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Learning outcomes

In this Workbook you will learn to interpret an integral as the limit of a sum. You will learn
how to apply this approach to the meaning of an integral to calculate important attributes
of a curve: the area under the curve, the length of a curve segment, the volume and
surface area obtained when a segment of a curve is rotated about an axis. Other quantities
of interest which can also be calculated using integration is the position of the centre of
mass of a plane lamina and the moment of inertia of a lamina about an axis. You will also
learn how to determine the mean value of an integal.




Integration as the
Limit of a Sum 14.1

Q Introduction

In HELM 13, integration was introduced as the reverse of differentiation. A more rigorous treatment
would show that integration is a process of adding or ‘summation’. By viewing integration from this
perspective it is possible to apply the techniques of integration to finding areas, volumes, centres of
gravity and many other important quantities.

The content of this Section is important because it is here that integration is defined more carefully. A
thorough understanding of the process involved is essential if you need to apply integration techniques
to practical problems.

a N
m Prerequlsltes e be able to calculate definite integrals
\Before starting this Section you should ... )
(o - . - N
% Learning Outcomes e explain integration as the limit of a sum
On completion you should be able to ... e evaluate the limit of a sum in simple cases
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1. The limit of a sum

A .
Y area required

Figure 1: The area under a curve

Consider the graph of the positive function y(z) shown in Figure 1. Suppose we are interested in
finding the area under the graph between x = a and x = b. One way in which this area can be
approximated is to divide it into a number of rectangles of equal width, find the area of each
rectangle, and then add up all these individual rectangular areas. This is illustrated in Figure 2a,
which shows the area divided into n rectangles (with some small discrepancies at the tops), and
Figure 2b which shows the dimensions of a typical rectangle which is located at = = x.
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(a) The area approximated by n rectangles (b) A typical rectangle

Figure 2
We wish to find an expression for the area under a curve based on the sum of many rectangles.
Firstly, we note that the distance from 2 = a to x = b is b — a. In Figure 2a the area has been
divided into n rectangles. If n rectangles span the distance from a to b the width of each rectangle
b—a
n

is

. . ) ) b—a
It is conventional to label the width of each rectangle as dx, i.e. dx = ——. We label the x

n
coordinates at the left-hand side of the rectangles as z1, 2 up to x,, (here ; = a and x,,1; = b). A
typical rectangle, the kth rectangle, is shown in Figure 2b. Note that its height is y(x), so its area
is y(xg) X .
The sum of the areas of all n rectangles is then
y(@1)ox + y(w2)ox + y(ws)ow + - - - + y(n)ox

which we write concisely using sigma notation as
n
> y(ax)oz
k=1

HELM (2008): 3
Section 14.1: Integration as the Limit of a Sum



This quantity gives us an estimate of the area under the curve but it is not exact. To improve the
estimate we must take a large number of very thin rectangles. So, what we want to find is the value
of this sum when n tends to infinity and dx tends to zero. We write this value as

i 3
k=1

The lower and upper limits on the sum correspond to the first rectangle and last rectangle where
x = a and x = b respectively and so we can write this limit in the equivalent form

lim Z y(z)ox (1)

Here, as the number of rectangles increases without bound we drop the subscript & from x;, and write

y(x) which is the value of y at a ‘typical’ value of x. If this sum can actually be found, it is called
b

the definite integral of y(z), from x = a to x = b and it is written [ y(x)dx. You are already

familiar with the technique for evaluating definite integrals which was studied in Section 14.2.
Therefore we have the following definition:

Q Key Point 1

r=b

b
The definite integral /a y(x)dx is defined as 61;gloz:y(x)5x

r=a

Note that the quantity dx represents the thickness of a small but finite rectangle. When we have
taken the limit as dx tends to zero to obtain the integral, we write dx, which reminds us of the
variable of integration.

This process of dividing an area into very small regions, performing a calculation on each region, and
then adding the results by means of an integral is very important. This will become apparent when
finding volumes, centres of gravity, moments of inertia etc in the following Sections where similar
procedures are followed.
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Example 1
The area under the graph of y = 2% between 2 = 0 and = 1 is to be found by
approximating it by a large number of thin rectangles and finding the limit of the

r=1

sum of their areas. From Equation (1) this is 61imOZy(x) dx. Write down the
o =0

integral which this sum defines and evaluate it to obtain the area under the curve.

Solution

1 1 210 1

The limit of the sum defines the integral / y(z)dx. Here y = 2% and so / vidr = {?] 3
0 0 0

To show that the process of taking the limit of a sum actually works we investigate the problem in
detail. We use the idea of the limit of a sum to find the area under the graph of y = 2 between
x =0 and x =1, as illustrated in Figure 3.
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Figure 3: The area under y = x* is approximated by a number of thin rectangles

Refer to the diagram below to help you answer the questions below.

AY

1,

n rectangles

_,-414 >

0 1 iy

If the interval between © = 0 and x = 1 is divided into n rectangles what is the width of each
rectangle?

Your solution
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Answer
1/n

Mark this on the diagram. What is the x coordinate at the left-hand side of the first rectangle ?

Your solution

Answer
0

What is the x coordinate at the left-hand side of the second rectangle 7

Your solution

Answer
1/n

What is the x coordinate at the left-hand side of the third rectangle 7

Your solution

Answer
2/n

Mark these coordinates on the diagram.
What is the x coordinate at the left-hand side of the kth rectangle 7

Your solution

Answer

(k=1)/n

Given that y = 22, what is the y coordinate at the left-hand side of the kth rectangle ?

Your solution

Answer

()

The area of the kth rectangle is its height x its width. Write down the area of the kth rectangle:

Your solution

Answer

(k—1)2 1 (k—1)?
X —=——
n n n3
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To find the total area A,, of the n rectangles we must add up all these individual rectangular areas:

PR

n3
k=1

This sum can be simplified and then calculated as follows. You will need to make use of the formulas
for the sum of the first n integers, and the sum of the squares of the first n integers:

kz:;l:n, kz:;k:§n(n+1), ;k zan(n+1)(2n+1)

Then, the total area of the rectangles is given by

An = i(k;31)2

k=1
1 & )
= 52 (k=1
k=1
1 &,
k=1
1 n 2 n n
— E( k —2Zk+21>
k=1 k=1 k=1
1 /n
- ﬁ(8(n+1)(2n+1)—2—(n+1)+n)
1 [(n+1)(2n+1)
— E( G —(n+1)+1
L /(n+D)(2n+1)
- n2? 6
1 11 1
= — 2 -3n+1)=-— —+—
Gz (2 =3t 1) =g - ot s

Note that this is a formula for the exact total area of the n rectangles. It is an estimate of the area

1 .
under the graph of y = 22. However, as n gets larger, the terms > and G2 become small and will
n n

eventually tend to zero. If we let n tend to infinity we obtain the exact answer of 3

: 1 I .
The required area is —. It has been found as the limit of a sum and of course agrees with that

calculated by integration.

In the calculations which follow in subsequent Sections the need to evaluate complicated limits like
this is avoided by performing the integration using the techniques of HELM 13. Nevertheless it will
sometimes be necessary to go through the process of dividing a region into small sections, performing
a calculation on each section and then adding the results, in order to formulate the integral required.
When numerical methods of integration are studied (HELM 31) this summation method will prove
fundamental.
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Engineering Example 1

Pulley belt tension

Problem

Consider that a belt is partially wound around a pulley so that there is a difference in the tension
either side of the pulley (see Figure 4). The pulley will be stationary as long as the friction between
belt and pulley is sufficient. The frictional force on the pulley will depend on the extent of the contact
between belt and pulley i.e. on the angle 6 shown in Figure 4. Given that the tensions on either side
of the belt are T5 and 1} and that the coefficient of friction between belt and pulley is x, find an
expression for T3 in terms of T}, y and 6.

Solution

Consider a small element of the belt, at angle & where the tension is 7. Changing the angle by a
small amount A6 changes the tension from T to T + AT.

Al

N

Figure 4

Take moments about the centre of the pulley, denoting the radius of the pulley by R and assuming
that the frictional force is pT" per unit length. For the pulley to remain stationary,

AT
M

Using integration as the limit of a sum,

Lgr 1 | T
0:/ —:—|:1nT:| :—ln(—2> Sngleefw.
rn T p rn po \T
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Exercises

1. Find the area under y = x + 1 from x = 0 to x = 10 using the limit of a sum.
2. Find the area under y = 322 from 2 = 0 to x = 2 using the limit of a sum.

3. Write down, but do not evaluate, the integral defined by the limit as dx — 0, or 6t — 0 of the

following sums:
1

=1 =4 t=1 =
(a) Zx35x, (b) Z47m25m, (c) t36t, (d) 6ma’ox.
=0 =0 t=0 =0
Answers
1. 60,
2. 8,
1 4 1 1
3. (a)/ 2idz, (b) 47T/ zidz, (c)/ t3dt, (d) 6m [ 2*dz.
0 0 0 0
HELM (2008): 9

Section 14.1: Integration as the Limit of a Sum



