- High Purity
- Excellent Bioactivity
- Appropriate for complex geometries

TiO2 Sol-Gel Synthesis

Sol-gel synthesis of TiO2: a) before gelification; b) after gelification.

Method:

- Add Ethanol to 100 ml beaker
- Add 3.9 ml of Titanium Isopropoxide
- Stir for 10 minutes
- Add Acetic Acid
- Stir for 10 minutes
- Add ultrapure water
- Set reaction temperature
- Stir for 24 hours covered in punctured foil
- Sinter at 250 °C

Low temperature crystallization of TiO_2 — Design of Experiments

Methods:	Standard Order	Run Order	Α	В	С	D	Е	F
	1	12	0	+	+	+	+	+
 Definitive screening design 	2	1	0	-	-	-	-	-
	3	6	+	0	+	-	-	+
	4	3	-	0	-	+	+	-
 Analysis: 	5	8	+	+	0	+	-	-
• TGA	6	11	-	-	0	-	+	+
• XRD	7	7	+	-	+	0	+	-
	8	5	-	+	-	0	-	+
	9	4	+	-	-	+	0	+
 Responses: 	10	9	-	+	+	-	0	-
• Org %	11	13	+	+	-	-	+	0
	12	2	-	-	+	+	-	0
 Crystallinity % 	13	10	0	0	0	0	0	0

Factor	Description	-	0	+
Α	Reaction temperature (°C)	50	60	70
В	Ethanol volume (ml)	15.2	22.8	30.4
С	Ultrapure water volume (ml)	1	2	3
D	Acetic acid volume (ml)	0.7	2.8	4.1
E	Heating rate (°C/min)	4	12	20
F	Sintering time (hours)	1	3.5	6

Low temperature crystallization of TiO_2 — Design of Experiments **Results**:

Standard Order	Α	В	С	D	Е	F	Org %	Crystallinity %
1	0	+	+	+	+	+	8.10	63.91
2	0	-	-	-	-	-	11.17	0.00
3	+	0	+	-	-	+	7.04	73.23
4	-	0	-	+	+	-	13.34	0.00
5	+	+	0	+	-	-	12.31	52.25
6	-	-	0	-	+	+	12.24	36.88
7	+	-	+	0	+	-	7.71	71.34
8	-	+	-	0	-	+	7.10	0.00
9	+	-	-	+	0	+	7.18	45.99
10	-	+	+	-	0	-	10.92	0.00
11	+	+	-	-	+	0	7.11	0.00
12	-	-	+	+	-	0	9.74	67.56
13	0	0	0	0	0	0	9.35	57.43

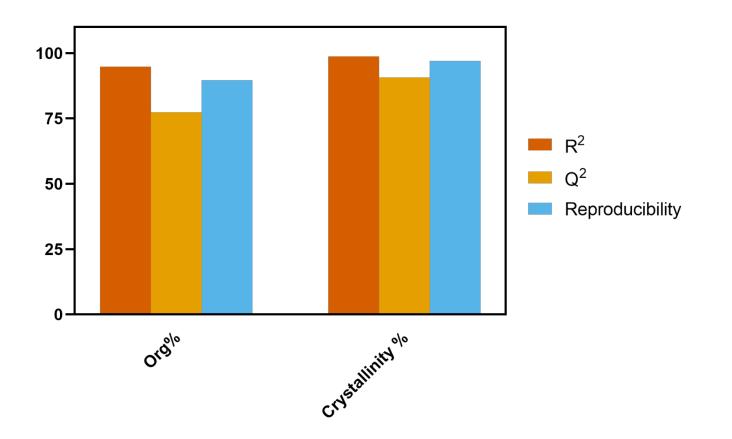
Factor

Description

- **A** Reaction temperature (°C)
- **B** Ethanol volume (ml)
- **C** Ultrapure water volume (ml)
- **D** Acetic acid volume (ml)
- E Heating rate (°C/min)
- **F** Sintering time (hours)

Low temperature crystallization of TiO_2 — Design of Experiments **Models**:

 $-Org^{-1} = -0.1054 - 0.0141A - 0.0004C + 0.0024D - 0.0160F - 0.0306C^2 + 0.0231D^2$


 $Crystallinity (\%) = 53.00 + 13.84A - 10.56B + 23.00C + 11.96D + 9.64F - 22.04C^2 - 6.22AD$

Factor	Description
Α	Reaction temperature (°C)
В	Ethanol volume (ml)
С	Ultrapure water volume (ml)
D	Acetic acid volume (ml)
E	Heating rate (°C/min)
F	Sintering time (hours)

Low temperature crystallization of TiO_2 — Design of Experiments Models: Summary of Fit

TiO_2 synthesis optimization

Bosnonso	Factor						
Response	Α	В	С	D	E	F	
Org %	1	N/A	-1	0	N/A	1	
Crystallinity %	1	-1	0.52	1	N/A	1	
Optimized settings	1	-1	?	?	1	1	

Factor	Description	-	0	+
Α	Reaction temperature (°C)	50	60	70
В	Ethanol volume (ml)	15.2	22.8	30.4
С	Ultrapure water volume (ml)	1	2	3
D	Acetic acid volume (ml)	0.7	2.8	4.1
E	Heating rate (°C/min)	4	12	20
F	Sintering time (hours)	1	3.5	6

TiO₂ synthesis optimization Optimizing Factor D (Acetic acid volume)

	Factors					
Settings	Α	В	С	F		
	1	-1	1	1		

 $-Org^{-1}$ = -10539 - 0.01412A - 0.00044C + 0.00239D - 0.01603F - 0.03058C² + 0.02314D²

D	Org %	Crystallinity %
0	6.00	88.00
0.5	6.27	90.87
1	7.09	93.74

Crystallinity (%) = 53.00 + 13.84A - 10.56B + 23.00C + 11.96D + 9.64F - 22.04C² - 6.22AD

TiO_2 synthesis optimization

Response optimization

Bosnonso	Factor						
Response	Α	В	C	D	E	F	
Org %	1	N/A	-1	0	N/A	1	
Crystallinity %	1	-1	0.52	1	N/A	1	
Optimized settings	1	-1	1	0.5	1	1	

Factor	Description	-	0	+
Α	Reaction temperature (°C)	50	60	70
В	Ethanol volume (ml)	15.2	22.8	30.4
С	Ultrapure water volume (ml)	1	2	3
D	Acetic acid volume (ml)	0.7	2.8	4.1
Е	Heating rate (°C/min)	4	12	20
F	Sintering time (hours)	1	3.5	6

Response	Modelled	Real
Org %	6.27	5.52
Crystallinity %	90.87	77.95

Chapter remarks

- It is possible to decrease the crystallization temperature of TiO₂
- Optimal synthesis conditions were assessed using Design of Experiments
- TiO₂/sHAP coatings will be developed using optimized synthesis conditions

Synthesis of Mg and Sr substituted hydroxyapatite (sHAP)

Mg and Sr sHAP Synthesis

Preliminary Work

Mg and Sr sHAP Synthesis

Design of Experiments

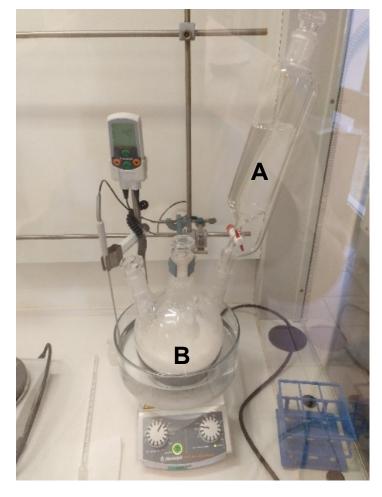
Background

Why sHAP:

- HAP is the basis of bone mineral
- Biologic HAP is not stochiometric
- sHAP closer to biologic HAP – better biological performance

Why Mg:

- Stimulates osteoblasts
- Stimulates bone
 mineralization


Why Sr:

- Inhibits osteoclasts
- Inhibits bone resorption

Wet Chemical Precipitation

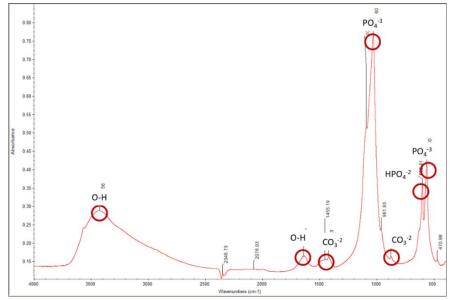
- $A H_3PO_4$ solution
- **B** Basic solution
 - CaOH₂
 - MgCl₂
 - Sr(NO₃)₂
 - Ammonia solution 28%

Method:

- Set B to 40 °C;
- Add A to B, under stirring, 1 drop/sec;
- Leave overnight under stirring at 37 °C;
- Wash, dry overnight and grind to powder.

Formulations studied

	Basic solution					
Formulation	Ca - Ca(OH) ₂ Mg - MgCl ₂ ·6H ₂ O		Sr - Sr(NO ₃) ₂			
	mol%	mol%	mol%			
C0	100	0	0			
C4	90	5	5			
C5	85	5	10			
C6	85	10	5			
C7	80	10	10			
C8	85	7.5	7.5			

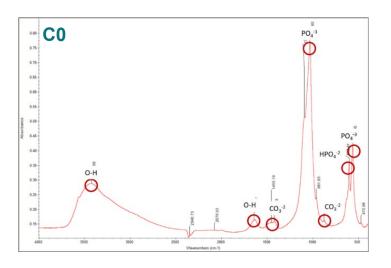


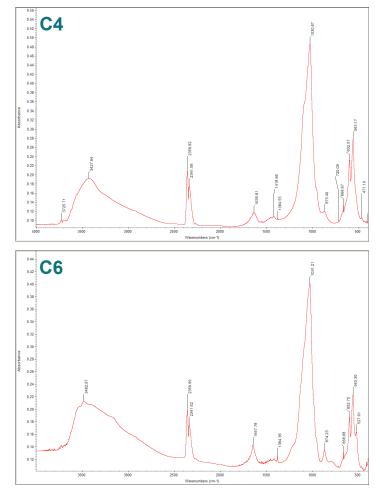
Mg and Sr sHAP Synthesis — Preliminary Work

Methods:

- All formulations synthesised
- No ammonia solution added
- All samples analysed by FTIR

FTIR spectrum of pure HAP (C0), with relevant peaks identified.

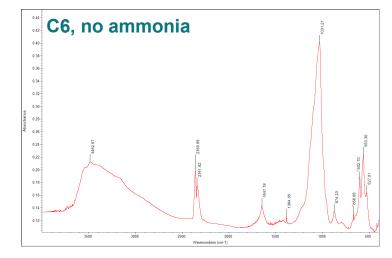


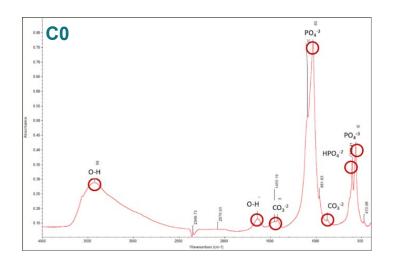


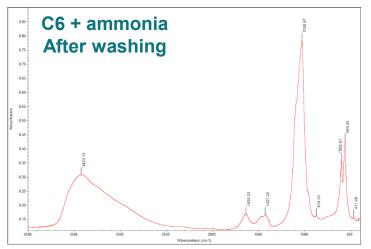
Mg and Sr sHAP Synthesis — Preliminary Work

Results:

- C4 spectrum similar to C0 spectrum;
- Spectra for C5 to C8 do not resemble C0 spectrum;






Mg and Sr sHAP Synthesis — Preliminary Work

Results:

- C6 spectrum now similar to C0
- Ammonia traces before washing

Mg and Sr sHAP Synthesis — Design of Experiments

Methods:

 Full factorial design + three centre points

•	Analysis:	
	J	

- ICP-OES
- XRD
- Responses:
 - Ca/P
 - (Ca+Mg+Sr)/P
 - Mg %
 - Sr %
 - HAP phase %

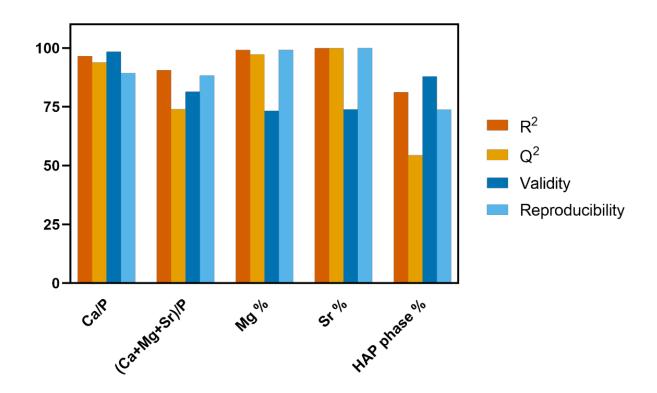
Factor	Description	-	0	+
Α	Mg substitution degree (%)	5	7.5	10
В	Sr substitution degree (%)	5	7.5	10
С	Ammonia solution 28% volume (ml)	15	32.5	50

Standard Order	Run Order	Α	В	С
1	7	-	-	-
2	4	+	-	-
3	8	-	+	-
4	10	+	+	-
5	1	-	-	+
6	5	+	-	+
7	3	-	+	+
8	2	+	+	+
9	9	0	0	0
10	6	0	0	0
11	11	0	0	0

Mg and Sr sHAP Synthesis — Design of Experiments

Models:

Effects of main factors and interactions, and summary of fit of optimized DoE models (* Box-Cox transformation of exponent λ)


Model	βo	Α	В	С	AB	AC	BC
Ca/P	1.3618	-0.0525	-0.0550	+0.015			
(Ca+Mg+Sr)/P	1.5736	-0.0300	-0.3500	+0.055			
Mg % * λ = 4	3.8030	+3.1090		+3.171		+2.632	
Sr % * λ = 1	6.8609		+1.9575				
HAP phase % * λ = 9	11.676	-4.8110	-1.313	+1.566			

Factor	Description	-	0	+
Α	Mg substitution degree (%)	5	7.5	10
В	Sr substitution degree (%)	5	7.5	10
С	Ammonia solution 28% volume (ml)	15	32.5	50

Mg and Sr sHAP Synthesis — Design of Experiments Models: Summary of Fit

Chapter remarks

- It was possible to synthesise sHAP with different substitution degrees
- It was possible to model how synthesis conditions affect the composition and quality of sHAP
- Optimal synthesis conditions will be assessed after in-vitro testing
- Optimal sHAP will be used to develop sHAP/TiO₂ coatings

Serum-free Osteogenic Differentiation of Mesenchymal Stem Cell Line

Objectives

Objectives

Comparing serum-free and serum-containing media

Assessing best osteogenic culture conditions

Background

Why serum-free:

- Different sera have different compositions – inconsistent results
- Serum-free media have consistent compositions
 consistent results
- Less ethical issues

Why cell line:

- More consistent results
- Easier to culture
- Easier to passage without losing properties

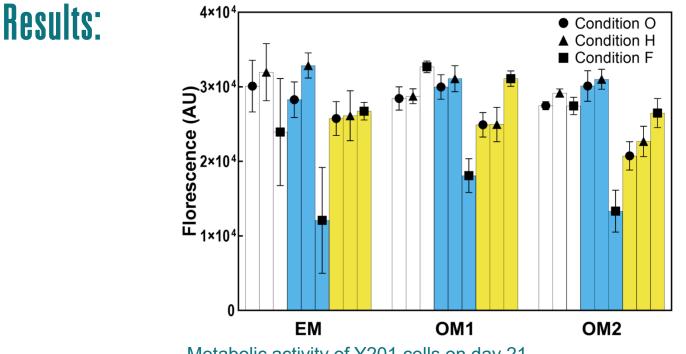
Comparing serum-free and serum-containing media

Methods:

- hTERT- MSCs Y201
 - Cell density: 4000 cells/cm²
- Three different media
 - Volume: 300 μl
- Three media change protocols
 - O 1 full change/week
 - H 3 half changes/week
 - F 3 full changes/week
- Three supplementation profiles

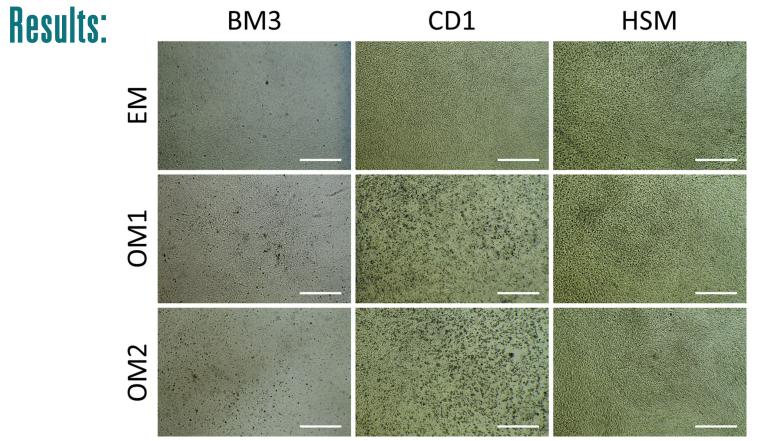
Cell culture media

DM2	DMEM (GIBCO)
BM3	+ 10% FBS (GIBCO)
	StemMACS™ MSC Expansion Media
CD1	Kit XF, human (Miltenyi Biotec),
	serum-free and xeno-free
HSM	Human Mesenchymal-XF Expansion
	Medium (Merck), human-serum


Supplementation profiles

EM	No supplements
0.041	1 st media change – AA2P
OM1	2 nd media change – βGP, Dex
OM2	1 st media change – AA2P, βGP, Dex
AA2P	L-Ascorbic Acid 2-phosphate (5 mg/ml)
βGP	Beta-glycerophosphate (0.5 M)
Dex	Dexamethasone (10 μM)

Comparing serum-free and serum-containing media


Metabolic activity of Y201	cells	on day	21.
----------------------------	-------	--------	-----

	DMEM (GIBCO) + 10% FBS (GIBCO)
	StemMACS™ MSC Expansion Media Kit XF, human (Miltenyi Biotec), serum-free and xeno-free
HSM	Human Mesenchymal-XF Expansion Medium (Merck), human-serum

Comparing serum-free and serum-containing media

Y201 cell at day 21, 1 media change/week. Scale bar = 500 μ m.

Assessing best osteogenic culture conditions

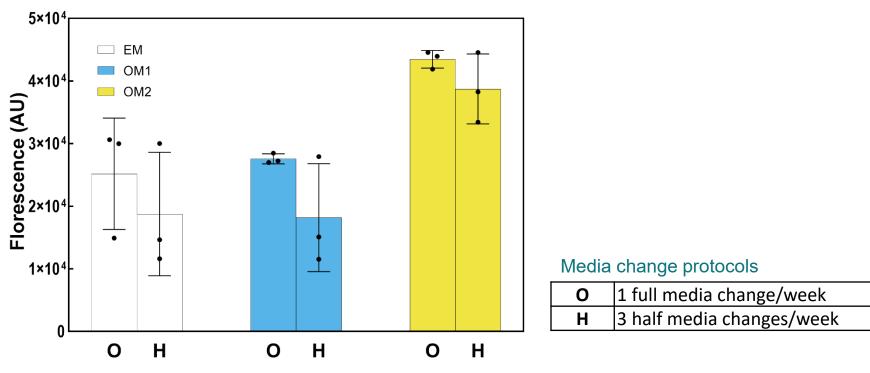
Methods:

- hTERT- MSCs Y201
 - Cell density: 4000 cells/cm²
- Media:
 - StemMACS[™] MSC Expansion Media Kit XF, human (Miltenyi Biotec)
 - Volume: 400 µl
- Three supplementation profiles
- Two media change protocols

Supplementation profiles

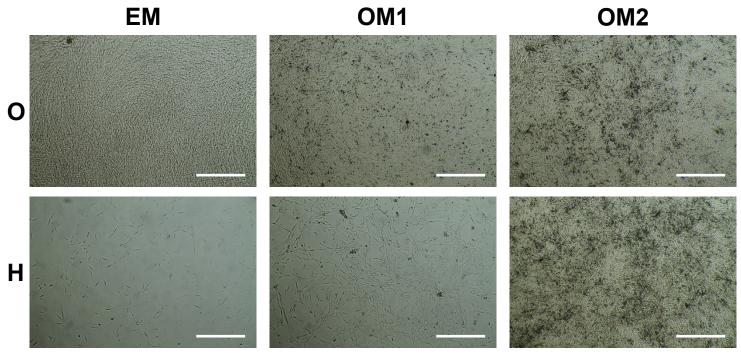
	-
EM	No supplements
	1 st media change – AA2P
OM1	2 nd media change – βGP, Dex
OM2	1 st media change – AA2P, βGP, Dex
AA2P	L-Ascorbic Acid 2-phosphate (5 mg/ml)
βGP	Beta-glycerophosphate (0.5 M)
Dex	Dexamethasone (10 μM)

Media change protocols


0	1 full media change/week
Н	3 half media changes/week

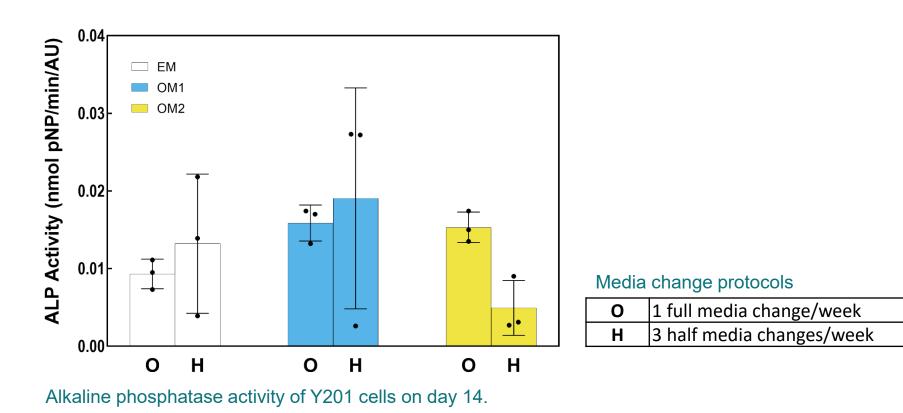
Assessing best osteogenic culture conditions

Results:


Metabolic activity of Y201 cells on day 21.

Assessing best osteogenic culture conditions

Results:


Y201 cell at day 21. Scale bar = 500 μ m.

Assessing best osteogenic culture conditions

Results:

Chapter remarks

- Serum-free media is a good alternative to media supplemented with serum
- 1 media change/week allows for cells to remain viable with lower risk of cell detachment
- Any supplementation profile studied promotes differentiation of hTERT-MSCs Y201
- CD1 with OM2 supplementation and 1 media change/week will be used as positive control

Project Summary

- Sol-Gel synthesis of TiO₂ has been optimized
- Synthesis of sHAP has been modelled
- In-vitro testing conditions have been setted
- Test synthesised sHAP *in-vitro*
- Study development of TiO₂/sHAP using DoE
- Determine optimal coating conditions for different substrates

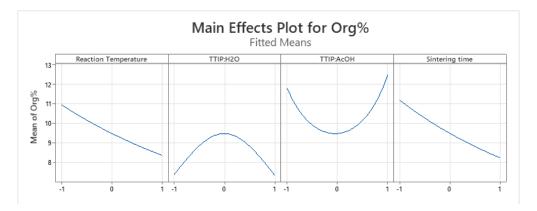
Aknowledgements

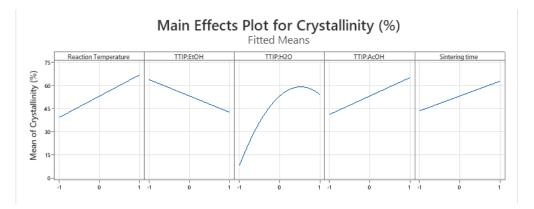
The University Of Sheffield.

- Dr Frederik Claeyssens
- Dr Gwen Reilly

- Lucia Forte
- Laura Grillini
- Riccardo Bendoni
- Claudio De Luca

- Denata Syla
- Chloé Techens
- Jennifer Fayad
- Marco Sensale
- Cameron James



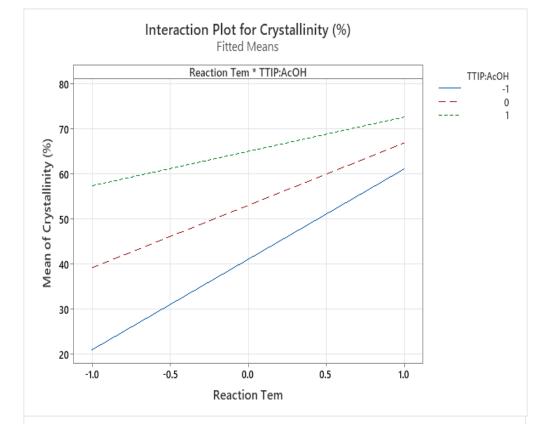

THANK YOU ANY QUESTIONS?

TiO₂ synthesis optimization Optimizing factor C (Ultrapure water volume)

Org (%)

 Lower when C = 1 or C = -1

Crystallinity (%)


- Higher when C = 0.52
- Still high when C = 0 or C = 1

Optimized C = 1

TiO₂ synthesis optimization Optimizing Factor D (Acetic acid volume)

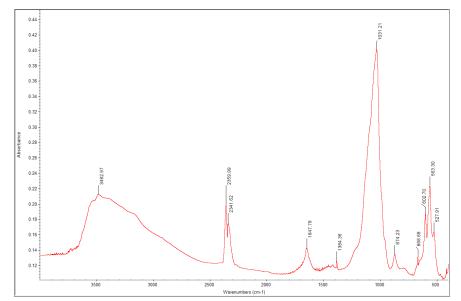
Organic Residues (%)

Lower when D = 0 Highest when D =1

Crystallinity (%)

Higher when D = 1 Interaction with A also significant, and higher when D = 1

Check responses when 0 ≤ D ≤ 1



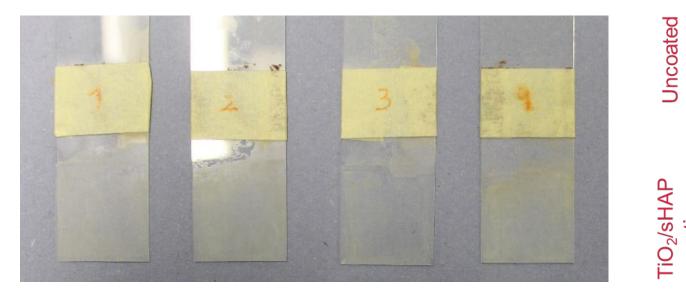
sHAP Process optimization

Methods:

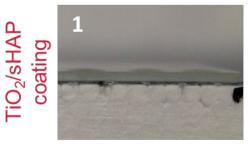
- Synthesised formulation C6
- pH monitored during synthesis
- pH monitored after synthesis for 1 hour
- Ammonia solution 28% added when pH < 10

FTIR spectrum of pure sHAP C6, no ammonia.

Mg and Sr sHAP Synthesis — Design of Experiments


Results:

	Standard Order	Α	В	С	<u>Са</u> Р	<u>(</u>	<u>Ca+Mg+Sr</u> P	Mg %	Sr %	HAP Phase %
-	1	-	-	-	1.46		1.60	4.09	4.81	97.4
	2	+	-	-	1.36		1.53	6.49	4.89	93.5
	3	-	+	-	1.34		1.51	2.49	8.79	97.0
	4	+	+	-	1.24		1.42	3.98	8.82	80.1
	5	-	-	+	1.48		1.66	5.97	4.99	100.0
	6	+	-	+	1.38		1.63	10.32	4.92	92.4
	7	-	+	+	1.39		1.63	5.59	8.79	100.0
	8	+	+	+	1.27		1.58	10.34	8.87	90.0
	9	0	0	0	1.34		1.61	7.35	6.82	91.4
	10	0	0	0	1.38		1.57	7.77	6.90	95.6
	11	0	0	0	1.34		1.57	7.68	6.87	90.7
Factor	or Description				-	0	+			
Α	Mg substitution degree (%)				5 5	7.5	10			
В						7.5	10			
С	Ammonia so	iution 2	8% volu	ime (ml) 15	32.5	50			



TiO2/sHAP coatings — Preliminary work

