STUDY TIPS

IN1.2: INTEGRATION OF POLYNOMIALS

Antidifferentiation

Antidifferentiation is the reverse process from differentiation. Given a derivative $f^{\prime}(x)$ the task is to find the original function $f(x)$.
If $f(x)=\left(\frac{x^{3}}{3}\right)$ then $f^{\prime}(x)=x^{2}$, therefore $\left(\frac{x^{3}}{3}\right)$ is an antiderivative of x^{2}
If $f(x)=\left(\frac{x^{3}}{3}+1\right)$ then $f^{\prime}(x)=x^{2} \quad\left(\frac{x^{3}}{3}\right)+1$ is an antiderivative of x^{2}
If $f(x)=\left(\frac{x^{3}}{3}+2\right)$ then $f^{\prime}(x)=x^{2} \quad\left(\frac{x^{3}}{3}\right)+2$ is an antiderivative of x^{2}
........and so on.

Rule for powers of x

In general:

$$
\text { If } \frac{d y}{d x}=x^{n}, y=\frac{1}{n+1} x^{n+1}+c \text { where } c \text { is a constant } \quad(n \neq-1)
$$

This rule applies for positive, negative and fractional values of n except $n=-1$

Examples

1.

Given $\frac{d y}{d x}=2 x$ find the antiderivative
$y=\frac{2 x^{1+1}}{1+1}+c \quad$ add one to the power of x $y=\frac{2 x^{1+1}}{1+1}+c \quad$ divide by the new power $y=x^{2}+c$ is the antiderivative add a constant
2. Given $\frac{d y}{d x}=3$ find the antiderivative.

$$
\begin{aligned}
& y=\frac{3 x^{0+1}}{0+1}+c \\
& y=3 x+c
\end{aligned}
$$

$3=3 x x^{0}, \quad$ add one to the power of x
divide by the new power add a constant
3. If $\frac{d y}{d x}=x^{-3} \quad$ find y

$$
\begin{aligned}
& y=\frac{1}{-3+1} x^{-3+1}+c \\
& y=\frac{1}{-2 x^{2}}+c
\end{aligned}
$$

add one to the power of x divide by the new power add a constant
4. If $f^{\prime}(x)=x^{\frac{1}{2}}$ find $f(x)$

$$
\begin{aligned}
& f(x)={\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1_{2}^{2}}}^{+c} \\
& f(x)={\frac{2 x^{\frac{3}{2}}}{3}+c}+c
\end{aligned}
$$

add one to the power of x divide by the new power add a constant

See Exercise 1

The indefinite integral

The symbol \int stands for "the integral of" and may be used to indicate that we wish to find an antiderivative.
For example

Operational rules

$\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$
$\int k f(x) d x=k \int f(x) d x$

Polynomials

Using the rule for finding the antiderivative of x^{n}

> | $x^{n} d x=\frac{1}{n+1} x^{n+1}+c$ | $(n \neq-1)$ | \bullet add one to the power |
| :--- | :--- | :--- |

- add a constant

c is called the constant of integration.

Examples

1.

$$
\begin{aligned}
\int\left(x^{3}+4\right) d x=\int x^{3} d x+\int 4 d x & \text { Integrate each term separately } \\
& =\frac{x^{4}}{4}+4 x+c
\end{aligned} \quad \text { Only one constant of integration is needed }
$$

2.

$$
\begin{array}{rlrl}
\int\left(\frac{1}{3 \sqrt{x}}\right) d x & =\frac{1}{3} \int\left(\frac{1}{\sqrt{x}}\right) d x & & \text { Use } \int k f(x) d x=k \int f(x) d x \\
\frac{1}{3} \int x^{-\frac{1}{2}} d x & =\frac{1}{3}\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right)+c & & \text { Write in index form } \\
& =\frac{2}{3} \sqrt{x}+c & & \text { Integrate } \\
\text { Simplify }
\end{array}
$$

3.

$$
\begin{aligned}
\int \frac{3 s^{4}-s^{3}+7}{s^{2}} d s & =\int\left(3 s^{2}-s+7 s^{-2}\right) d s & & \text { Simplify - divide each term by } s^{2} \quad(s \neq 0) \\
& =\frac{3 s^{3}}{3}-\frac{s^{2}}{2}-\frac{7}{s}+c & & \text { Integrate } \\
& =s^{3}-\frac{s^{2}}{2}-\frac{7}{s}+c & & \text { Simplify }
\end{aligned}
$$

$$
\int\left(x^{3}+\frac{2}{x^{2}}+7\right) d x=\int\left(x^{3}+2 x^{-2}+7\right) d x
$$

4.

$$
\begin{aligned}
& =\frac{x^{4}}{4}-2 x^{-1}+7 x+c \\
& =\frac{x^{4}}{4}-\frac{2}{x}+7 x+c
\end{aligned}
$$

Write $\frac{2}{x^{2}}$ as $2 x^{-2}$
Integrate

See Exercise 2

Integrals of the form $(a x+b)^{n}$
$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c \quad(n \neq-1)$

The function in brackets must be linear. This rule cannot be used with expressions such as $\left(a x^{2}+b\right)^{n}$.

Examples

1.

$$
\begin{aligned}
\int(8 x-5)^{9} d x & =\frac{(8 x-5)^{10}}{8 \times 10}+c \quad a=8, \quad b=-5, n=9 \\
& =\frac{(8 x-5)^{10}}{80}+c
\end{aligned}
$$

2.

$$
\begin{aligned}
\int(7-2 x)^{3} d x & =\frac{(7-2 x)^{4}}{-2 \times 4}+c \quad a=-2, \quad b=7, \quad n=3 \\
& =\frac{(7-2 x)^{4}}{-8}+c
\end{aligned}
$$

See Exercise 3

Exercises

Exercise 1

Find an antiderivative of
(a) x^{3}
(b) s^{8}
(c) \sqrt{x}
(d) x^{-5}
(e) $a^{\frac{2}{3}}$
(f) s^{-2}
(g) $p^{-\frac{1}{2}}$

Exercise 2

Find the following integrals.
(a) $\int 3 x^{2} d x$
(b) $\int\left(4 x^{5}-2 x^{3}+9\right) d x$
(c) $\int\left(x^{2}+\frac{1}{x^{2}}\right) d x$
(d) $\int(5 \sqrt{x}+1) d x$
(e) $\int\left(\frac{4 x^{5}-2 x^{3}+9}{2}\right) d x$
(f) $\int\left(s+\frac{2}{3 \sqrt{s^{3}}}\right) d s$
(g) $\int\left(\frac{3 x+1}{\sqrt{x}}\right) d x$
(h) $\int\left(\frac{t^{4}-2 t^{3}+1}{2 t^{2}}\right) d t$

Answers

1(a) $\frac{x^{4}}{4}$
(b) $\frac{s^{9}}{9}$
(c) $\frac{2 x \sqrt{x}}{3}$
(d) $\frac{x^{-4}}{-4}=\frac{1}{-4 x^{4}}$
(e) $\frac{3 a^{\frac{5}{3}}}{5}$
(f) $-S^{-1}=-\frac{1}{S}$
(g) $2 p^{\frac{1}{2}}$
2.(a) $X^{3}+c$
(b) $\frac{2 x^{6}}{3}-\frac{x^{4}}{2}+9 x+c$
(c) $\frac{x^{3}}{3}-\frac{1}{x}+c$
(d) $\frac{10 x \sqrt{x}}{3}+x+c$
(e) $\frac{x^{6}}{3}-\frac{x^{4}}{4}+\frac{9 x}{2}+c$
(f) $\frac{s^{2}}{2}-\frac{4}{3 \sqrt{s}}+c$
(g) $2 x \sqrt{x}+2 \sqrt{x}+c=2 \sqrt{x}(x+1)+c$
(h) $\frac{t^{3}}{6}-\frac{t^{2}}{2}-\frac{1}{2 t}+c$
3 (a) $\frac{(5 x+1)^{5}}{25}+c$
(b) $\frac{2(x-9) \sqrt{(x-9)}}{3}+c$
(c) $\frac{(8-4 x)^{4}}{-4}+c$
(d) $\frac{1}{-(x+3)^{2}}+c$
(e) $\frac{3(5 x+8)^{\frac{4}{3}}}{20}+c=\frac{3(5 x+8) \sqrt[3]{(5 x+8)}}{20}$
(f) $\frac{(3 x-2)^{8}}{12}+c$
(g) $\sqrt{(2 x+3)}+c$

