Principal Components Analysis

Maths and Statistics Help Centre

Usage

- Data reduction tool
- Vital first step in the multivariate analysis of continuous data
- Used to find patterns in high dimensional data
- Expresses data such that similarities and differences are highlighted
- Once the patterns in the data are found, PCA is used to reduce the dimensionality of the data without much loss of information (choosing the right number of principal components is very important)
- If you are using PCA for modelling purposes (either subsequent gradient analyses or regression) then normality is ideal. If it is for data reduction or exploratory purposes, then normality is not a strict requirement

How does PCA work?

- Uses the covariance/correlations of the raw data to define principal components that combine many correlated variables
- The principal components are uncorrelated
- Similar concept to regression - in regression you use one line to describe a relationship between two variables; here the principal component represents the line. Given a point on the line, or a value of the principal component you can discover the values of the variables.

Choosing the right number of principal components

- This is one of the most important parts of PCA. The number you choose needs to be the ones that give you the most information without significant loss of information.
- Scree plots show the eigenvalues. These are used to tell us how important the principal components are.
- When the scree plot plateaus then no more principal components are needed.
- The loadings are a measure of how much each original variable contributes to each of the principal components.

Implementation in \mathbf{R}

- princomp(.)
- prcomp(.)

Example

This example uses the built-in R data set state with states.x77. The dataset contains 8 indicators about the 50 US states.

```
> data(state)
> ls()
    [1] "state.abb" "state.area" "state.center" "state.division"
    [6] "state.name" "state.region" "state.x77"
```

>state. x77

| | Population | Income | Illiteracy | Life Exp | Murder | HS Grad | Frost | Area |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Alabama | 3615 | 3624 | 2.1 | 69.05 | 15.1 | 41.3 | 20 | 50708 |
| Alaska | 365 | 6315 | 1.5 | 69.31 | 11.3 | 66.7 | 152 | 566432 |
| Arizona | 2212 | 4530 | 1.8 | 70.55 | 7.8 | 58.1 | 15 | 113417 |
| Mashington | | | | | | | | |
| Washer | 3559 | 4864 | 0.6 | 71.72 | 4.3 | 63.5 | 32 | 66570 |

Principal Components Analysis

Maths and Statistics Help Centre

West Virginia	1799	3617	1.4	69.48	6.7	41.6	100	24070
Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149	54464
Wyoming	376	4566	0.6	70.29	6.9	62.9	173	97203.

> plot (state.center, type="n") Plots where R thinks the states are by centre.
> text(state.center, state.abb)

Performing PCA on the states

First perform PCA of the state data using all the information in state.x77
state.pcal <- prcomp(state.x77)
Output the PCA summary
>print(state.pca1, digits=3)
Standard deviations:
[1] $8.53 e+044.47 e+03 \quad 5.59 e+02 \quad 4.64 e+01 \quad 6.04 e+00 \quad 2.46 e+00 \quad 6.58 e-01 \quad 2.90 e-01$

	PC1	PC	PC3	PC	PC5	PC6	PC7	PC8
Population	$1.18 \mathrm{e}-03$	$-1.00 \mathrm{e}+00$	0.027849	-4.67e-03	$3.35 \mathrm{e}-04$	$1.39 \mathrm{e}-04$	-5.18e-05	-2.19e-05
Income	$2.62 \mathrm{e}-03$	-2.80e-02	-0.999177	$2.82 e-02$	-7.79e-03	-1.12e-04	$3.85 \mathrm{e}-05$	-6.29e-05
Illiteracy	$5.52 \mathrm{e}-07$	-1.42e-05	0.000584	$7.10 \mathrm{e}-03$	-4.05e-02	-3.09e-02	$2.55 \mathrm{e}-02$	-9.98e-01
Life Exp	-1.69e-06	$1.93 \mathrm{e}-05$	-0.001037	-3.88e-03	$1.19 \mathrm{e}-01$	$2.86 \mathrm{e}-01$	$9.51 \mathrm{e}-01$	$1.06 \mathrm{e}-02$
Murder	$9.88 \mathrm{e}-06$	-2.79e-04	0.002776	$2.82 e-02$	-2.39e-01	-9.20e-01	$3.06 \mathrm{e}-01$	$4.62 \mathrm{e}-02$
HS Grad	$3.16 \mathrm{e}-05$	$1.88 \mathrm{e}-04$	-0.008266	-2.78e-02	$9.62 \mathrm{e}-01$	-2.66e-01	-4.08e-02	-3.21e-02
Frost	$3.61 e-05$	$3.87 e-03$	-0.028042	-9.99e-01	$-3.45 e-02$	-1.99e-02	$6.25 \mathrm{e}-03$	-4.94e-03
Are	$1.00 \mathrm{e}+00$	$1.26 e-03$	0.002583	-3.17e-05	-6.56e-06	$1.88 \mathrm{e}-05$	-4.09e-07	1.

We plot the results from our principal component analysis as a scree plot to enable us to decide how many principal components are necessary to best explain the data.
>plot(state.pca1,type="l")

Maths and Statistics Help Centre

state.pca1\$sdev[1]^2/(sum((state.pca1\$sdev)^2))
[1] 0.9972262
The scree plot suggests that the first component explains the majority of the variance (the above calculation shows it to be approximately 99.7\%).

Looking at a projection (or biplot) shows us how the components and variables relate, with the magnitude of the arrows representing the magnitude of the effect.
biplot (state.pca1, cex=c $(0.75,1)$)

The first principal component represents mainly the Area and a bit of the Pop (population) and Income, these are the 3 variables with highest variance.

Looking at the standard deviations of the 8 variables
> apply(state.x77,2,sd)

Pop	Income	Illiteracy	Life Exp	Murder	HS Grad	Frost	Area
$4.464 \mathrm{e}+03$	$6.145 \mathrm{e}+02$	$6.095 \mathrm{e}-01$	$1.342 \mathrm{e}+00$	$3.691 \mathrm{e}+00$	$8.077 \mathrm{e}+00$	$5.198 \mathrm{e}+01$	$8.533 \mathrm{e}+04$

This principal component analysis does not seem very informative because the variances are so disparate; we therefore try another method with a scaling factor which we call state.pca2. We do this because when the covariance matrix is unbalanced PCA is very sensitive to the scaling of the original variables; hence we either use the correlation matrix or try scaling. Scaling gives the variables unit variance and is usually advisable.
> state.pca2=prcomp (state.x77, scale.=TRUE)
Standard deviations:
[1] 1.89707551 .27746591 .05448620 .84113270 .62019490 .55449230 .38006420 .3364338

Principal Components Analysis

Maths and Statistics Help Centre

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	C8
Population	0.12642809	0.41087417	-0.65632546	-0.40938555	0.405946365	-0.01065617	-0.062158658	-0.21924645
Income	-0.29882991	0.51897884	-0.10035919	-0.08844658	-0.637586953	0.46177023	0.009104712	0.06029200
Illiteracy	0.46766917	0.05296872	0.07089849	0.35282802	0.003525994	0.38741578	-0.619800310	-0.33868838
Life Exp	-0.41161037	-0.08165611	-0.35993297	0.44256334	0.326599685	0.21908161	-0.256213054	0.52743331
Murder	0.44425672	0.30694934	0.10846751	-0.16560017	-0.128068739	-0.32519611	-0.295043151	0.67825134
HS Grad	-0.42468442	0.29876662	0.04970850	0.23157412	-0.099264551	-0.64464647	-0.393019181	-0.30724183
Frost	-0.35741244	-0.15358409	0.38711447	-0.61865119	0.217363791	0.21268413	-0.472013140	0.02834442
Area	-0.03338461	0.58762446	0.51038499	0.20112550	0.498506338	0.14836054	0.286260213	0.01320320

The $1^{\text {st }}$ principal component relates mainly to a combination of illiteracy, life expectancy, murder and HS grad; the $2^{\text {nd }}$ component reflects income, area and population.

```
> summary(state.pca2, digit=3)
Importance of components:
    PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard deviation 1.90 1.277 1.054 0.8411 0.6202 0.5545 0.3801 0.3364
Proportion of Variance 0.45 0.204 0.139 0.0884 0.0481 0.0384 0.0181 0.0141
Cumulative Proportion 0.45 0.654 0.793 0.8813 0.9294 0.9678 0.9859 1.0000
```

A scree plot helps to decide how many components are necessary to explain the data
plot(state.pca2,type="l")

In this case there is no clear plateau point on the plot and so it seems more components are needed, e.g. the first 3 principal components explain close to 80% of the variance. Another way is to decide how many principal components to use is to use only the PCs that have an eigenvalue are greater than 1.

We now plot a biplot which shows a projection of states plus how the variables relate to the components $>$ biplot (state.pca2, cex=c (0.5,0.75))

Principal Components Analysis

Maths and Statistics Help Centre

Principal Components Analysis

Maths and Statistics Help Centre

PC1 plotted geographically - arguably it is taking into account "Southern-ness". This allows us to understand more about how the principal components are defined.

Plot the second principal component to visualise what it is representing (higher area, population and income).

