Name	Genesis	Notation	p.f.	$\mathbf{E}(\mathrm{X})$	$\mathbf{V}(\mathbf{X})$	Applications	Comments
Uniform (discrete)	Set of k equally likely outcomes (usually, not necessarily, the integers)	$\begin{aligned} & \mathrm{U}(1, \ldots, k) \\ & \text { (not standard) } \end{aligned}$	$\begin{aligned} & p(x)=1 / k \\ & x=1, \ldots, k \end{aligned}$	$\frac{k+1}{2}$	$\frac{k^{2}-1}{12}$	Dice	
Bernoulli trial	Expt. with two outcomes: 'success' w.p. θ and 'failure' w.p. $1-\theta$ $X \equiv$ no. successes	$\operatorname{Ber}(\theta)$	$\begin{aligned} & p(x)=\theta^{x}(1-\theta)^{1-x} \\ & x=0,1 \\ & \theta \in[0,1] \end{aligned}$	θ	$\theta(1-\theta)$	Coins, constituent of more complex distributions	
Binomial	$X \equiv$ no. successes in n ind. $\operatorname{Ber}(\theta)$ trials	$\operatorname{Bi}(n, \theta)$	$\begin{aligned} & p(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \\ & x=0,1,2, \ldots, n \\ & \theta \in[0,1] \end{aligned}$	$n \theta$	$n \theta(1-\theta)$	Sampling with replacement	$\operatorname{Bi}(1, \theta) \equiv \operatorname{Ber}(\theta)$
Geometric	$X \equiv$ no. failures until 1st success in sequence of ind. $\operatorname{Ber}(\theta)$ trials	$\mathrm{Ge}(\theta)$	$\begin{aligned} & p(x)=\theta(1-\theta)^{x} \\ & x=0,1,2, \ldots \\ & \theta \in[0,1] \end{aligned}$	$\frac{1-\theta}{\theta}$	$\frac{1-\theta}{\theta^{2}}$	Waiting times (for single events)	Alternative formulation in terms of $Y \equiv$ no. of trials to 1 st success $(Y=X+1)$
Negative binomial (or Pascal)	$X \equiv$ no. failures to m th success in sequence of ind. $\operatorname{Ber}(\theta)$ trials. Generalization of Geometric	Neg $\operatorname{Bi}(m, \theta)$ (not standard)	$\begin{aligned} & p(x)=\binom{m+x-1}{x} \theta^{m}(1-\theta)^{x} \\ & x=0,1,2, \ldots \\ & \theta \in[0,1] \end{aligned}$	$\frac{m(1-\theta)}{\theta}$	$\frac{m(1-\theta)}{\theta^{2}}$	Waiting times (for compound events)	Neg $\operatorname{Bi}(1, \theta) \equiv \operatorname{Ge}(\theta)$ Remains valid for any $k>0$ (not necessarily integer). Alternative formulation as above.
Hypergeometric	$X \equiv$ no. of defectives in sample of size n taken without replacement from population of size N of which d are defective	$\operatorname{Hypergeom}(N, d, n)$ (not standard, esp. order of arguments)	$\begin{aligned} & p(x)=\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}} \\ & x=\max (0, n+d-N), \ldots \\ & \ldots, \min (n, d) \end{aligned}$	$\frac{n d}{N}$	$\frac{N-n}{N-1} n \frac{d}{N}\left(1-\frac{d}{N}\right)$	Sampling without replacement	Sampling with replacement leads to the $\operatorname{Bi}\left(n, \frac{d}{N}\right)$ - a suitable approx if $\frac{n}{N}<0.1$
Poisson	Arises empirically or via Poisson Process (PP) for counting events. For PP rate ν the no. of events in time $t \sim \mathrm{Po}(\nu t)$. Also as an approx. to the Binomial	$\operatorname{Po}(\lambda)$	$\begin{aligned} & p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \\ & x=0,1,2, \ldots \\ & \lambda>0 \end{aligned}$	λ	λ	Counting events occurring 'at random' in space or time	$\operatorname{Bi}(n, \theta) \equiv \operatorname{Po}(n \theta)$ if n large, θ small

SOME CONTINUOUS DISTRIBUTIONS

Name	Notation	p.d.f.	E(X)	$\mathbf{V}(\mathbf{X})$	Applications	Comments
Uniform (continuous) (or Rectangular)	$\mathrm{Un}(\alpha, \beta)$	$\begin{aligned} & f(x)=\frac{1}{\beta-\alpha} \\ & x \in[\alpha, \beta] \\ & \alpha<\beta \end{aligned}$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta-\alpha)^{2}}{12}$	Rounding errors $U n\left(-\frac{1}{2}, \frac{1}{2}\right)$. Simulating other distributions from $\operatorname{Un}(0,1)$.	
Exponential	$\operatorname{Ex}(\lambda)$	$\begin{aligned} & f(x)=\lambda e^{-\lambda x} \\ & x>0 \\ & \lambda>0 \end{aligned}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	Inter-event times for Poisson Process. Models lifetimes of non-ageing items.	Alternative parameterization in terms of $1 / \lambda$ $\operatorname{Ga}(1, \lambda) \equiv \operatorname{Ex}(\lambda)$
Gamma	$\mathrm{Ga}(\alpha, \beta)$	$\begin{aligned} & f(x)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} \\ & x \geq 0 \\ & \alpha, \beta>0 \end{aligned}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$	Times between k events for Poisson Process. Lifetimes of ageing items.	```Alternative parameterization in terms of \(1 / \beta\) \[\mathrm{Ga}(1, \lambda) \equiv \operatorname{Ex}(\lambda), \] \[\mathrm{Ga}(\nu / 2,1 / 2) \equiv X_{\nu}^{2}, \]```
Beta	$\operatorname{Be}(\alpha, \beta)$	$\begin{aligned} & f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)} \\ & x \in[0,1] \\ & \alpha, \beta>0 \end{aligned}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$	Useful model for variables with finite range. Also as a Bayesian conjugate prior.	$\operatorname{Be}(1,1) \equiv \operatorname{Un}(0,1)$ $\operatorname{Be}(\alpha, \beta)$ is reflection about $\frac{1}{2}$ of $\operatorname{Be}(\beta, \alpha)$. Can transform $\operatorname{Be}(\alpha, \beta)$ on $[0,1]$ to any finite range $[a, b]$ by $Y=(b-a) X+a$
Normal	$\mathrm{N}\left(\mu, \sigma^{2}\right)$	$\begin{aligned} & f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\ & x \in(-\infty, \infty) \end{aligned}$	μ	σ^{2}	Empirically and theoretically (via CLT etc.) a good model in many situations. Often easy to handle mathematically.	$\begin{aligned} & X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \Longrightarrow \\ & a X+b \sim \mathrm{~N}\left(a \mu+b, a^{2} \sigma^{2}\right) \\ & \Longrightarrow Z=\frac{X-\mu}{\sigma} \sim \mathrm{N}(0,1) \\ & \mathrm{So} \end{aligned}$ $P[X \in(u, v)]=P\left[Z \in\left(\frac{u-\mu}{\sigma}, \frac{v-\mu}{\sigma}\right)\right]$ $\mathrm{N}(0,1)$ special case has p.d.f. denoted ϕ, c.d.f. Φ (tabulated). Note $\Phi(-z)=1-\Phi(z)$.
Chi-square	χ_{ν}^{2}	$\begin{aligned} & f(x)=2^{-\nu / 2} \Gamma(\alpha)^{-1} x^{\nu / 2-1} e^{-x / 2} \\ & x>0 \\ & \nu>0 \end{aligned}$	ν	2ν	Sum of squares of ν standard normals	$X_{\nu}^{2} \equiv \mathrm{Ga}(\nu / 2,1 / 2)$ $\text { If } X_{1}, X_{2}, \ldots, X_{n} \sim \mathrm{~N}(0,1)$ independent, then $\sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}$
Student t	t_{ν}	$\begin{aligned} & f(x)= \\ & \nu^{-1 / 2} B\left(\frac{1}{2}, \frac{\nu}{2}\right)^{-1}\left(1+x^{2} / \nu\right)^{-(\nu+1) / 2} \\ & x \in(-\infty, \infty) \\ & \nu>0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { (if } \stackrel{1}{\nu} \text {) } \end{aligned}$	$\frac{\nu}{(\mathrm{if} \stackrel{\nu}{\nu}}$	Useful alternative to Normal for variables with heavy tails.	If $X \sim \mathrm{~N}(0,1)$ and $Y \sim \chi_{\nu}^{2}$ independent then $\begin{aligned} & \frac{X}{\sqrt{Y / \nu}} \sim \mathrm{t}_{\nu} . \\ & \mathrm{t}_{1} \equiv \text { Cauchy. } \mathrm{t}_{\nu}^{2} \equiv \mathrm{~F}_{1, \nu} . \end{aligned}$
F	$\mathrm{F}_{\nu, \delta}$	$\begin{aligned} & f(x)=\frac{\nu^{\nu / 2} \delta^{\delta / 2} x^{\nu / 2-1}}{B(\nu / 2, \delta / 2)(\nu x+\delta)^{(\nu+\delta) / 2}} \\ & x>0 \\ & \nu, \delta>0 \end{aligned}$	$\begin{gathered} \frac{\delta}{\delta-2} \\ (\text { if } \delta>2 \text {) } \end{gathered}$	$\begin{aligned} & \frac{2 \delta^{2}(\nu+\delta-2)}{\nu(\delta-2)^{2}(\delta-4)} \\ & (\text { if } \delta>4) \end{aligned}$	Scaled ratio of chi-squares. Used in tests to compare variances	If $X \sim \chi_{\nu}^{2}$ and $Y \sim \chi_{\delta}^{2}$ independent then $\frac{X / \nu}{Y / \delta} \sim \mathrm{F}_{\nu, \delta}$. If $T \sim \mathrm{t}_{\nu}$ then $T^{2} \sim \mathrm{~F}_{1, \nu}$. If $Z \sim \operatorname{Be}(\alpha, \beta)$ then $\frac{\beta Z}{\alpha(1-Z)} \sim \mathrm{F}_{2 \alpha, 2 \beta}$.

