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Poisson regression is a technique similar to linear regression but the response variable (y) follows a Poisson 

distribution.  Another assumption is that the logarithm of the expected value of the response can be modelled using 

a linear combination of unknown parameters.   Poisson modelling is used for count data or contingency table data.  

Poisson models are also called log-linear models.    

In R the command for Poisson regression is: 
glm (y~ x1 + x2 +..., data = dataset,  family = poisson) 

Example 

Use the data on eye colour in Glasgow, Sheffield and London given below. 

 Blue Brown Green Other 

Glasgow 43 62 48 27 

Sheffield 35 26 30 29 

London 27 39 61 33 

 

First create the dataset in R using the following commands: 
# Define the variables and their corresponding data in R 

count_eyes <- c(43,62,48,27,35,26,30,29,27,39,61,33) 

city <- c("G","G","G","G","S","S","S","S","L","L","L","L") 

colour_eye <- c(1,2,3,4,1,2,3,4,1,2,3,4) 

# Combine all variables into a dataset 

eye_data <- data.frame(count_eyes,city,colour_eye)  

Declare the categorical explanatory variables as factors. 
city_f <- as.factor(city) 

colour_f <- as.factor(colour_eye) 

 
We can now use this data to fit a Poisson model to the response variable (y) count_eyes using the explanatory 
variables (xi) city_f and colour_f.  This will allow produce a model which infers the number of people with a particular 
eye colour in a particular city given the information about the eye colour and city they live in. 
# Define model1 to be the full model 

model1 <- glm(count_eyes~city_f+colour_f, family=poisson)  

 

# Obtain a summary of the model 

summary(model1) 

 

Call: 

glm(formula = count_eyes ~ city_f + colour_f, family = poisson) 

 

          

The maths:  

For multiple Poisson regression a model of the following form can be used to predict the value of a response 

variable y using the values of a number of explanatory variables x: 
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However if y is not normal a generalized linear model can be used. The assumptions are that y comes from a 

distribution such as binomial, Poisson, gamma, etc.  The observations of y are independent and the mean of (y-

μ) is related to the linear predictor η by a smooth invertible function g().  In the case of Poisson regression this 

is: 

This means that the covariates affect the Poisson mean in a multiplicative way. 
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Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.6528  -1.1260  -0.2491   1.2144   1.7478   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)   3.7157     0.1136  32.708  < 2e-16 *** 

city_fL      -0.1178     0.1087  -1.084 0.278353     

city_fS      -0.4055     0.1179  -3.440 0.000581 *** 

colour_f2     0.1902     0.1319   1.442 0.149247     

colour_f3     0.2805     0.1293   2.170 0.030044 *   

colour_f4    -0.1653     0.1441  -1.147 0.251206     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 43.924  on 11  degrees of freedom 

Residual deviance: 18.232  on  6  degrees of freedom 

AIC: 95.547 

 

Number of Fisher Scoring iterations: 4 

The output gives the coefficients for the parameters, the null deviance and the residual deviance. 
 
The null model is the model with no explanatory variables, i.e. it only includes a constant.   
# Define the null model model0 

model0 <- glm(count_eyes~1, family=poisson) 

# View the details of the null model 

model0 

 

Call:  glm(formula = count_eyes ~ 1, family = poisson) 

 

Coefficients: 

(Intercept)   

      3.646   

 

Degrees of Freedom: 11 Total (i.e. Null);  11 Residual 

Null Deviance:      43.92  

Residual Deviance: 43.92        AIC: 111.2 

The deviance, also called G2 (which corresponds to -2 * log-likelihood) is used to check the models.  A small value of 
G2 is preferable.  A comparison between the deviance for the null model and the full model is sometimes called a G2 
test for goodness of fit.  This involves comparing to difference of deviances (null model deviance – full model 
deviance) with a chi-squared value with degrees of freedom equal to the difference in the degrees of freedom of the 
two models.   
 
The following command returns the p-value for the G2 test for goodness of fit.  A large p-value means that the full 
model is an improvement compared to the null model. 
> pchisq(43.924-18.232  ,11-6) 

[1] 0.9998976 

Here we have a very large p-value and so we conclude that the full model is a great improvement on the null model.   
 
To compare the two models we can also use an ANOVA.  This will give the same result.  Here we want a small p-value 
to show that the full model is an improvement compared to the null model.  Notice that the p-value here and above 
sum to one, meaning that one is the greater than p-value and the other the less than p-value.   
# Run an ANOVA on the two models using the Chi-squared test 

anova(model1,model0,test="Chi") 

 

Analysis of Deviance Table 

 

Model 1: count_eyes ~ city_f + colour_f 

Model 2: count_eyes ~ 1 

  Resid. Df Resid. Dev Df Deviance P(>|Chi|)     

1         6     18.232                           

2        11     43.924 -5  -25.692 0.0001024 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 


