y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, constant	0
x^n , any constant n	nx^{n-1}
e^x	e^x
$\ln x = \log_{e} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x = \frac{\sin x}{\cos x}$	$\sec^2 x$
$\operatorname{cosec} x = \frac{1}{\sin x}$	$-\operatorname{cosec} x \cot x$
$\sec x = \frac{1}{\cos x}$	$\sec x \tan x$
$\cot x = \frac{\cos x}{\sin x}$	$-\mathrm{cosec}^2 x$
$\sin^{-1}x$	$\frac{\frac{1}{\sqrt{1-x^2}}}{\frac{-1}{\sqrt{1-x^2}}} \\ \frac{1}{1+x^2}$
$\cos^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
$\cosh x$	$\sinh x$
$\sinh x$	$\cosh x$
$\tanh x$	$\mathrm{sech}^2 x$
$\operatorname{sech} x$	$-\mathrm{sech}x \tanh x$
$\operatorname{cosech} x$	$-\mathrm{cosech}x\mathrm{coth}x$
$\coth x$	$-\mathrm{cosech}^2 x$
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2-1}}$
$\sinh^{-1}x$	$\frac{\sqrt{x^2-1}}{\sqrt{x^2+1}}$
$\tanh^{-1} x$	$\frac{1}{1-x^2}$

Differentiation

Hyperbolic functions

$$\cosh x = \frac{e^{-} + e^{-}}{2}, \qquad \sinh x = \frac{e^{x} - e^{-} x}{2}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^{x} + e^{-x}}$$

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^{x} - e^{-x}}$$

$$\operatorname{coth} x = \frac{2}{\sinh x} = \frac{1}{\cosh x} = \frac{2}{e^{x} - e^{-x}}$$

Hyperbolic identities

 $\frac{1}{1-x^2} = x \frac{1}{\cos 2x - 1}$ $\operatorname{cosh}^{2} x = \frac{2}{\operatorname{cosh}^{2} x + 1}$ $\operatorname{cosh}^{2} x = \frac{2}{\operatorname{cosh}^{2} x + 1}$ x usos x inh $x \cos x$ dris $\operatorname{cosp}(x \pm h) = \operatorname{cosp} x \operatorname{cosp} h \pm \operatorname{sinh} x \operatorname{sinh} h$ $y = y = x + x \cos x$ $y = x \cos x \sin y$ x_z upper $x_z = 1 - x_z$ upper x_z u x^{z} dosz = x^{z} dnst - f $1 = x^{2}$ Anis $- x^{2}$ Aloo $\mathbf{e}_x = \operatorname{cosp} x + \operatorname{sinp} x^*$ $x \text{ quis} - x \text{ qsos} = x_{-} a$

$$\cosh_{-1} x = \ln(x + \sqrt{x^2 - 1})$$
 for $\cosh_{-1} x = \ln(x + \sqrt{x^2 - 1})$

1 > x > 1 - rot $\left(\frac{x+1}{x-1}\right) \text{nl} \frac{1}{2} = x^{1-1} \text{not}$ $(\overline{1+^{2}x}\sqrt{+x})$ nl = x^{1-n} nie $1\leqslant x$ cosp

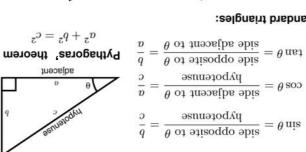
The Greek alphabet

Θ	θ	theta	Ш	Ш	iq	Ω	e	omega
H	ι	eta	0	0	norsimo	Φ	p	isd
Z	5	stəz	Ξ	3	ix	X	χ	idə
E	Э	nolizqa	N	n	nu	Φ	ϕ	ihq
∇	8	delta	IN	rl	nuu	r	a	uolisqu
L	L	gamma	V	Y	lambda	\mathcal{L}	L	net
B	Ø	beta	Я	Э	kappa	Σ	Q	smgiz
V	Ø	alpha	Ι	1	iota	d	d	сµо

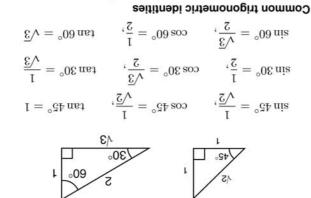
2661 3 Typesetting and artwork by the authors at Loughborough University for the Mathematics Learning Support Centre Written by Tony Croft and Geoff Simpson

f(x)	$\int f(x) \mathrm{d}x = F(x) + c$	
k, constant	kx + c	
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1} + c$	
$x^{-1} = \frac{1}{x}$	$\begin{cases} \ln x + c & x > 0\\ \ln(-x) + c & x < 0 \end{cases}$	
e^x	$e^x + c$	
$\cos x$	$\sin x + c$	
$\sin x$	$-\cos x + c$	
$\tan x$	$\ln(\sec x) + c$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$
$\sec x$	$\frac{\ln(\sec x) + c}{\ln(\sec x + \tan x) + c}$	$-\frac{\tilde{\pi}}{2} < x < \frac{\tilde{\pi}}{2}$
$\operatorname{cosec} x$	$\ln(\csc x - \cot x) + c$	$\tilde{0} < x < \tilde{\pi}$
$\cot x$	$\ln(\sin x) + c$	$0 < x < \pi$
$\cosh x$	$\sinh x + c$	
$\sinh x$	$\cosh x + c$	
anh x	$\ln \cosh x + c$	
$\coth x$	$\ln \sinh x + c$	x > 0
$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a} + c$	a > 0
a tu	u u	

Integration



Standard triangles:



 $\lim_{S \to S} A = \frac{1 - \cos 2A}{S}, \qquad \cos^2 A = \frac{1 - \cos 2A}{S}$ $A \cos A \sin \Omega = A \Omega \sin \Omega$ $A^{2} \operatorname{nis} 2 - 1 = 1 - A^{2} \operatorname{sos} 2 = A^{2} \operatorname{nis} - A^{2} \operatorname{sos} = A 2 \operatorname{sos}$ $1 + \cot^2 A = \csc^2 A$, $\tan^2 A + 1 = \sec^2 A$ $I = A^{2} soo + A^{2} nis$ (B+A)soo -(B-A)soo = B nis A nis 2 $(A + A)\cos A \cos B = \cos A \cos A \cos 2$ (B - A)niz + (B + A)niz = $B \cos A$ niz Ω $\frac{B \operatorname{net}\pm A \operatorname{net}}{B \operatorname{net} A \operatorname{net}\mp 1} = (B \pm A)\operatorname{net}$ $A \operatorname{nis} A \operatorname{nis} \mp B \operatorname{sos} A \operatorname{sos} = (A \pm A) \operatorname{sos}$ $A \operatorname{nis} A \operatorname{sos} \pm A \operatorname{sos} A \operatorname{nis} = (A \pm A) \operatorname{nis}$

powers only. metric and hyperbolic functions but with positive integer means $(\cos A)^2$ etc. This notation is used with trigono- A^{2} soo ylashimis. (A nis) for best notation of the similarly cost A

Facts & Formulae

For the help you need to support your course

Algebra

$$x_3 \pm k^3 = (x \pm k)(x^2 \pm kx + k^2)$$
$$(x + k)^2 = x^2 - 2kx + k^2, \quad (x - k)^2 = x^2 - 2kx + k^2$$

Formula for solving a quadratic equation:

if
$$ax^2 + bx + c = 0$$
 then $x = -\frac{2a}{2a}$

Laws of Indices

$$amu = a(m_0) \qquad amu = \frac{m_0}{n_0} \qquad amu = \frac{m_0}{n} \qquad amu = m_0 m_0$$

$$m(\overline{n}) = \frac{1}{n} = a^m n \qquad \overline{n} = \frac{1}{n} = m^{-1} n \qquad \overline{n} = \frac{1}{n} = m^{-1} n \qquad \overline{n} = \frac{1}{n} = n^{-1} n$$

smittinegod to swed

For any positive base b (with $b \neq 1$)

$$^{5}d = A$$
 and $n = A_{d}$ and $a = A_{d}$

$$I = d_{d} \Im O I = 0$$

$$\int G_{d} \Im O I = 0$$

$$= d_{d}$$
gol $(0 = I_{d}$ gol $(n_{d})^{n}$ $(n_{d})^{n}$ gol $= h_{d}$ gol n

ormula for change of base:
$$\log_a x = \log_a x^{-\frac{1}{2} \log_a x}$$

ponential constant which is approximately 2.718. called natural logarithms. The letter e stands for the ex-Logarithms to base e, denoted log_e or alternatively ln are

Partial fractions

 $\frac{\Lambda}{d+xb}$ much the form $\frac{\Lambda}{d+xb}$ a linear factor ax+b in the denominator produces a partial with the degree of P less than the degree of Q: For proper fractions $\frac{P(x)}{Q(x)}$ where P and Q are polynomials

a quadratic factor $ax^2 + bx + c$ in the denominator produces duce partial fractions of the form $\frac{A}{h} + \frac{A}{h}$ more partial fractions of the form repeated linear factors $(ax + b)^2$ in the denominator pro-

Improper fractions require an additional term which is a a partial fraction of the form $\frac{B+xA}{xx}$ mrof and the form $\frac{B+xA}{xx}$

numerator and d is the degree of the denominator. polynomial of degree n - d where n is the degree of the

:seitilsupenl

- d neat sel si p substant d > pd nedit restears a is greater than b < b
- d of lange n and the transformation of the presence of th
- $a \leqslant b$ means a is less than or equal to b

The linearity rule for differentiation

$$\frac{\mathrm{d}}{\mathrm{d}x}(au+bv) = a\frac{\mathrm{d}u}{\mathrm{d}x} + b\frac{\mathrm{d}v}{\mathrm{d}x} \quad a,b \text{ constant}$$

The product and quotient rules for differentiation

 $\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x} \qquad \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{u}{v}\right) = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$

The chain rule for differentiation

If y = y(u) where u = u(x) then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ For example, if $y = (\cos x)^{-1}$, $\frac{dy}{dx} = -1(\cos x)^{-2}(-\sin x)$

$\frac{1}{2a}\ln\frac{x-a}{x+a} + c$	x > a > 0
$\frac{1}{2a}\ln\frac{a+x}{a-x} + c$	x < a
$\sinh^{-1}\frac{x}{a} + c$	a > 0
$\cosh^{-1}\frac{x}{a} + c$	$x \geqslant a > 0$
$\ln(x + \sqrt{x^2 + k}) + c$	
$\sin^{-1}\frac{x}{a} + c$	$-a \leqslant x \leqslant a$
$\frac{1}{a}F(ax+b) + c$	$a \neq 0$
$\frac{1}{2}\sin(2x-3) + c$	

The linearity rule for integration

$$\int (af(x) + bg(x)) \, \mathrm{d}x = a \int f(x) \, \mathrm{d}x + b \int g(x) \, \mathrm{d}x, \quad (a, b \text{ constant})$$

Integration by substitution

$$\int f(u) \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x = \int f(u) \mathrm{d}u \quad \text{and} \quad \int_a^b f(u) \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x = \int_{u(a)}^{u(b)} f(u) \mathrm{d}u$$

Integration by parts

$$\int_{a}^{b} u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = \left[uv \right]_{a}^{b} - \int_{a}^{b} \frac{\mathrm{d}u}{\mathrm{d}x} v \,\mathrm{d}x$$

Alternative form:

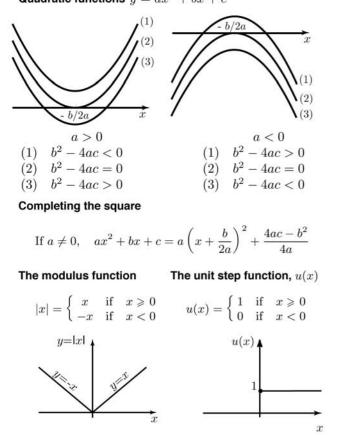
$$\int_{a}^{b} f(x)g(x) \, dx = \left[f(x) \int g(x) dx\right]_{a}^{b} - \int_{a}^{b} \frac{df}{dx} \left\{\int g(x) dx\right\} dx$$

mathcentre is a project offering students and staff free resources to support the transition from school mathematics to university mathematics in a range of disciplines.

www.mathcentre.ac.uk

This leaflet has been produced in conjunction with and is distributed by the Higher Education Academy Maths, Stats & OR Network.

For more copies contact the Network at info@mathstore.ac.uk



Quadratic functions
$$u = ar^2 + br + c$$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

equation of a circle centre (a, b), radius r

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Linear y = mx + c, m =gradient, c = vertical intercept

Graphs of common functions

Matrices and Determinants

The 2 × 2 matrix
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 has determinant
 $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$
 $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = |A|$
The 3 × 3 matrix $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$ has determinant

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{21} & a_{22} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \end{vmatrix} = a_{21} \begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \end{vmatrix}$$

(expanded along the first row). The inverse of a
$$2 \times 2$$
 matrix

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} a & b \\ -c & d \end{pmatrix}$.
provided that $ad - bc \neq 0$.
Matrix multiplication: for 2×2 matrices

$$\begin{pmatrix} gp + \lambda z & g'p + \omega z \\ gq + \lambda z & g'q + \omega z \end{pmatrix} = \begin{pmatrix} g & g' \\ \lambda & \omega \end{pmatrix} \begin{pmatrix} p & z \\ q & z \end{pmatrix}$$

Remember that $AB \neq BA$ except in special cases.

The Binomial Coefficients

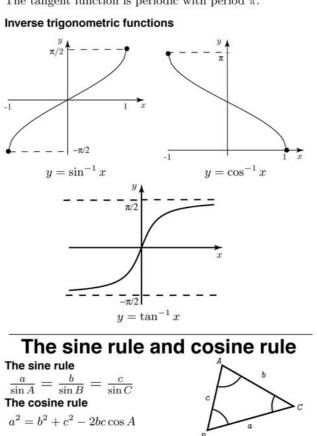
when n is a positive integer is denoted by $\binom{n}{k}$ or ${}^{n}C_{k}$. The coefficient of x^{k} in the binomial expansion of $(1+x)^{n}$

$$\binom{\boldsymbol{\gamma}-\boldsymbol{u}}{\boldsymbol{u}} = \frac{\boldsymbol{\mathsf{i}}(\boldsymbol{\gamma}-\boldsymbol{u})\boldsymbol{\mathsf{i}}\boldsymbol{\gamma}}{\boldsymbol{\mathsf{i}}\boldsymbol{u}} = \binom{\boldsymbol{\gamma}}{\boldsymbol{u}}$$

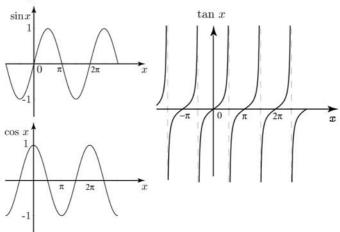
The pattern of the coefficients is seen in !(1-n)n = !n, 1=!0

Pascal's triangle:

.stnemele n divin the second relation of the second sec $^n \mathbb{C}_k$ is the number of subsets with k elements that can be



The sine and cosine functions are periodic with period 2π . The tangent function is periodic with period π .



Trigonometric functions

Sequences and Series

 $= n + \ldots + \varepsilon + \varepsilon + 1$, she of the first \boldsymbol{n} integers, $(b(1-n) + b2)\frac{\pi}{2} = {}_n S$, where n is a number of n is n in n is n in n in n in n is n in n in n in n in n in n in n is n in n is n in n is n in n is n in n is n in n is n in n i $b(1-\lambda) + b = m$ ret fits a =first term, d =common difference, Arithmetic progression: $a, b + b, a + 2d, \dots$

$$(1+n)n\frac{1}{2} = \lambda \sum_{1=\lambda}^{n}$$

 $\mathbf{1}_{5}+\mathbf{5}_{5}+\mathbf{3}_{5}+\cdots+\mathbf{u}_{5}=$, she squares of the first n integers,

$$(1+n\mathfrak{L})(1+n)n\frac{1}{6} = {}^{\mathfrak{L}}\mathfrak{A} \sum_{1=n}^{n}$$

 $1 \neq r$ behived, $\frac{(n_{\tau-1})_n}{r-1} = n R$, entropy n for n Ra = first term, r = common ratio, with term = ar^{k-1} Geometric progression: a, ar, ar², ...

The binomial theorem $I > \gamma > I - \frac{b}{1-1} = \infty S$ Sum of an infinite geometric series:

$$x_{1}x_{2}+\dots+x_{n}\frac{(2-n)(1-n)n}{3!}+x_{n}\frac{(1-n)n}{3!}+x_{n}+1=x_{n}(x+1)$$

converges when -1 < x < 1When n is negative or fractional, the series is infinite and

Standard power series expansions

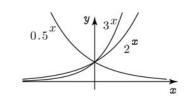
If n is a positive integer

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{2!} + \frac{x^{3}}{3!} + \dots \text{ for all } x$$

sin $x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots \text{ for all } x$
cos $x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{3!} - \frac{x^{6}}{6!} + \dots \text{ for } -1 < x \leq 1 \text{ only}$
log_e(1 + x) = $x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4!} + \dots \text{ for } -1 < x \leq 1 \text{ only}$

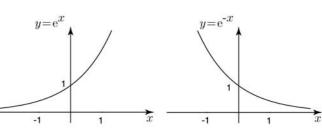
The exponential function as the limit of a sequence

$$_{x} \partial = _{u} \left(\frac{u}{x} + \mathbf{I} \right) \overset{\infty \leftarrow u}{\operatorname{min}}$$



Graph of $y = e^x$ showing exponential growth

Graph of $y = e^{-x}$ showing exponential decay



Exponential functions

 $(z\theta -$

Complex Numbers

Cartesian form:
$$z = a + bj$$

where $j = \sqrt{-1}$
Polar form: $b = z$
 $z = r(\cos \theta + j \sin \theta) = r \le n \theta$,
 $a = r \cos \theta$, $b = r \sin \theta$,
 $b = \frac{b}{a}$
 $b = \frac{b}{a}$

Exponential form:
$$z=re^{yb}$$

D

Euler's relations

$$e^{i\theta} = \cos\theta + j \sin\theta$$
, $e^{-j\theta} = \cos\theta - j \sin\theta$
Multiplication and division in polar form

$$z_{1}z_{2} = r_{1}r_{2} \leq (\theta_{1} + \theta_{2}), \qquad \frac{z_{2}}{z_{2}} = \frac{r_{2}}{r_{2}} \leq (\theta_{1}$$

De Moivre's theorem $(\theta n) \preceq^n \eta = n^z$ neht, $\theta \preceq \eta = z$ II

 $\theta n \operatorname{nis} i + \theta n \operatorname{sos} = {}^{n} (\theta \operatorname{nis} i + \theta \operatorname{sos})$

Relationship between hyperbolic and trig functions

i rather than j may be used to denote \sqrt{-1}. $x \operatorname{nis} l = xl \operatorname{nis}$, $x \operatorname{soo} = xl \operatorname{noo}$ $x \operatorname{duis} i = x \operatorname{duis} \quad x \operatorname{duis} = x \operatorname{duis} x \operatorname{duis} x$

Vectors

If
$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
 then $|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$

Scalar product

$$\theta \cos |\mathbf{q}| |\mathbf{p}| = \mathbf{q} \cdot \mathbf{p}$$

 $\mathbf{a} \cdot \mathbf{p} = a_1 p_1 + a_2 p_2 + a_3 p_3$ If $\mathbf{a} = a_1\mathbf{i} + \mathbf{i}_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ then

Vector product

$$\hat{\mathbf{s}}\,\theta\,\mathrm{nis}\,|\mathbf{d}|\,|\mathbf{s}|=\mathbf{d}\times\mathbf{s}$$

and \mathbf{b} in a sense defined by the right hand screw rule. $\hat{\mathbf{s}}$ is a unit vector perpendicular to the plane containing \mathbf{a}

ŝ

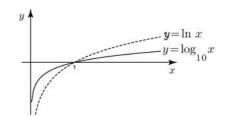
If
$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$$
 and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ then

$$\mathbf{a} \times \mathbf{b} = \frac{\mathbf{i} \mathbf{i} \mathbf{k}}{\mathbf{i} \mathbf{i} \mathbf{k}} + \frac{\mathbf{i} (a_3 b_1 - a_1 b_3) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}}{\mathbf{i} \mathbf{k}}$$

$$= \begin{vmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \\ \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \\ \mathbf{r} & \mathbf{J} & \mathbf{K} \end{vmatrix}$$

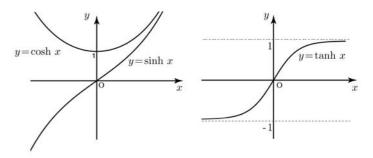
Graphs of $y = 0.5^x$, $y = 3^x$, and $y = 2^x$

Logarithmic functions



Graphs of $y = \ln x$ and $y = \log_{10} x$

Hyperbolic functions



Graphs of $y = \sinh x$, $y = \cosh x$ and $y = \tanh x$