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IN1.2: INTEGRATION OF 
POLYNOMIALS    
 

Antidifferentiation 
Antidifferentiation is the reverse process from differentiation. Given a derivative ( )f x′ the task is to find the 

original function ( )f x . 
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…….and so on. 
 

Rule for powers of x 
 
In general: 
 
              

 
 
 
This rule applies for positive, negative and fractional values of n except  1n = −  
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 where c is a constant    (  1n ≠ − ) 

                                  

add one to the power of x 
divide by the new power 
add a constant 

add one to the power of x 
divide by the new power 
add a constant 
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 4.      If ( )
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See Exercise 1 

 

The indefinite integral 
 

The symbol ∫  stands for “the integral of” and may be used to indicate that we wish to find an antiderivative. 

              
 For example                                             

                                        4x dx∫       reads  

 

                  the integral of 4x       with respect to x,   
 

Operational rules 

f x g x dx f x dx g x dxb g b gc h b g b g± = ±z z z  

 

( ) ( )kf x dx k f x dx=∫ ∫  

 

Polynomials 
Using the rule for finding the antiderivative of nx  
                                                                      

     
1
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1 =       ( 1)    divide by the new power

1
   add a constant
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              c is called the constant of integration.   
 

Examples 
1.  
           ( )3 4x dx+∫ = 3 4x dx dx+∫ ∫  

                                  = 
4

4
4
x x c+ +  

Integrate each term separately  

  
 
Only one constant of integration is needed 

add one to the power of x 
divide by the new power 
add a constant 

add one to the power of x 
divide by the new power 
add a constant 
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2. 
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See Exercise 2 

 
 

Use ( ) ( )kf x dx k f x dx=∫ ∫  

 
Write in index form 
 
Integrate 
 
 
Simplify 
 
 
 
 

Simplify – divide each term by 2s      ( 0)s ≠  
 
Integrate 
 
 
Simplify 
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2

2  as 2x
x
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          Integrate 

 

Integrals of the form ( )nax b+  

( ) ( ) ( ) 11 =       ( 1) 
1

n nax b dx ax b c n
a n

++ + + ≠ −
+∫  

The function in brackets must be linear. This rule cannot be used with expressions such as ax b
n2 +d i . 
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See Exercise 3 



IN1.2 – Integration of Polynomials Page 4 of 4 June 2012 

Exercises 
Exercise 1 

Find an antiderivative of 
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Exercise 2 

Find the following integrals. 
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