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Bayesian Statistics 
 
In this summary sheet, let us assume that we have a model with a parameter that 
we want to estimate. In Bayesian statistics or inference, we estimate a distribution 

(see resource “Probability Distribution Functions”) for that parameter  rather than 
just a single point estimate. 

 

The first distribution we define for  is called a prior distribution or prior and is 

represented by the probability density function f(). Then, we can apply Bayes’ 

theorem to find the posterior distribution of : f(|x). This posterior distribution of 

is the distribution of  that is updated by the information f(x|) provided by the 
likelihood of the model. For that, Bayes’ theorem is used: 
 

 
 
 

 
 

 

 

 

 

 

 

 
 
 
 



 
 
 
 
 
 
 
 
What kind of prior distribution should be used? The next page presents several ways 
of choosing a prior. In general, you will decide with your supervisor or based on 

previous papers what prior distribution you need to define for your parameter  
 

What is a hyperparameter? A hyperparameter (from ancient Greek ὑπέρ meaning  
“over” or “above”) is a parameter of the prior distribution of the parameter we want 

to estimate. If, for instance,  has a normal distribution with mean  and  

standard deviation , then  and  will be considered as hyperparameters. 
 

 
What is conjugacy? The property of conjugacy occurs when the prior distribution is 
of the same family as the posterior distribution. For instance, if the prior distribution 

of is a normal distribution and if we obtain a posterior distribution for  that is also 
a normal distribution, then the property of conjugacy will be respected.  
 
The table on the next page presents some priors where the posteriors obtained are 
of the same family as their respective priors. The hyperparameter(s) of the prior are 
updated thanks to the likelihood in order to give the hyperparameter(s) of the 
posterior distribution. 
 

 

 

 

 

 

 



 



     APPLICATION 

 

In the 3 graphs on the right hand side, 

we can see the update from a prior 

distribution to its posterior 

distribution thanks to the Likelihood. 

 

In this case, we have an unknown 

parameter  that follows a Beta(*) 

prior distribution (with parameters 

1.25 and 8.75 chosen by us). The 

Likelihood of the model, using the 

data D, is proportional to a Binomial 

distribution. The posterior distribution 

of the unknown parameter  is also a 

Beta distribution due to the property 

of conjugacy (see Table of Conjugate 

Priors on Page 2 and Section on the 

Priors) and is shown on the third graph 

at the bottom of the figure on the right. 

 

 

From the posterior distribution of , we can pick up any kind of information we want: for 

instance the mode, the mean and the median. We can also capture the 95% Highest 

Density Interval (HDI) for , often called credible interval that is, the interval where pi has 

95% chance of being. 

 

We can see that rather than obtaining just one value to estimate the parameter Bayesian 

statistics can offer a distribution to estimate it, giving thus more information about 

(credible intervals, shape of the distribution, mode, mean etc.) 

 

 

(*) For more detail, MASH resources provide a table of “Probability Distribution Functions” 

where the Beta and Binomial Distributions are defined. 


