





## Modelling for spinal surgeries

#### **ESR5: Marco Sensale**











### Introduction





- ≈900.000 annual cases in the US [1]
- Osteoporosis, high and low energy traumas, metastases ecc.
  - Minimally invasive techniques: posterior fixation, vertebroplasty, kyphoplasty



[3]

[2]

[1] Melton et al. 1997, [2] Kumar et al. 2005, [3] Ebeling et al. 2019





#### Introduction



#### **Posterior fixation**

- Post-operative complications: pain, kyphosis, loss of reduction etc.
- Parametric FE models: absence of verification, unestimated effect of parameters, high

computational time





#### Introduction

[2]



- Cement leakage, adjacent vertebral fracture, kyphosis, loss of reduction etc.
- No geometric information before the fracture
- Pre-fracture shape predicted only in 2D case



[1] Pesce et al. 2013, [2] de Bruijne et al. 2007





## Objectives

• To verify subject-specific CT-based FE models of the human vertebra with two Study #1 pedicle screws • To evaluate their sensitivity to the geometrical properties of the screws • To explore if reduced order models (ROM) can be used to improve the efficiency of parametric FE models to optimize the screws' properties • To develop and evaluate a methodology to predict the shape of the pre-fracture L1 from adjacent vertebrae











**ORIGINAL RESEARCH article** 

Front. Bioeng. Biotechnol., 10 March 2021 | https://doi.org/10.3389/fbioe.2021.643154

**frontiers** in Bioengineering and Biotechnology

# Patient-Specific Finite Element Models of Posterior Pedicle Screw Fixation: Effect of Screw's Size and Geometry

M. Sensale<sup>a,b</sup>, T. Vendeuvre<sup>c,d</sup>, C. Schilling<sup>e</sup>, T. Grupp<sup>e,f</sup>, M. Rochette<sup>a</sup>, E. Dall'Ara<sup>b</sup>









#### Methods



[1] Gertzbein et al. 1990





#### Methods

Bone:

- Heterogeneous
- Isotropic
- Linear elastic (v = 0.3)

Screws: E = 102 GPa, v = 0.36 (Titanium)

# Screws-bone interface: bonded









• Verification for optimal screw size (D = 6.5 mm, L = 45 mm):

Max element size

- Screws: (0.4 mm 1.2 mm)
- Bone: (0.9 mm 3.0 mm)



nner





L (mm)

• Verification for optimal screw size (D = 6.5 mm, L = 45 mm):

Max element size

- Screws: (0.4 mm 1.2 mm)
- Bone: (0.9 mm 3.0 mm)

• Sensitivity analysis on Diameter and Length







• Verification for optimal screw size (D = 6.5 mm, L = 45 mm):

Max element size

- Screws: (0.4 mm 1.2 mm)
- Bone: (0.9 mm 3.0 mm)

• Sensitivity analysis on Diameter and Length



Inner











Chosen elemet size of 1.0 mm for the vertebra and 0.6 mm for the screws











#### Conclusions

• Element size of 0.6 mm in the realistic screw and 1.0 mm in the bone

→ relative differences  $\leq 5\%$ 

- Relative differences similar for realistic and simplified screws
- Diameter more important than the length of screws







# Exploration of Reduced Order Modelling applied to FE models for studying the effect of the screws' size and orientation

M. Sensale<sup>a,b</sup>, L. Geronzi<sup>a,c</sup>, M. Biancolini<sup>c,d</sup>, T. Vendeuvre<sup>e</sup>, M. Rochette<sup>a</sup>, E. Dall'Ara<sup>b</sup>

<sup>a</sup>ANSYS, France; <sup>b</sup>University of Sheffield, UK; <sup>c</sup>University of Rome "Tor Vergata", <sup>d</sup>RBF Morph srl, Italy; <sup>e</sup>Poitiers University Hospital, France

Presented at: ESB 2021 - JULY 11-14, 2021 - 26TH CONGRESS OF THE EUROPEAN SOCIETY OF BIOMECHANICS







#### Methods



- ROM of the deflection in the screws
- ROM of the von Mises stress in the screws
- ROM of the minimum principal strain in the bone





#### Methods







$$e_{L2_{ROM}} = \frac{\|X_{ROM} - X_{FE}\|^2}{\|X_{FE}\|^2}$$



Factors influencing the performance of the ROM:

- Remeshing of the vertebra
- Heterogeneous properties
- Frictional interface





 $e_{L2_{ROM}} = \frac{\|X_{ROM} - X_{FE}\|^2}{\|X_{FE}\|^2}$ 











#### Conclusions

- Complex ROMs (D, L,  $\theta$ ,  $\phi$ ) hetero/friction: errors lower than 5% for metrics in the screws
- Simplified ROMs homo/bonded useful for metrics in both the screws and the bone
- Further analyses needed to optimize the ROM for the screws-bone frictional case













## Prediction of the shape of human lumbar vertebrae from adjacent ones by Singular Values Decomposition

M. Sensale<sup>a,b</sup>, T. Vendeuvre<sup>c</sup>, A.Germaneau<sup>d</sup>, C.Grivot<sup>a</sup>, E. Dall'Ara<sup>b</sup>, M. Rochette<sup>a</sup>

<sup>a</sup>ANSYS, France; <sup>b</sup>University of Sheffield, UK; <sup>c</sup>Poitiers University Hospital, France; <sup>d</sup>University of Poitiers, France



Presented at ISB 2021 conference, Stockolm, July 2021





### Vertebral body segmentation + Mesh registration

- 40 patients (22 men, 18 women)
- 40.9 ± 15.9 years
- Manual procedure (3D Slicer)



VerSe: Large Scale Vertebrae Segmentation Challenge https://github.com/anjany/verse [1] [2]

- Template mesh generation
- Semi-automatic procedure
- Mean registration error 0.14 mm





Anatomical landmarks





#### Prediction of the shape of L1: least-squares optimization







| Level(s) used | Mean error (mm)  |              | Hausdorff distance (mm) |              |
|---------------|------------------|--------------|-------------------------|--------------|
|               | Average ± st dev | (Min, Max)   | Average ± st dev        | (Min, Max)   |
| T12 and L2    | $0.51 \pm 0.11$  | (0.29, 0.96) | 2.11 ± 0.56             | (1.38, 4.52) |

Patient #4







Patient #11



Highest mean error = 0.96 mm Hausdorff distance = 4.52 mm

Lowest mean error = 0.29 mm Hausdorff distance = 1.40 mm

24





#### Patient #4 -> mean error 0.29 mm

#### Patient #11 -> mean error = 0.96 mm



#### Best mean error

Worst mean error





#### Conclusions

- Mean reconstruction error lower than 0.6 mm
- Hausdorff distance lower than 2.2 mm (often localized at postero-

lateral part of the vertebral body)

• Distribution of heights accurately estimated





## Summary

- Element size: 0.6 mm (screws) and 1.0 mm (bone)  $\rightarrow$  relative differences  $\leq 5\%$
- Diameter more important than length of screws
- ROMs of complex FE (D, L,  $\theta$ ,  $\phi$ ) hetero/friction  $\rightarrow$  metrics in the screws
- ROMs of FE homo/bonded → metrics in the screws & in the bone
- Prediction L1 pre-fracture shape → mean error lower than 0.6 mm





#### Acknowledgments





Supervisors: Enrico Dall'Ara Michel Rochette



Tanguy Vendeuvre

(rbf-morph)

Marco Biancolini



Thomas Grupp Christoph Schilling



Cameron James Chloé Techens Denata Syla Jennifer Fayad Jose Rodrigues



Christelle Grivot Wenfeng Ye











# Thank you!





