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Simple linear regression in R 
Dependent variable: Continuous (scale)  

Independent variables:  Continuous (scale) 

Common Applications: Regression is used to (a) look for significant relationships between two 
variables or (b) predict a value of one variable for a given value of the other. 

Data: The data set ‘Birthweight reduced.csv’ contains details of 42 babies and their parents at 
birth.  The dependant variable is Birth weight (lbs) and the independent variable is the gestational 
age of the baby at birth (in weeks).  These variables are called ‘Birthweight’ and ‘Gestation’. 
 
Open the birthweight reduced dataset which is saved as a csv file and call it birthweightR.   
You will need to change the command depending on where you have saved the file. 
birthweightR<-read.csv("D:\\Birthweightreduced.csv",header=T) 
Tell R to use the birthweight dataset until further notice using attach(birthweightR).  This 
means that 'Gestation' can be used instead of birthweightR$Gestation. 
 
Before carrying out any analysis, investigate the relationship between the independent and 
dependent variables by producing a scatterplot and calculating the correlation coefficient. 
 
A scatterplot shows the relationship between two continuous variables. 
plot(Gestation,Birthweight,main='Scatterplot of gestational age and 
birthweight',xlab='Gestation (weeks)',ylab='Birthweight(lbs)') 
 
Calculating Pearson's correlation coefficient gives a measure of the strength. 
cor(Gestation,Birthweight) 
 
Both the scatterplot and the Pearson’s correlation coefficient ( r ) of 0.706 suggest a strong positive 
linear relationship between gestational age and birthweight.  This means that as gestation 
increases so does birthweight. 
 
Simple linear regression quantifies the relationship between two variables by producing an 
equation for a straight line of the form xay β+=  which uses the independent variable (x) to 
predict the dependent variable (y).   

The following resources are associated: Scatterplots, Correlation and Checking normality in R, the Excel dataset 
Birthweight reduced.csv’ and the Simple linear regression in R script 
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Regression involves estimating the values of the 
gradient ( )β  and intercept ( )a  of the line that best fits 
the data. This is defined as the line which minimises 
the sum of the squared residuals.   
A residual is the difference between an observed 
dependent value and one predicted from the 
regression equation.  
 
If you wish to add a regression line to your 
scatterplot use:  
abline(lm(Birthweight~Gestation),col=
'red',lwd=2) 
For more on this see the Scatterplots in R 
resource. 
 
Steps in R 
Fit the regression model using the lm(dependent~Independent) command and give it a name 
(reg1).  Then request the regression output using summary(reg1). 
reg1<-lm(Birthweight~Gestation) 
 
Output 

  
The Coefficients table is the most important table.  It contains the coefficients for the regression 
equation (Estimate) and p-values for tests of significance.   
The gradient ( )β  is tested for significance.  If there is no relationship, the gradient of the line ( )β  
would be 0 and therefore every baby would be predicted to be the same weight. The p-value 
against Gestational age (p < 0.001) is less than 0.05 and so there is significant evidence to 
suggest that the gradient is not 0 and therefore, gestation is a significant predictor of birthweight. 
 
The Estimate column in the coefficients table, gives the values of the gradient and intercept terms 
for the regression line.   
The model is:               Birth weight (y) = -6.66 + 0.355 *(Gestational age) 
 

Residuals =  
actual y – predicted y 

P-value for gestation 
 p < 0.001 

*** = highly significant 

http://www.statstutor.ac.uk/
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The gestation coefficient can be interpreted as, with a unit increase of the gestational age, the 
expected birthweight will increase by 0.355.  This means that for each extra week of gestation, a 
baby weighs an extra 0.355lbs. 
Another important value in the output is the multiple R squared value of 0.499.  This indicates that 
49.9% of the variation in birth weight can be explained by the model containing only gestation.  
This is quite high so predictions from the regression equation are fairly reliable.  It also means that 
50.1% of the variation is still unexplained so adding other independent variables could improve the 
fit of the model. 
 
Assumptions for regression  
Assumptions How to check What to do if the 

assumption is not met 
1) The relationship between the 
independent and dependent variables 
is linear  

Scatterplot: scatter should form a 
line in the plot rather than a curve 
or other shape  

Transform either the 
independent or 
dependent variable 

2) Residuals should be approximately 
normally distributed  

Request the histogram of residuals 
from the model  

Transform the 
dependent variable 

3) Homoscedasticity: Scatterplot of 
standardised residuals against 
predicted values shows no pattern 
(scatter is 
roughly the 
same width 
as y 
increases)   

This shape is bad since the 
variation in the residuals (up and 
down) is not constant (variance is 
increasing) 

Transform the 
dependent variable 

4) No observations have a large 
overall influence (leverage).  Look at 
individual Cook’s and Leverage 
values. Interpretation of this is not 
included on this sheet 

If you wish to check leverage 
values, request the plot of leverage 
values for the fitted model  

Run  the regression 
with and without the 
observations and 
comment on the 
differences  

5) Independent observations 
(adjacent values are not related).  
This is only a possible problem if 
measurements are collected over time 

Request the Durbin Watson 
statistic It should be between 1.5 – 
2.5 

If the Durbin-Watson 
Statistic is outside the 
range, use Time series 
(high level statistics) 

Note: The Further regression in R resource contains more information on assumptions 4 and 5. 
 

Checking the assumptions for this data 

The most important assumptions to check are the assumptions of normality and homoscedasticity.  
To check them, first tell R to display 2 plots next to each other. 
par(mfrow=c(1,2)) 
 
Produce a histogram of standardised residuals to check the assumption of normality. 
hist(resid(reg1),main='Histogram of residuals',xlab='Standardised 
Residuals',ylab='Frequency') 
 
R produces four diagnostic plots using plot(reg1) but we only want the first one.  
To produce only the fitted values and residuals plot to check the assumption of homoscedasticity. 
plot(reg1, which = 1) 

http://www.statstutor.ac.uk/
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The residuals are approximately normally distributed so the assumption of normality has been met.  
We expect 5% of standardised residuals to be outside ±1.96 but if there are more than this or if 
there extreme residuals outside±3, they could be influencing the model. 
There is no pattern in the scatter of the fitted values and residuals.  The width of the scatter as 
predicted values increase is roughly the same so the assumption has been met. 
The Durbin-Watson statistic and checks for influential data points are discussed on the ‘Further 
regression’ sheet. 
 
Reporting regression 

Simple linear regression was carried out to investigate the relationship between gestational age at 
birth (weeks) and birth weight (lbs).  The scatterplot showed that there was a strong positive linear 
relationship between the two, which was confirmed with a Pearson’s correlation coefficient of 0.706.  
Simple linear regression showed a significant relationship between gestation and birth weight (t = 
6.31, p < 0.001).  The slope coefficient for gestation was 0.355 so the weight of baby increases by 
0.355 lbs for each extra week of gestation. The R2 value showed that 49.9% of the variation in birth 
weight can be explained by the model containing only gestation. The scatterplot of standardised 
predicted values versus standardised residuals, showed that the data met the assumptions of 
homogeneity of variance and linearity and the residuals were approximately normally distributed. 
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