BACKMATH.tex

MSc Mas6002 Introductory Material Background Mathematics

This is a list of mathematical ideas and techniques that are likely to come in useful on the MSc in Statistics. You should have a look through the list and revise topics you feel rusty on.

1. SET THEORY Some of the detail here isn't often needed.

We usually work with objects which are members of some large set or space Ω

Elements (inclusion): $\omega \in \Omega$ means that ω is a member (or element) of Ω. If ω is not an element of Ω we write $\omega \notin \Omega$.

Empty set $\emptyset:$ a set with no elements

Subset $A \subset B$ if $\omega \in A \Longrightarrow \omega \in B$

Union $\omega \in A \cup B$ if $\omega \in A$ or $\omega \in B ; \cup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$

Intersection $\omega \in A \cap B$ if $\omega \in A$ and $\omega \in B ; \cap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}$
A, B mutually exclusive if $A \cap B=\emptyset$
A, B complementary if $A \cap B=\emptyset$ and $A \cup B=\Omega$ (then B is written as \bar{A} or A^{c} and is called the complement of A)
Note that $\left(A^{c}\right)^{c}=A$ (the complement of the complement of A is A itself)
A_{1}, \ldots, A_{n} are exhaustive if $\cup_{i=1}^{n} A_{i}=\Omega$
A_{1}, \ldots, A_{n} form a partition of Ω if they are exhaustive and mutually exclusive i.e. $\cup_{i=1}^{n} A_{i}=\Omega$ and $A_{i} \cap A_{j}=\emptyset, i \neq j$.i.e. $\omega \in$ exactly one A_{i}.

Set difference $\omega \in A \backslash B$ if $\omega \in A$ and $\omega \notin B$. i.e. $A \backslash B=A \cup \bar{B}$

Size of set $|A|$ is no. of elements in A.

Laws \cup and \cap are commutative e.g. $A \cap B=B \cap A$ $\begin{array}{lll} & \text { associative } & \text { e.g. } \\ \text { and } & (A \cap B) \cap C=A \cap(B \cap C) \\ \text { distributive } & \text { e.g. } & A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\end{array}$

De Morgan's Laws $\overline{\left\{\cup_{i=1}^{n} A_{i}\right\}}=\cap_{i=1}^{n} \bar{A}_{i}$

$$
\overline{\left\{\cap_{i=1}^{n} A_{i}\right\}}=\cup_{i=1}^{n} \bar{A}_{i}
$$

Cartesian product $A \times B=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{1} \in A, \omega_{2} \in B\right\}$

Indicator functions $I_{A}(\omega)= \begin{cases}1 & \omega \in A \\ 0 & \omega \notin A\end{cases}$

$$
\text { e.g. } I_{(0,2]}(x)= \begin{cases}1 & 0<x \leq 2 \\ 0 & x \leq 0, x>2\end{cases}
$$

2. QUADRATIC EQUATIONS

$a x^{2}+b x+c=0$ has roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

3. RULES OF INDICES AND LOGARITHMS

$$
\begin{gathered}
x^{a} x^{b}=x^{a+b} \\
\left(x^{a}\right)^{b}=x^{a b} \\
\log (x y)=\log x+\log y \\
\log \frac{x}{y} \quad=\log x-\log y \\
\log x^{a} \quad=a \log x
\end{gathered}
$$

4. ARITHMETIC AND GEOMETRIC PROGRESSIONS

AP (arithmetic progression): $a, a+d, a+2 d, \ldots$
Sum to n terms

$$
S_{n}=n a+\frac{1}{2} n(n-1) d .
$$

GP (geometric progression): $a, a r, a r^{2}, \ldots$
Sum to n terms

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} .
$$

Infinite sum (if $|r|<1$) $S_{\infty}=\frac{a}{1-r}$.
5. PERMUTATIONS AND COMBINATIONS

No. ways of picking r from n

$$
\begin{array}{ll}
\text { order important } & { }^{n} P_{r}=\frac{n!}{(n-r)!} \\
\text { order unimportant } \quad{ }^{n} C_{r}=\binom{n}{r}=\frac{{ }^{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}
\end{array}
$$

Note relationship $b\binom{a}{b}=a\binom{a-1}{b-1}$

6. USE OF SUM AND PRODUCT NOTATION

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{n}=\sum_{i=1}^{n} x_{i} \\
& a x_{1}+a x_{2}+\ldots+a x_{n}=a \sum_{i=1}^{n} x_{i} \\
& a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=\sum_{i=1}^{n} a_{i} x_{i} \\
& x_{1} \times x_{2} \times \ldots \times x_{n}=\prod_{i=1}^{n} x_{i} \\
& a x_{1} \times a x_{2} \times \ldots \times a x_{n}=a^{n} \prod_{i=1}^{n} x_{i} \\
& a_{1} x_{1} \times a_{2} x_{2} \times \ldots \times a_{n} x_{n}=\prod_{i=1}^{n} a_{i} x_{i}
\end{aligned}
$$

Also $\log \left(\prod_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \log x_{i}$

7. SERIES EXPANSIONS AND LIMITS

Binomial theorem: if n positive integer or $-1<x<1$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\ldots+\frac{n(n-1) \ldots(n-r+1)}{r!} x^{r}+\ldots
$$

Useful series expansions:

$$
\begin{gathered}
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots \quad-1<x \leq 1 \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots
\end{gathered}
$$

Also:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

8. MATRICES
multiplication
determinants
inversion - using $\boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}} \operatorname{adj} \boldsymbol{A}$ not just elementary row/col operations.

General properties:

- \boldsymbol{A}^{T} (often written \boldsymbol{A}^{\prime}) denotes the transpose of matrix \boldsymbol{A} and is obtained from \boldsymbol{A} by interchanging the rows and columns, that is the columns of \boldsymbol{A}^{T} are the rows of \boldsymbol{A} and the rows of \boldsymbol{A}^{T} are the columns of \boldsymbol{A}.
- The square matrix \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{T}$.
- If the symmetric matrix \boldsymbol{A} is non-singular, then \boldsymbol{A}^{-1} is also symmetric.
- The square matrix \boldsymbol{A} is diagonal if all off-diagonal elements of \boldsymbol{A} are zero.
- Multiplication is distributive over addition and subtraction, so

$$
(A-B)(C-D)=A C-B C-A D+B D .
$$

- $(\boldsymbol{A}+\boldsymbol{B})^{T}=\left(\boldsymbol{A}^{T}+\boldsymbol{B}^{T}\right)$ and $(\boldsymbol{A B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$.
- If \boldsymbol{a} is a (column) vector of length n then $\boldsymbol{a}^{T} \boldsymbol{a}=a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots+a_{n}{ }^{2}$.
- If \boldsymbol{A} is a $n \times p$ matrix, then $\boldsymbol{A} \boldsymbol{A}^{T}$ is a $n \times n$ matrix obtained by taking products of the rows of \boldsymbol{A}, whilst $\boldsymbol{A}^{T} \boldsymbol{A}$ is a $p \times p$ matrix obtained by taking products of the columns of \boldsymbol{A} and thus both are symmetric.
- A square matrix $\boldsymbol{A}=\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{p}\right)$ whose columns are normalised (that is $\boldsymbol{a}_{i}{ }^{T} \boldsymbol{a}_{i}=$ 0 for all $i \neq j$) is called an orthogonal matrix. Hence for an orthogonal matrix $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{I}$ and $\boldsymbol{A}^{T}=\boldsymbol{A}^{-1}$.
- If \boldsymbol{A} is square then the trace of \boldsymbol{A} is the sum of its diagonal entries and is written as $\operatorname{trace}(\boldsymbol{A})$ or $\operatorname{tr}(\boldsymbol{A})$. Thus $\operatorname{tr}(\boldsymbol{A})=\sum_{i} \boldsymbol{A}_{i i}$; now

$$
\operatorname{tr}(\boldsymbol{A B})=\sum_{i}(\boldsymbol{A B})_{i i}=\sum_{i} \sum_{k} \boldsymbol{A}_{i k} \boldsymbol{B}_{k i}=\sum_{k} \sum_{i} \boldsymbol{B}_{k i} \boldsymbol{A}_{i k}=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A}) .
$$

A special case of this is that if \boldsymbol{M} is an $r \times r$ matrix and \boldsymbol{S} is an $r \times p$ matrix then (with $\boldsymbol{A}=\boldsymbol{M S}$ and $\boldsymbol{B}=\boldsymbol{S}^{T}$)

$$
\operatorname{tr}\left(\boldsymbol{S}^{T} \boldsymbol{M} \boldsymbol{S}\right)=\operatorname{tr}\left(\boldsymbol{M} \boldsymbol{S} \boldsymbol{S}^{T}\right)
$$

Basic Properties of Eigenvalues and Eigenvectors

Let \boldsymbol{A} be a real $p \times p$ matrix.
The eigenvalues of \boldsymbol{A} are the roots of the p-degree polynomial in λ :

$$
q(\lambda)=\operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{p}\right)=0 .
$$

Let these be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.
Since the matrices $\boldsymbol{A}-\lambda_{i} \boldsymbol{I}_{p}$ are singular (i.e. have zero determinant) there exist vectors x_{i} called the eigenvectors of \boldsymbol{A} such that

$$
\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}_{p}\right)=0, \text { i.e. } \boldsymbol{A} x_{i}-\lambda_{i} x_{i}=0 .
$$

(Strictly, if \boldsymbol{A} is non-symmetric, the x_{i} are right-eigenvectors and we can define lefteigenvectors y_{i} such that $y_{i} \boldsymbol{A}-\lambda_{i} y_{i}=0$)

- $\sum_{i=1}^{p} \lambda_{i}=\operatorname{trace}(\boldsymbol{A})$.
- $\prod_{i=1}^{p} \lambda_{i}=\operatorname{det}(\boldsymbol{A})$, often written $|\boldsymbol{A}|$.
- \boldsymbol{A} and $\boldsymbol{C A} \boldsymbol{C}^{-1}$ have identical eigenvalues for \boldsymbol{C} non-singular.
- Eigenvectors of $\boldsymbol{C A} \boldsymbol{C}^{-1}$ are $\boldsymbol{C} x_{i}$.
- $\boldsymbol{A} \boldsymbol{B}$ and $\boldsymbol{B} \boldsymbol{A}$ have identical non-zero eigenvalues.
- Eigenvectors of $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{B} \times$ those of $\boldsymbol{A B}$.
- \boldsymbol{A} symmetric \Rightarrow eigenvalues real.
- \boldsymbol{A} symmetric \Rightarrow eigenvectors corresponding to distinct eigenvalues are orthogonal.

Differentiation with respect to vectors:

If $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{T}$ is a p-vector and $f=f(x)$ is a scalar function of x, we define $\frac{\partial f}{\partial x}$ to be the vector $\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{p}}\right)^{T}$.

- Quadratic forms: if $f(x)=x^{T} \boldsymbol{S} x$, where \boldsymbol{S} is a symmetric $p \times p$ matrix, then $\frac{\partial f}{\partial x}=2 \boldsymbol{S} x$.
- If \boldsymbol{S} is not symmetric, then $\frac{\partial\left(x^{T} S x\right)}{\partial x}=\left(\boldsymbol{S}+\boldsymbol{S}^{T}\right) x$
- Special case: $\boldsymbol{S}=\boldsymbol{I}_{p}, \frac{\partial x^{T} x}{\partial x}=2 x$.
- Inner-products with scalars: if $f(x)=a^{T} x$, then $\frac{\partial f}{\partial x}=a$

9. GEOMETRY

equation of straight line $y=m x+c$
equation of circle centre (a, b), radius $c \quad(x-a)^{2}+(y-b)^{2}=c^{2}$
equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
plotting simple functions and inequalities
10. CALCULUS
standard differentials and integrals, especially

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}(\ln f(x))=\frac{f^{\prime}(x)}{f(x)}
\end{aligned}
$$

and general rules
products $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotients $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v d u / d x-u d v / d x}{v^{2}}$
function of a function $\frac{d}{d x} u(v)=\frac{d u}{d v} \times \frac{d v}{d x}$
integrating by parts $\int u v d x=\left(\int u d x\right) v-\int\left(\int u d x\right) \frac{d v}{d x} d x$
double integration.

11. LAGRANGE MULTIPLIERS

Suppose $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$.
To maximize/minimize $f(x)$ (a scalar function of x) subject to k scalar constraints $g_{1}(x)=0, g_{2}(x)=0, \ldots, g_{k}(x)=0$ where $k<n$, define $L=f(x)+\sum_{j=1}^{k} \lambda_{j} g_{j}(x)$ (the Lagrangian; the λ_{j} are the Lagrange multipliers) and max/minimize L with respect to the $n+k$ variables $x_{1}, x_{2}, \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$.
12. OTHER TOPICS (general ideas required)

Methods of proof: induction and contradiction
Polar coordinates
Convergence
Newton-Raphson method for numerical solution of equations
Complex numbers
Completing the square

