
WHAT GRAPHS DO I USE TO INTERPRET MY DATA?

Туре	When to use?	Use for data features
Box plot	 Summarises data with median, upper quartile, lower quartile, maximum and minimum: Highlights outliers Quick view of the centre, spread and interquartile range 	For large datasets where stem & leaf or dot plots are not suitable
		For one or more continuous variables
Histogram	 Shows distribution of the number of observations in equal intervals: Shows the shape of distribution Helps assess symmetry/skewness, modality(number of peaks) 	For a continuous variable
Stem & leaf plot	Retains the original data to at least two significant digits, and puts the data in order. It separates the two digits by a vertical line; the left side contains the <i>stems</i> and the right side contains the <i>leaves</i>	For a single discrete variable, or a continuous variable of integers
	Highlights outliersShows frequencies within each stem	For small/moderate datasets
Dot plot	 Describes the data on a single axis: Highlights clusters, gaps and outliers Identifies the mode 	For a single discrete variable, or a continuous variable
	Shows the shape of distribution	For small datasets
Scatter plot	 Plots one continuous variable against another: Shows the correlation between them, i.e. strength of the relationship, positive/negative etc Shape of the relationship, linear/curved? Shows the outliers 	For two continuous variables
Line chart	 Uses lines to join the observed points. It is very effective when exploring a time-dependent continuous variable 	For one or more continuous variables, e.g. compares the changes in groups over the time
Pie chart	 A circular chart (pie-shaped); it is split into segments to show percentages or the relative contributions of the categories of data: Compares the proportions with the whole pie 	For categorical data: percentages/ proportions with the same basis
Bar chart	 A chart with rectangular bars with heights proportional to the frequencies that they represent: Shape of the distribution Can be used to compare the frequencies for two or more groups 	For one and more categorical variables
Other plots:		
QQ plot	 A graphical method for comparing two probability distributions by plotting their quantiles against each other: Widely used to check the normality assumption 	For one/two continuous variables
Kaplan Meier	A special graphical method used in medical research to measure the fraction of patients living for a certain amount of time after treatment	For survival time variables

