
MSc Mas6002 Introductory Material

Block B

Statistical Methods

1 Data types

Data come in many different forms. Typically we have a collection of records from different
individuals (or components or units or . . .) on one or more characteristics: data are uni-
variate if there is information on just one characteristic per individual and multivariate
otherwise.

Example 1: Restrnt.txt

The 1980 Wisconsin Restaurant Survey was conducted by the University of Wisconsin
Small Business Development Centre, selected 19 Wisconsin counties for study. Samples
were taken in each county. This is a multivariate data set since 13 characteristics are
recorded for each restaurant (but some values are missing and coded as NA).

Column Name Count Missing Description
C1 ID 279 0 Identification Number of Restaurant
C2 Outlook 279 1 Business outlook from 1 = very un-

favourable to 7 = very favourable
C3 Sales 279 25 Gross 1979 sales in $1000s
C4 NewCap 279 55 New capital invested in 1979 in $1000s
C5 Value 279 39 Estimated market value of the business in

$1000s
C6 CostGood 279 42 Cost of goods sold as a percentage of the

business
C7 Wages 279 44 Wages as a percentage of sales
C8 Ads 279 44 Advertising as a percentage of sales
C9 TypeFood 279 12 1 = fast food, 2 = supper club, 3 = other
C10 Seats 279 11 number of seats in dining area
C11 Owner 279 10 1 = sole proprietorship, 2 = partnership,

3 = corporation
C12 Ft.Empl 279 14 Number of full-time employees
C13 Pt.Empl 279 13 Number of part-time employees
C14 Size 279 16 Size of restaurant 1 = 1 to 9.5 employees,

2 = 10 to 20, 3 = over 20 (a part-time
employee is 0.5)

The characteristics recorded, usually called variables, can be either quantitative or
qualitative.

Quantitative variables are those that, of their nature, take numerical values for which
arithmetic makes sense, e.g. Sales; Value; Ft.Empl. For each of these, finding a total or
average value makes sense. Quantitative variables are usually either discrete or con-
tinuous. Discrete variables are often ‘counts’, that is the result of counting something,
and continuous ones are often measurements. The possible values for a discrete variable
are isolated or separated values, usually, but not necessarily, whole numbers, e.g. Seats,
Pt.Empl. Continuous variables may take any value in an interval or collection of intervals.
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For physical measurements (height, weight, etc) it is clear what this means, even though
there will be a limit to the accuracy. In many cases the judgement that a variable is to be
regarded as continuous is a practical one, based on the range and density of its possible
values. Many of the variables in the data set, though recorded as whole numbers, should
be regarded as continuous, e.g. Sales, NewCap, Value, CostGood.

In the above example, Owner, although recorded as 1, 2 or 3, is not quantitative; it is
qualitative. These numerical values are just arbitrary labels, for the three kinds of owner,
and could just as well have been assigned in other ways. Whenever the possibilities for a
variable are really descriptions the variable is qualitative (even if numbers are used to code
it). Also, any three values could have been used and arithmetic on these values does not
make sense. Qualitative variables result from dividing into categories. Three examples are:
sex — male/female; pain — none/mild/moderate/severe; age — young/middle-aged/old.
When the categories have no intrinsic order or sequence (like male/female) they are called
nominal. In contrast, the categories for pain and age have a natural order. Such variables
with ordered categories are often called ordinal. Numerical values may be used to label
the categories (and for ordinal variables the numerical values should respect the ordering)
but this does not change the basic nature of the variable. Owner, Typefood and Outlook
are qualitative; Owner and Typefood are nominal, and Outlook is also ordinal.

A (raw) data set may be very extensive, as in the Restaurant Survey, and so it is often
very difficult to see immediately the relevant structure and variation in the data. The
essential features are often obscured so that it is difficult to draw any useful conclusions
from the information available. For this reason data are often presented in summary form
— either through tables and diagrams or numerically.

2 Summary Tables and Diagrams

We look now at ways of extracting information from raw data to highlight the relevant
structure and variation. The pattern of variation in the measurements of a variable is
called its distribution. We shall try to assess this distribution in tabular and graphical
form. First we consider forms appropriate for univariate data.

2.1 Dot plot

The simplest graphical display, so simple it is rarely used, is the Dot Plot1. Such plots
make it easy to see the way the values are spread. However they become messy and
cumbersome for larger data sets.

Example 2: remission.txt.
The data below are the remission times in weeks of 10 patients presenting with a certain
type of carcinoma and receiving radiotherapy treatment. A dot plot of these is given
Figure 1.
25 45 238 94 16 23 30 16 22 123

1In R, see the help pages for stripchart and dotchart — but frankly it is hard to imagine when this
would be a sensible display for a single data set. stripchart does allow you to split dotplots by another
variable and then this can be an alternative to box-plots (§3.4) which are discussed later.
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Remission times in weeks for 10 patients

Figure 1: Simple Dot Plot

2.2 Stem-and-leaf plot

A useful alternative way to visualise the distribution of the values in larger data sets is
the stem-and-leaf plot. Most of you will have seen these before.

Example 3: grapeweights.txt

The following data are the weights of 27 ‘one kilogram’ bunches of grapes (in g).

1009 1013 996 1010 1003 1000 994
1017 988 1007 981 997 1009 1012
985 973 1063 1031 1002 1002 1020
1024 1018 1028 1025 990 1013

Prepare a stem-and-leaf plot to illustrate this data set.

Solution
For the simplest form of a stem-and-leaf plot, split the data into groups, based on their
second to last digit, to form the stem, with the last digit of individual values forming the
leaves. There are various other ways of presenting the stem and the leaves but we will
not look at them here. When working by hand the idea is to record the minimum detail
consistent with an intelligible presentation. This display gives a simple picture of overall
shape, highlights gaps in the values and picks up outliers (values far removed from the
rest).

97 3
98 5 8 1
99 6 7 0 4

100 9 7 3 2 0 9 2
101 7 3 8 0 3 2
102 4 8 5 0
103 1
104
105
106 3

stem leaves

or

97 3
98 1 5 8
99 0 4 6 7

100 0 2 2 3 7 9 9
101 0 2 3 3 7 8
102 0 4 5 8
103 1
104
105
106 3

ordered stem-and-leaf
(not usually done by hand)
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Here the display raises the question ‘Is 1063 correct?’ Perhaps it is a misprint for 1036.
If possible the statistician should then check back with the data source.

Stem-and-leaf plots are available in R: the command is stem().

2.3 Frequency Table

Again, as the number of data points increase, stem-and-leaf plots become cumbersome.
We can continue splitting each leaf as above, but the retention of all the information is
not necessary for an overall view of the pattern of variation. An alternative procedure,
which condenses the data, is to classify it into groups.

Example 4: Systolic-bp.txt

The systolic blood pressures (mmHg) of 70 normal British males are measured, the men
all being in the 25-45 age group.

99 148 151 120 116 143 110 110 131 110
136 123 177 117 137 163 113 120 110 105
108 120 116 133 130 138 125 123 124 127
101 123 153 118 127 132 120 147 161 121
122 168 112 186 153 120 96 155 138 123
117 121 144 117 107 115 152 146 109 133
128 118 123 106 117 121 115 130 145 136

Prepare a frequency table to summarise the data.

Solution

Class Frequency Relative Relative
Frequency Frequency

90–99 2 2/70 0.029
100–109 6 6/70 0.086
110–119 16 16/70 0.229
120–129 19 19/70 0.271
130–139 11 11/70 0.157
140–149 6 6/70 0.086
150–159 5 5/70 0.071
160–169 3 3/70 0.043
170–179 1 1/70 0.014
180–189 1 1/70 0.014

70 1 1.000

The classes, defined by the class limits, must be non-overlapping so that there is no doubt
as to which class an observation belongs. Since systolic blood pressure is a continuous
variable 90–99 is interpreted to mean 89.5 to 99.5, with, it is assumed, observations exactly
equal to 89.50 and 99.50 being rounded up, to 90 and 100, respectively.

If the above data had been for marks in a test out of 200, a discrete variable, then 90–99
would mean 90, 91,. . .,99. The relative frequency column is not essential but its inclusion,
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usually as a percentage or a decimal, helps when comparing frequency tables for samples
of different sizes.

For large data sets it is common for only a frequency table to be published. For example,
publications of the Government Statistical Service are full of frequency tables and much
data can be accessed through their web site, http://www.statistics.gov.uk/

2.4 Bar Chart and Histogram

The bar chart and histogram are used to give a graphical representation of a frequency
table for observations on discrete and continuous variables respectively.

A sample of 100 students yields the following frequency table for the variable ‘number of
brothers’.

Number of brothers Frequency
0 30
1 34
2 20
3 12
4 3
5 0
6 1

Since this variable is discrete, taking whole number values between 0 and 6, a bar chart
is the usual graphical representation of such a frequency table. For each observed value
there is a bar or block, of constant width, with height representing frequency and each
bar is separated by a gap from adjacent bars. An example is given in Figure 2.

0 1 2 3 4 5 6

Bar chart showing the number
of brothers of 100 students

Number of brothers

F
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0
5

10
15

20
25

30
35

Figure 2: Example of Bar Chart

Blood pressure in Systolic-bp.txt is recorded as whole number values but it is a mea-
surement and thus is a continuous variable. In a histogram, because the underlying
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variable is continuous, the blocks are connected. The histogram for the blood pressure
data is given in Figure 3.

Histogram of the systolic blood pressure
of 70 males, aged 25−45

Blood pressure (mm Hg)
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90 100 110 120 130 140 150 160 170 180 190

Figure 3: Example of Histogram

If the frequency table for the blood pressure data was actually the frequency table for
the variable ‘marks on a test out of 200’ — a discrete variable, only taking whole number
values — then it might be argued that a small gap should be left between the blocks in
the above histogram to yield a bar chart. This is only the right procedure when each
block corresponds to, at most, a few possible values. Here, continuity is approximately
true and so a histogram representation of the data set is justifiable and produces a better
display.

Since it is only the shape of a histogram which is of interest, it is sometimes preferable
to use relative frequencies (i.e. proportions) rather than frequencies on the vertical axis.
If there are n observations in the data set, then, for any class, the relative frequency is
just (frequency)/n.

In the blood pressure example the classes are of equal width; each is of width 10mmHg.
The calculations must be modified if the classes have unequal widths. (Imagine stacking
counters to make the blocks — if they have to cover three times the width they can only
reach one-third of the height.) For example, replace the last three classes by a single
one, 160–189, which has a width 30 and a frequency 5. The correct plot is obtained by
allowing for the differences in width, as suggested by the stacking counters illustration;
this shows that it is really the area of the blocks that actually represents frequency, not
the height. The density is given by adjusting relative frequencies by the class widths, so

density =
frequency

sample size× class width.

Using density does not change the detailed shape of the histogram if all blocks are the same
width, but it will otherwise. (Of course any constant multiple of density will give the same
picture, so frequency divided by any appropriate ‘width factor’ will do for constructing a
single histogram.) In R, you can plot histograms using either density or frequency (check
the hist help page for more on this).

It is possible to produce a histogram with unequal classes in R. For illustration, Figure 4
gives an example of such a histogram.
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Histogram of the systolic blood pressure
of 70 males, aged 25−45

Blood pressure (mm Hg)

D
en

si
ty

0.
00

0
0.

01
0

0.
02

0

90 100 110 120 130 140 150 160 190

Figure 4: Example of Histogram with unequal classes

Histogram construction

Once you start to override the automatic choices in R, or want to construct such a his-
togram by hand, you need some ideas about what to do.

• How many classes should there be? This is a matter of judgement, and is partly
arbitrary. If you select too many, you get a bumpy diagram; if you select too few,
you lose a lot of information. Aim for between 5 and 15. The choice depends on
the sample size: larger samples merit more classes.

• Make the classes of equal width if you can.

• Choose sensible (natural) end-points, class-limits, for the classes, and be clear
about them – but don’t worry unduly about their specification. Remember the
graph is only a simple visual summary of the data. In the blood pressure example,
presumably the blood pressures (on a continuous scale) are measured to the nearest
mmHg, so that the intervals are ‘really’ 89.5 ≤ x < 99.5; 99.5 ≤ x < 109.5; . . . but
it would be foolish to think this is important in constructing a graphical display.

• Use a block for each class with height which is either i) frequency, relative frequency,
percentage or density when classes are of equal width, or ii) density or some constant
multiple of this in other cases.

Notes

• For a continuous variable use a histogram, with no gaps between the boxes.

• For a discrete variable with a small number of values use a bar chart with gaps
between boxes, otherwise use a histogram.

• Note that number of values is not the same as number of observations, in the ‘num-
ber of brothers’ examples the values are 0, 1, . . . , 6 but the number of observations
is 100. When density is the vertical scale the total area of the blocks is 1.0. (This
is of relevance in probability theory.) Usually, there is no need to include a ver-
tical axis/scale on a histogram/bar chart. Remember that it is the shape that is
important. The examples above have a vertical scale for pedagogical reasons.
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Descriptive Terminology

On the basis of the shape of the histogram/bar chart the distribution of a variable might
be described as positively/negatively skewed, bimodal or bell shaped. These are indicated
in Figure 5. All those have a single peak, a modal class, i.e. a class with local maximum
frequency. Figure 6 illustrates a shape with two peaks (bimodal).

symmetric and positively negatively
bell-shaped skewed skewed

Figure 5: Histogram Shapes

symmetric and bimodal

Figure 6: Bimodal Histogram

2.5 Cumulative relative frequency diagram

An alternative diagrammatic summary uses the cumulative relative frequencies. When
the only data available are in grouped form, this diagram is useful for obtaining values
for certain data summaries (the median and quartiles) that will be introduced later.
However the real importance of the idea is theoretical, since the mathematical counterpart
of cumulative relative frequencies are frequently tabulated in statistical tables and is
available in R for many standard distributions.

The next table gives some data extracted from Table 10.13 of Social Trends 30, 2000. The
distances are in miles. ‘Abroad’ and ‘50 miles or over’ in the original table, have been
combined and treated as 50–200; obviously, for some purposes, this won’t be sensible.
Only the Owner-occupied data are tabulated here.
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Class Frequency Relative Cumulative Relative
(distance) (percentage) Frequency Frequency
0–1 21 0.21 0.21
1–10 50 0.50 0.71

10–20 9 0.09 0.80
20–50 6 0.06 0.86
50–200 14 0.14 1.00

100 1.00

Thus, for example, the proportion moving less than or equal to 20 miles is 0.8.

A cumulative relative frequency diagram plots these values against the upper end point
of the appropriate class interval. The cumulative curve is always monotonic increasing
starting from 0 and rising to 1. For discrete variables with few values the display is
generally presented in the form of a step-function.

0 50 100 150 200

0.
0

0.
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0.
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0.
6

0.
8

1.
0

Cumulative relative frequency curve
for distance moved by owner occupiers

Distance moved (miles)

Figure 7: Example of a Cumulative Plot

Here is a histogram of the same data, which shows that they are very positively skewed.

Distance moved by owner occupiers

Distance (miles)

0 50 100 150 200

Figure 8: The Histogram for the data in Figure 7
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If you have the raw data then the cumulative plot is best obtained by using all of the data.
For this you have to plot each individual value against its rank divided by the sample
size.

100 120 140 160 180
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Cumulative relative frequency curve
for male blood pressure

Blood pressure (mm Hg)

Figure 9: Example of a Cumulative Plot from individual data values

3 Numerical summaries

Although the techniques already given provide overall pictures of the variation in the
data, we often require more concise (numerical) summaries — descriptive statistics.
In this section we assume the data set represent a random sample of n observations on a
variable.

3.1 Sample Mean

The first element to summarise is the general size of the numbers, to measure their central
tendency or location. The most widely used measure of location is the sample mean or
average.

For a random sample of n observed values, x1, x2, x3, . . ., xn, the sample mean is given
by x (x bar)

x =
1

n
(x1 + x2 + . . .+ xn) =

1

n

n∑
i=1

xi

Example 5: Means of remission, grapeweights and Systolic-bp
What are the means for data remission.txt, grapeweights.txt and Systolic-bp.txt?

Solution

10



remission times (25 + 45 + . . .+ 123)/10 = 63.2 weeks
grape weights (1009 + 1017 + . . .+ 1020)/27 = 1007.8 g
Systolic Blood Pressure (99 + 136 + . . .+ 136)/70 = 128.0 mmHg

Notes

1. The sample mean is in the same units as each individual measurement.

2. As a summary it is usually reasonable to quote the sample mean to one significant
figure more than is used for each individual measurement: in these three examples
— to 1 decimal place. Giving too many decimal places at the final answer is spurious
accuracy, showing poor numerical sense.

3. Notice that the sample mean does not have to take one of the values attained in the
data set — or even an attainable value.

4. For anything other than small data sets, the calculation is best done with a package
like R.

5. If we have grouped data we can obtain a sample mean from the frequency table,
approximating the raw data value. The method assumes that within each class all
the values in that class take the mid-point value. As a formula:

x =

∑
j fjyj∑
j fj

=
∑
j

(rf)jyj

where fj is the frequency of the class j, (rf)j is the relative frequency of class j, yj
is the mid-point of class j, and summations are over the number of classes.

Example 6: Mean of frequency data
Suppose the data set Systolic-bp.txt were available only as a frequency table as follows.

Blood pressure Frequency
90–99 2

100–109 6
110–119 16
120–129 19
130–139 11
140–149 6
150–159 5
160–169 3
170–179 1
180–189 1

70

Calculate the sample mean blood pressure based on this table.

Solution
The sample mean, based on this table is:

x =
2× 94.5 + 6× 104.5 + . . .+ 1× 184.5

70
=

8985.0

70
= 128.4mm Hg.
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3.2 Sample Median

For the data set remission.txt the value 238 has a very large effect on the sample mean.
If 238 is omitted the mean becomes 43.8 weeks (reduced from 63.2 weeks). Observations
that have a large influence on the sample mean are called outliers or extreme values.
A more resistant measure of location is the sample median; roughly, this is the value
such that half the observations are above it and half the observations are below it.

The sample median is denoted by x̃, read as x tilde.

To find the median: arrange the observations in order (smallest to largest); count (n+1)/2
observations up from the bottom.

Example 7: Median of data set remission.txt

Data set remission.txt gives the remission times in weeks of 10 patients presenting
with a certain type of carcinoma and receiving radiotherapy treatment as follows:

16 16 22 23 25 30 45 94 123 238

What is the median remission time?

Solution

x̃ =
25 + 30

2
= 27.5 weeks

Example 8: Median of data set grapeweights.txt

The data set grapeweights.txt is larger. Don’t try to do the calculation by hand, but
what methodology would you use to obtain its median?

Solution
In grapeweights.txt, n = 27 so the median value is obtained by sorting the data and
identifying the value that lies at (n+ 1)/2 = 14. If we do this in R we get x̃ = 1009 g.

Notes

1. If n is odd (n = 2m+1, say), the sample median is the (m+1)th ordered observation;
if n is even (n = 2m, say), the sample median is the average of the mth and (m+1)th
ordered observations.

2. The sample median is in the same units as each individual measurement.

3. The mean is easier to deal with mathematically and theoretically.

4. A roughly symmetrical data set has mean and median approximately equal. If the
mean is much larger than the median the data have strong positive skew since the
long tail of large values inflates the sample mean. Similarly, if the mean is much
smaller there is negative skew. The relative values of the mean and median tell you
something about the shape of the distribution.

5. In R, median() or summary() will return the median.
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3.3 Sample Quartiles

Neither the sample mean nor the sample median tells us anything about the amount of
variation or dispersion in the data. If we are using the sample median as the measure of
location, then sample quartiles are often used as resistant measures of dispersion. The
three quartiles (Q1, Q2 and Q3) divide the data in to four parts:
Q1: sample lower quartile: roughly a quarter of observations below
Q3: sample upper quartile: roughly a quarter of observations above
Q2: the sample median: in the middle of the observations

The sample interquartile range = Q3 − Q1. This is the range of the central 50% of
observations and is often denoted by IQR. To obtain the sample quartiles and interquartile
range:

1) find sample median as before;

2) find Q1 = the median of the observations below the location of the sample median;

3) find Q3 = the median of the observations above the location of the sample median;

4) evaluate Q3 − Q1.

Example 9: Quartiles for remission.txt

What are the quartiles for data set remission.txt ?

Solution
Q2 = 27.5 weeks (not one of the observed values, see Example 7)
5 observations below, therefore Q1 in 3rd position among these five:
Q1 = 22 weeks
5 observations above, therefore Q3 in 3rd position among these five:
Q3 = 94 weeks
Sample interquartile range = 94− 22 = 72 weeks

Example 10: Quartiles for grapeweights.txt

What are the the quartiles for data set grapeweights.txt?

Solution
Q2 = 1009 g; the 14th observation (see Example 8)
13 observations below median, Q1 is in 7th position among these:
Q1 = 996 g
13 observations above median, Q3 is in 7th position among these:
Q3 = 1018 g
Sample interquartile range = 1018− 996 = 22 g

Notes

1. The IQR, Q1, Q2 and Q3 are all unaffected by a few extreme observations, so they
provide resistant measures of location and dispersion.

2. Unfortunately, quartiles are not easy to handle theoretically.

3. There are other methods for calculating sample quartiles. They can produce answers
that are slightly different, but not in any important way. The rule suggested here
is easy to recall and apply.
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4. In R, quartiles are available via the summary() command.

5. A cumulative relative frequency diagram can be used to obtain quartiles graphically
for grouped data. Just read back from 0.25, 0.50 and 0.75.

3.4 Box plots

The five values (minimum, Q1, Q2, Q3, maximum) provide a summary of a set of data,
sometimes called the five number summary, which can be illustrated through a box
(-and-whisker) plot, as can be seen Figure 10.

grapeweights.txt Systolic-bp.txt

Max = 1063 Max = 186
Q3 = 1018 Q3 = 138
Q2 = 1009 Q2 = 123
Q1 = 996 Q1 = 116

Min = 973 Min = 96

950 1000 1050 1100

Weight (gm)

80 100 120 140 160 180 200

Blood pressure (mm Hg)

Figure 10: Examples of Boxplots

Notes

1. Box plots are useful for comparing several distributions; stem-and-leaf plots provide
better displays for single data sets.

2. They are sometimes modified to identify extreme values as follows2:

(a) Extend whiskers only to most extreme observation within 1.5IQR above and
below Q1 and Q3.

(b) Insert any more extreme values individually as a ‘*’ or a line.

For Systolic-bp.txt: IQR = Interquartile range = 138− 116 = 22
i.e. extend whiskers at most to 116− 33 = 83, 138 + 33 = 171
i.e. extend whiskers, in fact, to 96 and to 163 with 177, 186 separate.
The modified box plot is given in Figure 11.

2There are even more refined versions
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80 100 120 140 160 180 200

Blood pressure (mm Hg)

Figure 11: Example of a modified Boxplot

3. For the data Restrnt.txt described in Section 1, it is natural to expect that the
variable Sales will vary with the variable Size. You can investigate this by drawing
the boxplots. Then you would obtain Figure 12, which isn’t too good. Non-negative
variables that are positively skewed (as Sales is here) often produce a better spread
if you take logarithms. The box plots for log(Sales) in Figure 13 are rather better.
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Figure 12: Boxplot: Sales by Size

4. Some published data are given in the form of five-number summaries, but for large
data sets it is usual to replace the maximum and minimum by the upper and lower
deciles (i.e. the values with only 10% above and 10% below). These can still be used
to produce box plots, but now the whiskers will only go out to the deciles. Here
is some data of that form taken from the government statistics web site: http:

//www.statistics.gov.uk/.

Table 6
Type of Data set: Cross-Sectional
Title: New Earnings Survey 1999 Distribution

weekly earnings
Last Updated: 29/11/99
Associated Web Links: There are no Web links stored for this product
Time Frame: April 1999
Geographic Coverage: Great Britain
Universe: Earnings distribution
Measure: Earnings per week
Units: £ per week
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Figure 13: Boxplot: log(Sales) by Size

Full-time All Full-time Full-time
Non-manual Manual

Women Top 10 per cent 521 541 328
Women Top 25 per cent 398 422 261
Women Median 284 305 201
Women Bottom 25 per cent 213 230 165
Women Bottom 10 per cent 170 184 140
Men Top 10 per cent 712 863 501
Men Top 25 per cent 517 612 399
Men median 374 449 313
Men bottom 25 per cent 275 321 245
Men bottom 10 per cent 211 234 195

You might draw (by hand) box plots to compare the earnings in some of these cat-
egories.A couple are given in Figure 14. Note that both distributions are positively
skewed and that the men’s is higher than the women’s.

200
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400
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700

Weekly earnings

Women, all full−time Men, all full−time

Figure 14: Boxplots Comparing Earning distributions
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3.5 Sample Variance

The most commonly used measure of dispersion is the sample variance. This is

s2 =
1

(n− 1)

n∑
i=1

(xi − x)2

(but see Note 5 below for the formula usually used in calculation).
Clearly then, the variance is measured in the square of units of the original observations.
Thus, we also define the standard deviation, s, as the square root of the variance, which
is then in the same units as an individual observation.

Example 11: Standard deviation of task times
Given that a sample of 5 people take the following times to complete a task, what is the
sample standard deviation? n = 5; observations 7, 8, 9, 12, 14 seconds.

Solution
The mean is 10 seconds and

s2 = 1
4
{(−3)2 + (−2)2 + (−1)2 + 22 + 42} = 34

4
= 8.5sec2 ,

so s = 2.92 seconds.

Example 12: Standard deviation of grapeweights.txt and Systolic-bp.txt

What are the sample standard deviations for grapeweights.txt and Systolic-bp.txt?

Solution

grapeweights.txt Systolic-bp.txt

n = 27 n = 70
x = 1007.8 g x = 128.0 mm Hg
s = 18.32 g s = 18.5 mm Hg

Notes

1. The rationale for n− 1 instead of n draws on general theory indicated later.

2. The variance effectively averages the squares of the deviations of individual obser-
vations about the mean.

3. The standard deviation is zero when there is no variation in the data, that is, all the
values are equal; otherwise it must be strictly positive and it increases as dispersion
increases.

4. The standard deviation is not resistant to extreme values. Hence, it is most appro-
priate as a measure of dispersion when the data show a fairly symmetric pattern of
variation.

5. For actual calculations (if necessary) use

s2 =
1

(n− 1)

{
n∑
i=1

x2i −
(
∑n

i=1 xi)
2

n

}

17



The term in { } is often used separately in the theory and so has its own notation.
Thus

sxx =
∑

x2 − (
∑
x)2

n
=
∑

(x− x)2 and so s2 =
sxx
n− 1

Consider again the data from Example 11 where n = 5; observations 7, 8, 9, 12, 14
seconds. These yield

∑
x = 50,

∑
x2 = 534 and so

sxx = 534− (50)2

5
= 534− 500 = 34,

s2 =
34

4
s = 2.92 seconds

For large data sets, this formula is quicker than the one used in the definition.
However, it is more prone to rounding error since it involves subtracting one large
number from another to get an answer that is quite a small number.

6. For grouped data the variance is obtained from the frequency table, approximating
the raw data value, using

s2 =
1

(n− 1)

{∑
j

fjy
2
j −

(
∑
fjyj)

2

n

}

(with notation as in Section 3.1). Note that this is not the same as:{∑
j fjy

2
j

n
−
(∑

fjyj
n

)2
}

although for large n the difference is minor.

For Systolic-bp.txt∑
j

fjy
2
j = 2× 94.52 + . . .+ 1× 184.52 = 1, 176, 948,

s2 =
1

69

{
1, 176, 948− (8985)2

70

}
= 342.885,

and so s = 18.5 mmHg.

7. Calculators often have a button for the standard deviation (if there are two, make
sure you know which uses the (n− 1) divisor).

8. One use of standard deviation is to compare variability about the mean in different
data sets. For example, the IQ is assessed of each student in two samples of students.
For each sample the same mean IQ is found, but sample standard deviations are
3.6 and 5.8 respectively. This indicates that in the sample with s = 3.6 IQ is less
variable, i.e. more tightly grouped around its mean.

9. You obtain the variance and the standard deviation in R using the var() and sd().
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3.6 Coefficient of Variation

For positive measurement data the coefficient of variation is sometimes used as a
measure of spread. It is the sample standard deviation divided by the sample mean (i.e.
s/x). Its advantage is that it is dimensionless (it has no units): its value will be the same
if we change the unit of measurement.

4 Basic inference for continuous data

Inference usually assumes that x1, x2, ..., xn are observed values from some probability
distribution and tries to say things about that distribution.

4.1 The Normal Model

In many situations we assume that the (continuous) observations come from a N(µ, σ2),
and that the observations are independent (random).

• This is a reasonable approximation in many cases — by empirical verification
or can be made reasonable by transformation (e.g. x→ log x).

• The theory is simple and well developed.

• Inferences reduce to questions about µ and/or σ2.

Recall the probability density function of N(µ, σ2):

f(x) =
1√
2πσ

exp

{
−1

2

(x− µ)2

σ2

}
x ∈ R; µ ∈ R, σ > 0.

The distribution function is

P (X ≤ x) = F (x) = Φ

(
x− µ
σ

)
where Φ is the N(0, 1) distribution function tabulated in Neave 2.1–2.3 (and available in
R as pnorm(x)). There are diagrams to illustrate what is tabulated associated with each
of these Tables: make sure you understand them.

4.1.1 Useful distributional results

(See also the separate handout.)

• If Z is N(0, 1), then Z2 is χ2
1 — see Block A, Exercise 17.

• If Z1, Z2, ..., Zn are independent N(0, 1) r.v’s, then Z2
1 +Z2

2 + ...+Z2
n is χ2

n. — used
in Block A, Exercise 26. Neave 3.2 gives χ2

ν;q = q-quantile of a χ2
ν distribution, i.e.

the point such that P (X < χ2
ν;q) = q if X ∼ χ2

ν . This is obtained in R by qchisq(q,
ν). You fill find a diagram to illustrate what χ2

ν;q at the top of the page in Neave’s
Table 3.2: make sure you understand it.
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• If Z ∼ N(0, 1) is independent of W ∼ χ2
ν , then

T =
Z√
W

ν

∼ tν ,

i.e. has a t-distribution with ν degrees of freedom.
Neave 3.1 gives tν;q = q-quantile of a tν distribution. Again you will find a diagram
which you should ensure you understand.

• If W1 ∼ χ2
ν1

and W2 ∼ χ2
ν2

with W1,W2 independent, then

F =
W1/ν1
W2/ν2

∼ Fν1,ν2 ,

i.e. has F -distribution with ν1, ν2 degrees of freedom.

Neave Table 3.3 gives Fν1,ν2;q = q-quantile of Fν1,ν2 distribution — of course there is
another diagram.

• If X1, X2, ..., Xn are independent N(µ, σ2), then defining

X =
1

n

n∑
1

Xi so that X ∼ N

(
µ,
σ2

n

)
and

S2 =
1

n− 1

n∑
1

(Xi −X) so that
(n− 1)S2

σ2
∼ χ2

n−1

we find that X, S2 are independent.

Hence, from above,

T =
X − µ√

S2

n

∼ tn−1.

In R we use the pt and qt functions to find probabilities and associated quantiles
(or percentage points).

4.2 Inferences about µ and σ

For example,

• What values of µ are consistent with the data? — confidence interval or point
estimation.

• Is a specified value µ0 consistent with the data? — hypothesis test
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4.2.1 Point estimates

The mean is estimated by

µ̂ = X =
1

n

∑
Xi.

This is unbiased (i.e. has its expectation equal to what is being estimated) since (see
Block A §4.7.1)

E(X) = µ; also, Var(X) =
σ2

n
.

The standard error of X, s.e.(X), is the square root of Var(X) and so is σ/
√
n.

The variance is estimated by

σ̂2 = S2 =
1

n− 1

n∑
1

(Xi −X)2.

This is unbiased since

E(S2) = σ2 as E

{
(n− 1)S2

σ2

}
= n− 1.

Note E(S) 6= σ : i.e. S is a biased estimator of σ.

The estimated standard error3 (e.s.e) of X, sometimes written e.s.e.(X) is√
s2

n
.

4.2.2 Confidence interval for µ (see also Block A §5.1)

Since
X − µ√

S2

n

∼ tn−1,

P

−tn−1;1−α
2
<
X − µ√

S2

n

< tn−1;1−α
2

 = 1− α.

which is equivalent to

P

{
X − tn−1;1−α

2

√
S2

n
< µ < X + tn−1;1−α

2

√
S2

n

}
= 1− α.

[NB. This is a probability statement about X, S2 — not µ]

3confusingly, sometimes just called the standard error
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This means that (
x− tn−1;1−α

2

√
s2

n
, x+ tn−1;1−α

2

√
s2

n

)
is a 100(1− α) % CI for µ.

Notes:

(a) Interpretation. In repeated sampling, a proportion 1 − α of such intervals will
contain µ.

(b) The form is θ̂ ± tν;1−α
2
× e.s.e.(θ̂)

4.2.3 Hypothesis test on µ

H0 : µ = µ0 v. H1 : µ 6= µ0.

Under H1 one expects

t =

∣∣∣∣∣∣∣∣
x− µ0√

S2

n

∣∣∣∣∣∣∣∣
to be large (but small under H0).

The significance probability or p-value4 is P (|T | ≥ t) for T ∼ tn−1 under H0. This is the
probability of observing something as extreme as, or more extreme than, what has been
found in the actual data set. The smaller the p-value, the more evidence against H0.

Example 1. The specification for a can of beans is that the beans should weigh 400 gm.
Twenty cans provide the following contents:

404 403 391 394 402 394 401 392 394 402
401 398 392 393 405 398 395 402 406 404

Is the specification being met?

Assume N (µ, σ2) , H0 : µ = 400 v. H1 : µ 6= 400
x = 398.55, n = 20, s = 4.989, s/

√
n = 1.116

t =

∣∣∣∣x− 400

s/
√
n

∣∣∣∣ = 1.30 so p = P (|T | ≥ 1.30).

Tabulated values:
t19;0.85 t19;0.90
1.066 1.328

=⇒ 0.20 < p < 0.30. [In fact, ‘exact’ from R: p = 0.21.]

No reason to doubt H0, (p = 0.21); 95% CI for µ : (396.21, 400.89).
[Note µ0 = 400 lies within 95% CI — as expected.]

4See also Block A §5.3
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Notes

(a) We only need the p-value approximately, or within an interval

e.g. p ≈ 0.06 or 0.05 < p < 0.1.

(b) Conventional interpretation:

p> 0.10 Data consistent with H0

0.05 <p< 0.10 Perhaps weak evidence against H0 — maybe more data needed!!
0.01 <p< 0.05 Some evidence against H0

p< 0.01 Strong evidence against H0

p< 0.001 Very strong evidence against H0

(c) If there is evidence against H0, it is vital to say how/why; i.e. to elaborate. In answer
to a real problem (or in assessed work!) it is vital to set conclusions in context. The
‘answer’ is never ‘p < 0.01, reject H0’, but something like (in the context of Example
4) ‘There is evidence (p = 0.045) to reject the hypothesis that students weigh the
same, on average, before and after a semester in hall. It appears that students tend
to weigh less afterwards by an average of 3.2 lbs, 95% CI (0.09, 6.31) lbs.’

Be particularly careful to phrase the null hypothesis, so that any rejection does not
imply a 1-sided test was performed, if not the case. For example, do not contract
the above to say ‘there was some evidence (p = 0.045) that students weighed less
after a semester in hall’.

Full details have not always been given in these notes, exercises and examples.

(d) For one sided alternatives, use the one-sided version of the test statistic.

E.g. for H0 : µ = µ0 v H1 : µ > µ0,

t =
x− µ0√

s2

n

.

Here p = P (T > t) where T is tn−1 under H0.

In R the command is t.test.

4.2.4 Inferences for σ2

We base CI and tests on fact that

(n− 1)S2

σ2
∼ χ2

n−1, i.e.
Σ(Xi −X)2

σ2
∼ χ2

n−1

Example 2. In Example 1 say that the standard deviation is supposed to be (at most)
4. Is the observed value too high for this to be credible?

H0 : σ2 = 16 (or σ2 ≤ 16)
H1 : σ2 > 16

(1-sided test more appropriate).

Under H1 expect (n− 1)s2/σ2 to be relatively large. Here

(n− 1)s2

σ0 2
=

472.95

16
= 29.56.
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Thus the significance probability is p = P (χ2
19 > 29.56)

Tabulated values:
χ2
19;0.925 χ2

19;0.950

28.46 30.14
=⇒ 0.05 < p < 0.075.

[‘Exact’ p = 1− 0.9423 = 0.058]. Perhaps weak evidence against H0.

4.3 Two sample problems — separate samples

Formulation: X1, X2, . . . , Xn1 ∼ N(µ1, σ
2
1)

Y1, Y2, . . . , Yn2 ∼ N(µ2, σ
2
2)

}
all independent.

Interest lies in difference µ1−µ2 (for means) or ratio (for scale parameters) σ2
1/σ

2
2, leading

to CIs and tests. These will be based on the sample statistics

x =
1

n1

∑
xi, s21 =

∑
(xi − x)2

n1 − 1
,

y =
1

n2

∑
yi, s22 =

∑
(yi − y)2

n2 − 1
.

4.3.1 Comparing variances

Base tests and CI’s on fact that

S2
1/σ

2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1.

Thus to test H0 : σ1 = σ2 v H1 : σ1 6= σ2, use test statistic f = s21/s
2
2. Values “well away

from 1” are more likely under H1.

Note: Neave’s tables only give upper % points, so arrange f > 1 (i.e. larger s2 in
numerator). This is automatically handled in packages.

4.3.2 Comparing means

Use

X ∼ N

(
µ1,

σ2
1

n1

)
Y ∼ N

(
µ2,

σ2
n2

)
 =⇒ X − Y ∼ N

(
µ1 − µ2,

σ2
1

n1

+
σ2
2

n2

)
.

To test
H0 : µ1 = µ2, v H1 : µ1 6= µ2

Suppose σ2
1 = σ2

2, then

T =
(X − Y )− (µ1 − µ2)√

S2

(
1

n1

+
1

n2

) ∼ tn1+n2−2
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where

S2 =
(n− 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is a pooled estimator of σ2, which satisfies (when σ1 = σ2)

(n1 + n2 − 2)S2

σ2
∼ χ2

n1+n2−2.

So use test statistic

T =
(X − Y )√

S2

(
1

n1

+
1

n2

) ∼ tn1+n2−2 under H0.

Example 3. Ten cows were milked with, and ten cows without, background music, all
the cows being kept under the same conditions otherwise. Over a period of a week, the
following were the yields in gallons.

Cows with music: 15 18 14 12 19 13 15 15 11 17
Cows without music: 14 19 12 13 10 17 12 10 8 17

Does music influence yield?

n1 = 10 x = 14.9 s21 = 6.5444 s1 = 2.558
n2 = 10 y = 13.2 s22 = 12.6222 s2 = 3.55

Variances equal?
H0 : σ2

1 = σ2
2; H1 : σ2

1 6= σ2
2.

Take f = s22/s
2
1 = 1.929; p−value = 2 × P (F9,9 > 1.929). From Neave: F9,9;0.9 =

2.44 =⇒ p > 0.20 [‘exact’ p = 2× 0.1710 = 0.342]

i.e. no evidence to suggest variances are unequal.

Means equal?

Assuming σ2
1 = σ2

2: H0 : µ1 = µ2; H1 : µ1 6= µ2.

Estimate of pooled variance is s2 = 9.5833 (just the simple average of s21 = 6.5444 and
s22 = 12.6222 in this case, since n1 = n2 = 10).

t =
x− y√

s2
(

1

n1

+
1

n2

) = 1.23; p-value = P (|T | > 1.23).

Tabulated values: t18;0.85 t18;0.90
1.067 1.33 =⇒ p > 2× 0.10 = 0.20

[‘Exact’ p = 2 × (1 − 0.8827) = 0.23.] Thus no evidence against equality of means
(p > 0.20). i.e. no reason, based on this data, to conclude that music influences yield.

Note: One-sided tests may also be appropriate sometimes.
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If there is any real doubt that σ2
1 and σ2

2 are not similar, then use

X − Y − (µ1 − µ2)√
S2
1

n1

+
S2
2

n2

≈ tρ

for an approximate test, where

ρ =


[
s21
n1

+
s22
n2

]2
1

n1 − 1

(
s21
n1

)2

+
1

n2 − 1

(
s22
n2

)2


with

min (n1, n2)− 1 ≤ ρ ≤ n1 + n2 − 2.

[Use of ρ = min(n1, n2)− 1 gives a conservative test — i.e. the p-values are larger than
the exact ones, and C.I’s wider than the exact ones.]

In R use t.test with appropriate options. By default, R uses the approximate test
allowing for σ2

1 6= σ2
2. This is safe, and wise, since it is little different from the pooled

test when the variances are roughly equal and provides protection against them being
unexpectedly unequal.

4.4 Two sample problems — paired samples

Consider Example 4 below.

Here we have matched–pair data, which is clearly different from a random sample of 10
before and another random sample of 10 after. We can see the difference as follows.

Observation Difference
1 X1 Y1 D1 = X1 − Y1
2 X2 Y2 D2 = X2 − Y2
...
n Xn Yn Dn = Xn − Yn

Formally we could write
Xi = αi + β1 + εi

Yi = αi + β2 + ηi

where αi is effect of individual i and β1, β2 are effects of treatments 1, 2, respectively.
Then

Di = Xi − Yi = (β1 − β2) + (εi − ηi)
= β1 − β2 + ζi where ζi is error.

If we assume Di ∼ N (β1 − β2, σ2), then this means that CIs + tests on β1 − β2 are as in
1-sample t-test.

26



Notes

(i) Suppose Var (αi) = σ2
α and Var(εi) = Var (ηi) = τ 2: the latter implies that σ2 = 2τ 2.

Then

Var(X − Y ) = Var(X) + Var(Y ) if not matched pairs

= 2

(
σ2
α + 1

2
σ2

n

)
.

Whereas here

Var(D) =
σ2

n
≤ σ2 + 2σ2

α

n

i.e. n differences for inferences on β1 − β2 have smaller variances.

(ii) Minor drawback is reduction in d.f. from 2(n− 1) to n− 1.

(iii) Basis of blocking in experimental design.

Example 4. Below are the weights (in lbs) of 10 students before and after a semester in
residence at a University hall of residence.

Student: 1 2 3 4 5 6 7 8 9 10
Before xi 140 153 156 148 167 134 190 182 178 164

After yi 135 155 153 144 168 130 180 186 171 158

di 5 −2 3 4 −1 4 10 −4 7 6

d = 3.2 sd = 4.3410
sd√
n

= 1.373.

H0 : β1 = β2 v. H1 : β1 6= β2

t =
d

sd/
√
n

= 2.33, p = P (| T |> 2.33).

Tables ⇒ p < 0.05 (p = 0.045), i.e. some evidence to reject the hypothesis that the mean
difference is zero. Note that Before > After from values of di [or look at CI for β1 − β2,
eg. 95% CI is (0.09, 6.31)]

Note: Use of two-sample test (which is incorrect) yields p = 0.70!!

4.5 Effects of departures from assumptions

4.5.1 Inferences on µ

Non-normality. Even if the Xi’s are not normal, by the Central Limit Theorem,

X − µ√
σ2

n

is approx N(0, 1).
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Also S2 → σ2 as n→∞ by Law of Large Numbers. Thus

T =
X − µ√

S2

n

≈ N(0, 1) for large n

and, of course, then N(0, 1) ≈ tn−1.

Usually OK for n ≥ 40 if no obvious outliers.

Independence. Dependence can lead to incorrect inference — even in large samples.
For example, suppose

Corr (Xi, Xi+1) = ρ for i = 1, ..., n− 1

Corr (Xi, Xj) = 0 otherwise (i 6= j)

Then

Var(X) =
σ2

n

{
1 + 2ρ

(
1− 1

n

)}
E(S2) = σ2

{
1− 2ρ

n
+ terms in

1

n2
, ...

}
.

Therefore for large n

T =
X − µ√

S2

n

≈ N(0, 1 + 2ρ) and not N(0, 1).

So, considering p = P (|T | > 1.96),
ρ −0.3 −0.2 −0.1 0 0.1 0.2 0.3
p 0.002 0.011 0.028 0.05 0.074 0.098 0.12

Generally inferences on mean are robust to non-normality but not to dependence.

If n1 = n2 in 2-sample tests, moderate departures from σ1 = σ2 have little effect.

4.5.2 Inferences on σ2

Non-normality.

E(S2) = σ2

but Var
(
S2
)

=
σ4

n− 1

{
2 +

n− 1

n
γ2

}
where γ2 is the coefficient of kurtosis given by

γ2 =
E(X − µ)4

σ4
− 3 [= 0 for normal ] .

If γ2 6= 0, then (n− 1)S2/σ2 does not have a χ2
n−1 distribution. In the case of 2 samples,

non-normality has so serious an effect on the F -test as to throw doubts on the wisdom of
using it!
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5 Basic inference for discrete data

5.1 Fundamentals

5.1.1 Discrete Data Examples

D1 Sex ratio amongst first children in India (Pakrasi-Habler, 1971) males:females 40467:32335
(actual numbers). [c.f. Sex ratio worldwide 100–110% (male/female).]

D2 Number of times a traveller was stopped by immigration officers at Fishguard (O’Dowd,
1982)

Stopped Not Stopped
CND Yes 4 2 6
Badge No 1 5 6

D3 Blood group and social class amongst blood donors in Yorkshire (Nature, 1983)

Class Blood Group
A not A

I-II 257 297
III-V 866 1228

2648

D4 French suicides by day of week (Durkheim, 1897)

Mon Tues Wed Thurs Fri Sat Sun
1001 1035 982 1033 905 737 894

D5 Radioactive disintegration (Rutherford and Geiger, 1910)

No. of particles No. of 7.5 sec.periods in
emitted in a period which this no. was observed

k Ok

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27

10 10
11 4
12 0
13 1
≥14 1

2608
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D6 Plums: propagation of root stock from cuttings

Time of Planting
At Once In Spring

Condition Long Short Long Short
Alive 156 107 84 31
Dead 84 133 156 209

240 240 240 240

D7 Number of boys in 240 American 4-child families (Rao et al, 1973)

No. of boys 0 1 2 3 4
Frequency 13 61 94 60 12

5.1.2 Some discrete distributions

Binomial (See Block A §2.4.1.) X : no. of successes in n trials, θ = probability of success

X ∼ Bi(n, θ) p(x) =

(
n

x

)
θx(1− θ)n−x

E(X) = nθ Var(X) = nθ(1− θ)

Data set D1, sex ratio; X = number of males

Here X ∼ Bi(72802, θ) and so θ̂ =
40467

72802
.

The sex ratio =
θ

1− θ
.

The question of interest is,

is
θ

1− θ
' 1.1, say?

Data set D2, CND Badge:

2 populations Bi(6, θ1), Bi(6, θ2)

Question of interest: is θ1 = θ2?

Data set D6 :

Xij : no. alive out of 240, i = time of planting, j = length
Xij ∼ Bi(240, θij)

Perhaps model θij — e.g. log θij = µ+ αi + βj + (αβ)ij.

Data set D7, number of boys in US 4 child families :

Number of boys X ∼ Bi(4, θ)? Goodness of fit?
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Multinomial (See Block A §3.6.1) k possible classes; P (class i) = θi
∑
θi = 1.

For n individuals, Ri = number in class i (i = 1, 2, . . . , k). Then

(R1, R2, . . . , Rk) ∼ Multi (n; θ1, . . . , θk)

p(r) =
n!

r1! . . . rn!
θr11 . . . θrkk

(∑
ri = n

)
E (Ri) = nθi

Var (Ri) = nθi (1− θi)
Cov (Ri, Rj) = −nθiθj (i 6= j)

Data set D3 : 1 sample, 2 binary response categories ⇒ 4 classes; θij = P (individual is in
row i and col j)

(R11, R12, R21, R22) ∼ Multi(2648; θ11, θ12, θ21, θ22).

Question of interest: Are class and blood group independent? i.e. is θij = θi· × θ·j for all
i, j.

Poisson (See Block A §2.4.2)

X ∼ Po(µ) p(x) =
e−µµx

x!
x = 0, 1, ...

E(X) = µ Var(X) = µ.

Commonly occurs in conjunction with the Poisson Process where random events arise
with rate λ.In this case the number of events in interval of length t ∼ Po(λt).

Data set D4 : Rate λi for day i; numbers Po(λi). Question of interest: are λi equal?

Data set D5 : Question of interest: would Po(µ) be a good model, i.e. ‘Goodness-of-fit’.

5.1.3 Some distributional properties

• If X ∼ Bi(n, θ), then X ' N(nθ, nθ(1 − θ)) provided nθ, n(1 − θ) not too small
(say nθ(1− θ) ≥ 10). Then for integer r

P (X ≤ r) ≈ P

(
X̂ ≤ r +

1

2

)
where X̂ ∼ N(nθ, nθ(1− θ))

= Φ

(
r + 1

2
− nθ√

nθ(1− θ)

)
The 1/2 here is called a continuity correction. Similarly

P (X ≥ r) ≈ P (X̂ ≥ r − 1

2
)

P (X < r) ≈ P (X̂ ≤ r − 1

2
), etc.

• If X ∼ Po(µ) then X ' N(µ, µ) if µ not too small, say µ > 5. Again, for integer r
you can use a continuity correction as for the binomial.
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5.2 Inference for a binomial proportion

Suppose X ∼ Bi(n, θ).

Point estimator θ̂ =
X

n

E(θ̂) = θ i.e. unbiased

Var(θ̂) =
θ(1− θ)

n

so

e.s.e.(θ̂) =

√
θ̂(1− θ̂)

n
.

Confidence interval for θ Use

P

(∣∣∣∣∣ X − nθ√
nθ(1− θ)

∣∣∣∣∣ < 1.96

)
' 0.95,

to obtain an approximate 95% CI. There are three approaches:

(i) substitute θ̂ = x/n for θ in the variance to get

x

n
± 1.96

√
θ̂(1− θ̂)

n
[i.e. θ̂ ± 1.96e.s.e.(θ̂)];

(ii) solve the quadratic (x− nθ)2 < 1.962nθ(1− θ) (for θ);

(iii) use Chart 1.2 in Neave.

Test for θ

H0 : θ = θ0 v H1 : θ 6= θ0. Test statistic: | (x/n)− θ0 | large if H1 true. Carry out the
test in one of the following ways.

(i) Use the fact that approximately

X

n
− θ0√

θ0(1− θ0)
n

∼ N(0, 1)

under H0 to obtain significance probability.

(ii) Use the exact test retaining X ∼ Bi(n, θ). Here we find the p-value as

p = 2P (X ≥ x) for x > nθ0

= 2P (X ≤ x) for x < nθ0

The values can be found from tables of Bi(n, θ) distribution function, e.g. Neave 1.1
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Example 5. Data set D1 for discrete data:

X = #males ∼ Bi(72802, θ) θ̂ = 0.5559, e.s.e. (θ̂) = 0.001842.

The sex ratio = θ
1−θ × 100. Estimate this: θ̂

1−θ̂ × 100 = 125%.

For a CI for the sex ratio use CI for θ̂ and convert using that θ to θ/(1 − θ) is a 1-1
transformation:

CI for θ 0.5559± 1.96× 0.001842 → (0.5527, 0.5595)

transforms via θ̂

1−θ̂ × 100%: → (123, 127)

Test

H0 : θ0 =
110

100 + 110
v H1 : θ0 6=

110

100 + 110
[sex ratio = 110% worldwide, say]

ie θ0 = 0.5238.

So p-value

p = P

 |Z| > 0.5559− 0.5238√
0.5238× 0.4762

72802

∣∣∣∣∣∣∣∣Z ∼ N(0, 1)


= P (|Z| > 17.34)

= 0.000.......!!

i.e. reject H0 — clearly sex ratio � 110%

5.3 Comparing two binomial proportions

Suppose X1 ∼ Bi(n1, θ1), X2 ∼ Bi(n2, θ2). We wish to test H0 : θ1 = θ2.

5.3.1 Approximate test

The natural point estimators are θ̂1 = X1

n1
and θ̂2 = X2

n2
.

Therefore, as in §4.3.2,

θ̂1 − θ̂2 ∼ N

(
θ1 − θ2,

θ1(1− θ1)
n1

+
θ2(1− θ2)

n2

)
∼ N

(
0, θ(1− θ)

(
1

n1

+
1

n2

))
if θ1 = θ2 = θ.

Test uses

Z =
θ̂1 − θ̂2√

θ̂(1− θ̂)
(

1

n1

+
1

n2

) ∼ N(0, 1) under H0
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where θ̂ = (X1 +X2)/(n1 + n2) is a pooled estimator of θ since X1 +X2 ∼ Bi(n1 + n2, θ)
under H0.

Similarly, for CI use

θ̂1 − θ̂2 ∼ N

θ1 − θ2, θ̂1

(
1− θ̂1

)
n1

+
θ̂2

(
1− θ̂2

)
n2

 .

Note that, as usual, the assumptions of H0 are not employed here.

5.4 Goodness-of-fit tests

Suppose (R1, R2, ..., Rk) ∼ Multi (n; θ1, ..., θk)

We want to test if θi take specified values/form

H0 : θi = θi0 for all i.
H1 : some θi not as specified in H0

So we expect Ri to be ‘close to’ ei = nθi0 under H0. Use as test statistic Pearson’s
chi-square:

X2 =
∑
i

(ri − ei)2

ei
=

(Obs−Exp)2

Exp
.

Under H0, X2 ' χ2
k−1. Large values of X2 are critical of H0.

Notes:

(a) Alternative test statistic : deviance

D = 2
∑
i

ri log

(
ri
ei

)
∼ χ2

k−1 under H0

Tests are asymptotically equivalent.

(b) If H0 not fully specified, then use ei = nθ̂i under H0.
E.g. in Example 6, H0 : X ∼ Bi(4, θ) so

θi+1 =

(
4

i

)
θi(1− θ)4−i for i = 0, 1, 2, 3, 4.

Calculate θ̂i using an efficient estimator of θ, e.g. m.l.e., then X2 or D ∼ χ2
k−1−q

under H0 where q is number of parameters estimated.

(c) Provides a simple test for goodness-of-fit of any distribution.

For continuous case split range into k non-overlapping/exhaustive intervals and
count number of observations in each to obtain R1, R2, ..., Rk. Find the ei from the
postulated distribution function. Power of the test increases as k increases, but
can be low for continuous distributions. Other tests (e.g. Kolmogorov-Smirnov) are
often better.
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(d) The test is based on the asymptotic distribution of X2. The asymptotic results are
usually OK if, for k > 4, ei > 1 ∀i and 80% of ei ≥ 5.

It may be acceptable to combine (usually neighbouring) classes to ensure applica-
bility of the χ2 approximation, but this will affect the hypotheses it is possible to
test.

(e) The Pearson residual = (ri − ei)/
√
ei ∼ Normal for large ei.

If we reject H0, look for large residuals, i.e. large contributions to X2.

Example 6. Data set D7 for discrete data

No. of boys in 4-child family Bi(4, θ) (assuming independence)

H0 : θ = 1
2
v H1 : θ 6= 1

2

So in the above notation ⇒ θi =
(
4
i

)
θi(1− θ)4−i and θi0 =

(
4
i

)
1
2

4
, and k = 5.

R1 R2 R3 R4 R5

No. of boys 0 1 2 3 4
Frequency 13 61 94 60 12 n = 240
Expected 15 60 90 60 15
ei = nθi0

X2 =
(13− 15)2

15
+

(61− 60)2

60
+ ...+

(12− 15)2

15
= 1.06

Thus p = P (χ2
4 > 1.06), and so 0.90 < p < 0.925, i.e. no evidence to reject θ = 1

2

We might also want to test the hypothesis H0 : no. of boys ∼ Bi(4, θ) for unspecified θ .

Sample of size 240 with 13 0’s, 61 1’s, etc. leads to an estimate of θ of

θ̂ =
13× 0 + 61× 1 + ...+ 12× 4

240× 4
= 0.4969.

This leads to the ‘expected numbers’:

i 0 1 2 3 4
ei = 15.38 60.74 89.99 59.26 14.63

which then give X2 = 1.03 which is to be compared with a χ2
3 (we have 3 degrees of

freedom here, having estimated one parameter). The conclusion is unchanged.

5.5 χ2-test for independence in a contingency table

In data set D3 we had a 2× 2 contingency table, each individual classified by two factors
into one of 4 groups. This extends to an r × c contingency table. We proceed as in §5.4

(Rij) ∼ Multi (n; {θij}) ;
∑
i

∑
j

Rij = n;
∑
i

∑
j

θij = 1.
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Under H0: factors act independently, then

θij = θi· × θ·j for all i, j where θi· =
∑
j

θij, θ·j =
∑
i

θij.

Estimates are:
θ̂i· =

ri·
n

; θ̂·j
r·j
n

So the expected cell counts are

eij = n× ri·
n
× r·j

n
=
ri·r·j
n

So suitable text statistics are:

X2 =
∑
i

∑
j

(rij − eij)2

eij
or D = 2

∑∑
rij log

[
rij
eij

]
.

Under H0, X
2 or D ∼ χ2

(r−1)(c−1). Note that (r − 1)(c− 1) = rc− 1− (r − 1)− (c− 1).

We can now see this simply as an extension of goodness of fit tests, §5.4.

Example 7. Data set D3 for discrete data H0 : blood group and class act independently
(ie not associated).

A not A
rij : Class I, II 257 297 554

III-V 866 1228 2094
1123 1525 2648

eij :
234.95 319.05
888.05 1205.95

X2 =
∑ (rij − eij)2

eij

= 2.069 + 1.524 + 0.547 + 0.403 = 4.54

This is to be compared with χ2
1. So 0.025 < p < 0.05, and there is some evidence to

suggest association — more (I, II and A) than expected, etc.

Here you might also apply the ideas in Block A §3.7. The estimate of the log odds ratio
is

log

(
257× 1228

297× 866

)
= 0.2046 . . .

with estimated standard error√
1

257
+

1

297
+

1

866
+

1

1228
= 0.0960 . . .

so a test, based on rough normality, of whether the log odds ratio is different from zero
has p-value

2(1− Φ

(
0.2046

0.0960

)
) ≈ 0.03.

Thus this alternative approach gives a fairly similar p-value to the usual χ2 test.
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5.6 χ2-test for homogeneity

The data here appear similar, but are in fact r samples of c categories, each multinomial.

e.g. data set D6 (condensed)

Alive Dead Number alive
Sample 1 : At once, long 156 84 240 Multi(240; θ11, θ12)

2 : At once, short 107 133 240 Multi(240; θ21, θ22)
3 : In Spring, long 84 156 240 Multi(240; θ31, θ32)
4 : In Spring, short 31 209 240 Multi(240; θ41, θ42)

H0 : θ11 = θ21 = θ31 = θ41 (and obviously θ12 = . . . = θ42 here since our Multi are Bi)
i.e. homogeneity of 4 populations.

More generally for r × c
H0 : θij =

θ·j
r
∀i, j.

Note
θi· =

∑
j

θij for all i and
∑
i

∑
j

θij = r

Continue as in §5.5. Estimates

θ̂ij =

(
θ̂·j
r

)
=
r·j
n
.

Therefore, eij = ri·r·j/n, etc. This the basic test procedure is the same as in §5.5. It is
just the interpretation that is different.

6 Linear regression and ANOVA

6.1 Least squares

Let Y1, Y2, ..., Yn be r.v.s. which are approximately linearly dependent on non-random
values xi in the sense E(Yi) = α + βxi or Yi = α + βxi + errori or Yi = α + βxi + εi.

So we have parameters θ = (α, β) and then E(Yi) = µi where

µi = α + βxi.

We aim to get least squares estimators of α and β by minimising the sum of the squares
of the differences between the data and the expected values

S =
n∑
i=1

(Yi − α− βxi)2.

We minimise in the usual way
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∂S

∂α
= −2

n∑
i=1

(Yi − α− βxi) = −2n(Y − α− βx̄)

∂S

∂β
= −2

n∑
i=1

xi(Yi − α− βxi)

α̂, β̂ satisfy
∂S

∂α
= 0 =

∂S

∂β
so

α̂ = Ȳ − β̂x̄

where

β̂ =

∑n
i=1 xi(Yi − Ȳ )∑n
i=1 xi(xi − x)

=

∑n
i=1(xi − x̄)(Yi − Y )∑n

i=1(xi − x)2

N.B. We should check second derivatives to ensure this minimises S rather than maximises
it.

Given observations y1, y2, . . . , yn of Y1, Y2, . . . , Yn, let

Sxx =
n∑
i=1

(xi − x)2 , Sxy =
n∑
i=1

(xi − x) (yi − y) , Syy =
n∑
i=1

(yi − y)2 .

Then, from above, we have the least squares estimates

β̂ =
Sxy
Sxx

=

∑n
i=1 (xi − x) (yi − y)∑n

i=1 (xi − x)2
=

∑n
i=1 xi (yi − y)∑n
i=1 (xi − x)2

α̂ = y − β̂x.

The minimised S is called the residual sum of squares

RSS =
∑(

yi − α̂− β̂xi
)2

= Syy −
S2
xy

Sxx
.

6.2 Properties

6.2.1 Properties of α̂, β̂

Note
E(β̂) = β; E(α̂) = α

so both are unbiased.

If εi are i.i.d. with Var(εi) = σ2, so that Var(Yi | xi) = σ2, then

Var(β̂) =
σ2

Sxx
, Var(α̂) = σ2

(
1

n
+

x2

Sxx

)
, Cov(α̂, β̂) = −xσ

2

Sxx
.
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6.2.2 Properties of RSS

If we write ŷi = α̂ + β̂xi, and ei = yi − ŷi = ith residual, then

RSS =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2

Note that E(RSS) = (n− 2)σ2, thus RSS/(n− 2) provides unbiased estimate of σ2.

There is a distinction between the error term εi = yi − β0 − β1xi and the residual ei =
yi − β̂0 − β̂1xi. In vector notation we write e = (e1, . . . , en)T so that

RSS = eTe. (1)

6.2.3 Normal errors

If we assume εi are i.i.d. N(0, σ2), then we have the distributional results

Yi | xi ∼ N
(
α + βxi, σ

2
)

α̂ ∼ N

(
α, σ2

(
1

n
+

x2

Sxx

))
β̂ ∼ N

(
β,

σ2

Sxx

)

We find that α̂, β̂ are also the m.l. estimates (Block A, Exercise 25) but that the m.l.e.
of σ2 is σ̂2 = RSS/n (biased).

As above, an unbiased estimator of σ2 is

S2 =
RSS

n− 2
, and now

(n− 2)S2

σ2
∼ χ2

n−2, independent of (α̂, β̂).

(because of the assumed normality of the observations).

6.3 Tests and CI for α, β

Under the assumption that εi are i.i.d.N(0, σ2) we can perform tests and find CIs for the
slope and intercept parameters.

6.3.1 Slope β

We use the fact that

β̂ ∼ N

(
β,

σ2

Sxx

)
and

(n− 2)S2

σ2
∼ χ2

n−2

so
β̂ − β√
S2

Sxx

∼ tn−2
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to give 100(1− α) % CI as

β̂ ± tn−2;1−α
2
× s√

Sxx
.

To test H0 : β = β0 v H1 : β 6= β0 (often β0 = 0) use

β̂ − β0√
S2

Sxx

∼ tn−2 under H0.

6.3.2 Intercept α

Similarly, use
α̂− α0√

S2

(
1

n
+

x2

Sxx

) ∼ tn−2,

to test H0 : α = α0 v H1 : α 6= α0

and to give the 100(1− α)% CI:

α̂± tn−2;1−α
2
× S

√
1

n
+

x2

Sxx
.

6.3.3 Alternative formulation of test of β = 0

Another commonly used formulation of the test of H0 : β = 0 has neat extensions to more
complex situations. We describe the test above in the new terminology as follows.

Under full model yi = α + βxi + εi we have

RSSF = Syy −
S2
xy

Sxx
; σ̂2 = S2 =

RSSF
n− 2

Under H0 : β = 0 we have a reduced model yi = α + εi

By the usual process we can obtain a least squares estimate ˆ̂α = y and

RSSR =
n∑
i=1

(yi − y)2 = Syy.

Thus RSSR −RSSF = S2
xy/Sxx = β̂2Sxx.

The test above of
H0 : β = 0 v H1 : β 6= 0

uses
β̂√

S2/Sxx
∼ tn−2 when H0 is true.
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This test can be re-written directly using the relationship between t and F distributions
as calculating β̂2Sxx/S

2 ∼ F1,n−2 and rejecting H0 at level α if

β̂2Sxx
S2

> F1,n−2;1−α.

In the terminology of full and reduced models the test statistic is

RSSR −RSSF
RSSF
n− 2

Note:

(a) This generalizes to more complicated models (see Linear Models course).

(b) RSSR −RSSF is known as the regression SS.

6.3.4 ANOVA table

The calculations are often set out in an ANOVA (Analysis of Variance) table as follows

Source of variation Deg. Freedom SS Mean Sq. F -ratio

Regression 1 RSSR −RSSF
RSSR −RSSF

1

Regression MS

Residual MS

Residual n− 2 RSSF
RSSF
n− 2

Total n− 1 RSSR

Notes:

(a) F -ratio is F1,n−2 under H0.

(b) RSSR =
∑n

i=1 (yi − y)2 and so ‘Total’ is really ‘corrected total’ since it is centred
around mean.

(c) Note we speak of a breakdown of the sum of squares, since

n∑
i=1

(yi − y)2 =
S2
xy

Sxx
+

n∑
i=1

e2i

Total Regression Residual

i.e.
n∑
i=1

(yi − y)2 =
n∑
i=1

(ŷi − y)2 +
n∑
i=1

(yi − ŷi)2

(d) Expected Mean Square for regression = σ2 + β2Sxx
Expected Mean Square for residual = σ2

Thus test of β = 0 compares two estimates of σ2.
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(e)

R2 =
regression SS

total SS
× 100%

describes proportion of variation described by the regression term, i.e. measures
strength of the linear relationship between x and y.

Here R2 = (sample correlation coefficient between x and y)2.

6.4 Least squares estimators in matrix form

Matrix notation is usually used to represent linear models. Suppose we have data {xi, yi}
for i = 1, . . . , n and the following model is proposed.

yi = β0 + β1xi + εi,

for i = 1, . . . , n is written in matrix form as

y = Xβ + ε,

with

y =


y1
y2
...
yn

 , X =


1 x1
1 x2
...

...
1 xn

 , β =

(
β0
β1

)
, ε =


ε1
ε2
...
εn

 .

Define

β̂ =

(
β̂0
β̂1

)
to be the least squares estimator in matrix form. The aim is to find β̂ directly using
matrix notation. We must first introduce some vector notation for differentiation.

6.4.1 Differentiating with respect to vectors

Let z be an r× 1 column vector (z1, . . . , zr)
T and let f(z1, . . . , zr) be some function of z.

We define

∂f(z1, . . . , zr)

∂z
=


∂f(z1,...,zr)

∂z1
...

∂f(z1,...,zr)
∂zr

 .

For any r × 1 column vector a = (a1, . . . , ar)
T we have

∂aTz

∂z
=
∂(a1z1 + . . .+ arzr)

dz
= (a1, . . . , ar)

T = a.

If M is a square r × r matrix then

∂(zTMz)

∂z
= (M +MT )z.
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Proof. Let mij represent the ijth element of M . Now (M + MT )z is a column vector
with the kth element given by

∑r
i=1mkizi +

∑r
i=1mikzi. Hence we must show that

∂(zTMz)

∂zk
=

r∑
i=1

mkizi +
r∑
i=1

mikzi.

From the product rule

∂(zTMz)

∂zk
= zT

∂(Mz)

∂zk
+

(
∂zT

∂zk

)
Mz

= (z1, . . . , zr)


∂
∂zk

∑r
i=1m1izi
...

∂
∂zk

∑r
i=1mrizi

+ (0, . . . , 0, 1, 0, . . . , 0)


∑r

i=1m1izi
...∑r

i=1mrizi

 ,

(with (0, . . . , 0, 1, 0, . . . , 0) a vector of zeros with the kth element replaced by a 1)

= (z1, . . . , zr)

 m1k
...

mrk

+ (0, . . . , 0, 1, 0, . . . , 0)


∑r

i=1m1izi
...∑r

i=1mrizi


=

r∑
i=1

mikzi +
r∑
i=1

mkizi,

as required.

6.4.2 Obtaining least squares estimators

Firstly, note that

εTε = (y −Xβ)T (y −Xβ) =
n∑
i=1

(yi − β0 − β1xi)2 = R(β0, β1).

Hence in vector notation, to minimise R(β0, β1), which is the least squares procedure, we
must solve the equation

∂

∂β0
εTε

∂

∂β1
εTε

 =

(
0
0

)
, i.e.

∂εTε

∂β
= 0.

Now

∂εTε

∂β
=

∂

∂β
(y −Xβ)T (y −Xβ)

=
∂

∂β

(
yTy − βTXTy − yTXβ + βT (XTX)β

)
= −XTy − (yTX)T +

{
(XTX)T + (XTX)

}
β

= −2XTy + 2(XTX)β.

Thus β̂, the least squares estimator, must satisfy

0 = −2XTy + 2(XTX)β̂,

(sometimes referred to as the normal equation) which, on rearranging, gives us the result:

β̂ = (XTX)−1XTy.
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6.5 Extensions

Why bother with matrices given that we already have the least squares estimates of β0
and β1? The crucial feature of the result just derived is that it applies to any linear
model. That is a model which expresses Ey as a linear function of the parameters β,
that is any model of the form y = Xβ + ε. Now X is an n× p matrix and β is a vector
of p unknown parameters.

6.5.1 Examples

Fitting a Polynomial We have been considering fitting a straight line model to the
data. We might instead consider a quadratic relationship via the model

yi = β0 + β1xi + β2x
2
i + εi.

How do we estimate (β0, β1, β2)? The same argument of choosing (β0, β1, β2) to make the
errors small still holds. However, with matrix notation we already have the answer. We
again write the model as

y = Xβ + ε,

now with

y =


y1
y2
...
yn

 , X =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n

 , β =

 β0
β1
β2

 , ε =


ε1
ε2
...
εn

 .

Then, (6.4.2) gives β̂.

Grouped data Similarly we might consider what is called a one-way classification of
the responses. Each observation is associated with a particular group. We write yij as
the j-th observed response within group i. Let p be the total number of groups. We can
then have i = 1, . . . , p. Within group i we let ni be the total number of observations, so
that we have j = 1, . . . , ni. As usual, we let n denote the total number of observations,
so that n =

∑p
i=1 ni.

Now let µi denote the population mean of the dependent variable in group i. We can now
write a model for the data as follows:

yij = µi + εij,

for i = 1, . . . , p, j = 1, . . . , ni and εij ∼ N(0, σ2). We will call this the one-way analysis
of variance model.

yij = µi + εij,
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for i = 1, . . . , p, j = 1, . . . , ni is written in matrix form as y = Xβ + ε, with

y =



y1,1
...

y1,n1

· · ·
y2,1

...
y2,n2

· · ·
...
· · ·
yp,1

...
yp,np



, X =



1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
· · · · · · · · · · · · · · ·
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
· · · · · · · · · · · · · · ·
...

...
...

...
· · · · · · · · · · · · · · ·
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1



, β =

 µ1
...
µp

 , ε =



ε1,1
...

ε1,n1

· · ·
ε2,1

...
ε2,n2

· · ·
...
· · ·
εp,1

...
εp,np



.

We can immediately obtain least squares estimates of the unknown group means µ1, . . . , µp.
Since

(XTX)−1 =


n1 0 . . . 0
0 n2 . . . 0
...

. . .
...

0 0 . . . np


−1

, XTy =


∑n1

j=1 y1,j
...∑np

j=1 yp,j


we have  µ̂1

...
µ̂g

 = β̂ = (XTX)−1XTy =


1
n1

∑n1

j=1 y1,j
...

1
np

∑np
j=1 yp,j


This result is intuitive. For example, in group 1 we have n1 observations y1,1, . . . , y1,n1 ,
all with expected value µ1: the obvious estimate for µ1 is the sample mean 1

n1

∑n1

j=1 y1,j,

as in β̂.

6.5.2 Estimating the error variance

In general the Residual Sum of Squares (RSS) is the sum of the squares of the differences
between the actual observation and the estimates of their expected values. If we write
ŷi = (Xβ̂)i, and ei = yi − ŷi = ith residual, then

RSS =
n∑
i=1

e2i =
n∑
i=1

(yi − ŷi)2 .

Thus, in matrix form, the residuals are

e = y −Xβ̂ and RSS = eTe.

The general formula for estimating σ2 is

σ̂2 =
RSS

n− p
.
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6.5.3 Distribution of the estimators

Now we assume y ∼ N(Xβ, σ2I), so the response variables are independent each with
variance σ2. Since (XTX)−1XT is not random

E(β̂) = E((XTX)−1XTEy) = (XTX)−1XTE(y) = (XTX)−1(XTX)β = β.

Hence β̂ is an unbiased estimator of β. Also,

Var(β̂) =
{

(XTX)−1XT
}

Var(y)
{

(XTX)−1XT
}T

=
{

(XTX)−1XT
}
σ2In

{
X(XTX)−1

}
= σ2(XTX)−1(XTX)(XTX)−1

= σ2(XTX)−1.

Since β̂ is just a linear function of y we could invoke Block A §3.6.2 to give

β̂ ∼ N
{
β, σ2(XTX)−1

}
.

We will just derive E(σ̂2) rather than its complete distribution. First note that (because
tr(AB) = tr(BA))

tr(X(XTX)−1XT ) = tr(XTX(XTX)−1) = tr(Ip) = p

where Ip is the p× p identity matrix.

Now from the definition of e,

E(eTe) = E
{

(y −Xβ̂)T (y −Xβ̂)
}

= E
(
yTy + β̂TXTXβ̂ − β̂TXTy − yTXβ̂

)
. (2)

Consider each of the terms here separately. Firstly, we have

E(yTy) = E

(
n∑
i=1

y2i

)
=

n∑
i=1

{
Var(yi) + E(yi)

2
}

= nσ2 + βTXTXβ.

Using Block A §3.2.2 equation (3) and then Block A §3.2.2 equation (2)

E
{
β̂T (XTX)β̂

}
= E

{
(Xβ̂)TXβ̂

}
= tr

(
Cov(Xβ̂)

)
+ (Xβ)TXβ

= tr
(
σ2X(XTX)−1XT

)
+ βT (XTX)β

= pσ2 + βT (XTX)β.

With regard to the last two terms in (2), note that

β̂TXTy = yTXβ̂ = yTX(XTX)−1XTy = tr
(
yTX(XTX)−1XTy

)
.

Where the last equality is because yTX(XTX)−1XTy is actually a scalar. From the
information on matrices in the Basic Maths handout, we have that

tr
(
yTX(XTX)−1XTy

)
= tr

(
X(XTX)−1XTyyT

)
.
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Therefore

E
{
yTX(XTX)−1XTy

}
= tr

{
(XTX)−1XTE(yyT )X

}
= tr

{
(XTX)−1XT (σ2In +XββTXT )X

}
= tr

{
σ2(XTX)−1(XTX) + ββT (XTX)

}
= pσ2 + βT (XTX)β.

Putting these results back into (2) we get

E(eTe) = nσ2 + βT (XTX)β + qσ2 + βT (XTX)β − 2qσ2 − 2βT (XTX)β

= (n− p)σ2,

and so

E(σ̂2) = E

(
eTe

n− p

)
= σ2,

i.e. σ̂2 is an unbiased estimator of σ2.

Finally, it is possible to prove that

RSS

σ2
∼ χ2

n−p and is independent of β̂.

This means we can use the distribution theory on the handouts to make tests about and
give CI for the elements of β.

6.5.4 Comparing nested models

If we fit two linear models and one can be obtained from the other by setting some of the
parameters to zero (the exact definition is a little bit more complicated) then the smaller
is said to be nested in the larger. For the comparison the larger is (sometimes) called the
null model and the one nested within it the reduced model.

The full model : y = Xfβf + ε.

The reduced model : y = Xrβr + ε,

where the dimensions of y,βf and βr are n× 1, pf × 1 and pr × 1 respectively.

1. Fit the full model to the data, obtain the least squares estimate

β̂f = (XT
f Xf )

−1XT
f y

and the corresponding residual sum of squares

RSSf = (y −Xf β̂f )
T (y −Xf β̂f )

2. Fit the reduced model to the data, obtain the least squares estimate

β̂r = (XT
r Xr)

−1XT
r y

and the corresponding residual sum of squares

RSSr = (y −Xrβ̂r)
T (y −Xrβ̂r)
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3. Calculate the F -statistic defined by

F =
(RSSR −RSSF )/(pf − pr)

RSSF/(n− pf )

4. For a test of size 0.05, reject the reduced model in favour of the full model if

F > Fpf−pr,n−pf (0.95)

Note that the choice of 0.05 for the size of the test is entirely arbitrary, but is often used in
practice. You should also report the p-value for the observed F , i.e. P (Fpf−pr,n−pf > F ).
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