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Introduction
This Section returns to the simple models of projectiles considered in Section 34.1. It explores the
magnitude of air resistance effects and the effects of including simple models of air resistance on the
earlier analysis.
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Prerequisites

Before starting this Section you should . . .

• be able to solve second order, constant
coefficient ODEs

• be able to use Newton’s laws to describe and
model the motion of particles'
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Learning Outcomes
On completion you should be able to . . .

• compute the effect of air resistance
proportional to velocity on particles moving
under gravity

• define terminal velocity for linear and
quadratic dependence of resistance on
velocity
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1. Resisted motion

Resistance proportional to velocity
In Section 34.2 we introduced methods of analysing the motion of projectiles on the assumption
that air resistance or drag can be neglected. In this Section we will consider the accuracy of this
assumption in some particular cases and take a look at the consequences which including air resistance
has for the vector analysis of forces and motion.

Consider the subsequent motion of an object that is thrown horizontally. Let us introduce coordinate
axes x (horizontal, unit vector i) and y (vertical upwards, unit vector j) and place the origin of
coordinates at the point of release. The forces on the object consist of the weight mgj and a
resisting force proportional to the velocity v. This force may be written

−cv = −cxi− cẏj,

where c is a constant of proportionality. Newton’s second law gives

ma = m(ẍi + ÿj) = (−cẋi− cẏj −mgj).

This can be separated into two equations:

mẍ = −cẋ (3.1)

and

mÿ = −cẏ −mg. (3.2)

These equations each involve only one variable so they are uncoupled. They can be solved separately.
Consider the Equation (3.1) for the horizontal motion, first in the form

mẍ + cẋ = 0.

Dividing through by m and using a new constant κ = c/m,

ẍ + κẋ = 0

A solution to this equation (see 19) is

x = A + Be−κt

where A and B are constants. These constants may be evaluated by means of the initial conditions

x(0) = 0 ẋ(0) = v0

where v0 is the speed with which the object is thrown (recall that it is thrown horizontally). The
first condition gives

0 = A + B

which means that A = −B. The second gives

v0 = −Bκ

which implies that B = −v0

κ
, so

x(t) =
v0

κ

(
1− e−κt

)
(3.3)
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The initial conditions for the vertical motion are

y(0) = 0 ẏ(0) = 0.

Equation (3.2), in the form

ÿ + κẏ = −g

may be solved by multiplying through by eκt ( 19) which enables us to write

d

dt

(
ẏeκt

)
= −geκt.

After integrating with respect to t twice,

y(t) = C + De−κt − gt

κ
.

The initial conditions give

0 = C + D and 0 = −κD − g/κ

which means that D = −g/κ2 , so C = g/κ2 and

y(t) =
g

κ2
(1− e−κt)− gt

κ
. (3.4)

From Equation (3.1), the horizontal component of velocity is

ẋ(t) = v0e
−κt. (3.5)

The air resistance causes the horizontal component of velocity to decrease exponentially from its
original value. From Equation (3.2), the upward vertical component of velocity is

ẏ(t) =
g

κ

(
e−κt − 1

)
. (3.6)

For very large values of t, e−κt is near zero, so the vertical component of velocity is nearly constant
at −g/κ. The negative sign indicates that the object is moving downwards. g/κ represents the
terminal velocity for vertical motion under gravity for a particle subject to air resistance proportional
to velocity. Sketches of the variations of the components of velocity with time are shown in Figure
30.

Initial value

Horizontal
component
of velocity

Time

Terminal
velocity

Downward
component
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Figure 30
Velocity components of an object launched horizontally

and subject to resistance proportional to velocity
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By combining the components of velocity given in (3.5) and (3.6), it is possible to obtain the
magnitude and direction of the velocity of an object projected horizontally at speed v0 and subject
to air resistance proportional to velocity, the magnitude is

√
(ẋ(t))2 + (ẏ(t))2 and the direction is

tan−1(ẏ(t)/ẋ(t)).

Note that the expression for terminal velocity could be obtained directly from (3.2), by setting ÿ = 0.

Example 16
At the time that the parachute opens a parachutist of mass 100 kg is travelling
horizontally at 20 m s−1 and is 200 m above the ground. Calculate (a) the
parachutist’s height above the ground and (b) the magnitude and direction of the
parachutist’s velocity after 10 s assuming that air resistance during the first 100 m
of fall may be modelled as proportional to velocity with constant of proportionality
c = 100.

Solution

(a) Substituting m = 100, g = 9.81 and c = 100 in Equation (3.4) gives the distance
dropped during 10 s as 88.3 m. So the parachutist will be 111.7 m above the ground
after 10 s. The model is valid up to this distance.

(b) The vertical component of velocity after 10 s is given by Equation (3.6) i.e. 9.81 m s−1.
The horizontal component of velocity is given by Equation (3.5) i.e. 9.08× 10−4 m s−1,
which is practically negligible. So, after 10 s, the parachutist will be moving more or less
vertically downwards at 9.81 m s−1.

If the object is launched at some angle θ above the horizontal, then the initial conditions on velocity
are

ẋ(0) = v0 cos θ ẏ(0) = v0 sin θ

These lead to the following equations, replacing (3.3) and (3.4):

x(t) =
v0 cos θ

κ

(
1− e−κt

)
(3.7)

y(t) =

[
v0 sin θ

κ
+

g

κ2

] (
1− e−κt

)
− gt

κ
. (3.8)

To obtain the trajectory of the object, (3.7) can be rearranged to give

(1− e−κt) =
κx

v0 cos θ
and t = −1

κ
ln

(
1− κx

v0 cos θ

)
.

These can be substituted in (3.8) to give

y = x

(
tan θ +

g

κv0 cos θ

)
+

g

κ2
ln

(
1− κx

v0 cos θ

)
. (3.9)
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Figure 31 compares predictions from this result with those predicted from the result obtained by
ignoring air resistance (Equations (3.1) and (3.2)). The effect of including air resistance is to change
the projectile trajectory from a parabola, symmetrical about the highest point, to an asymmetric
curve, resulting in reduced maximum range.
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Figure 31
Predicted trajectories of an object projected at 45◦ with speed 40 m s−1 in the absence of air

resistance (solid line) and with air resistance proportional to velocity such that κ = 0.184 (broken line)

Quadratic resistance
Unfortunately, it is not often very accurate to model air resistance by a force that is simply proportional
to velocity. For a spherical object, a good approximation for the dependence of the air resistance
force vector R on the speed (v) and diameter (D) of the object is

R = (c1D + c2D
2|v|)v (3.10)

with c1 = 1.55 × 10−4 and c2 = 0.22 in SI units for air. As would be expected intuitively, the
bigger the sphere and the faster it is moving the greater the drag it will experience. If D and |v| are
very small then the second term in (3.10) can be neglected compared with the first and the linear
approximation is reasonable i.e.

R ' c1Dv D|v| ≤ 10−5. (3.11)

Note that c1 << c2, so if D and |v| are not very small, for example a cricket ball (D = 0.7 m)
moving at 40 m s−1, the first term in (3.10) can be neglected compared with the second. This gives
rise to the quadratic approximation

R ' c2D
2|v|v 10−2 ≤ D|v| ≤ 1. (3.12)

The ranges of validity of these approximations are shown graphically in Figure 32 for a sphere of
diameter 0.01 m. In general the linear approximation is accurate for small slow-moving objects and
the quadratic approximation is satisfactory for larger faster objects. The linear approximation is
similar to Stokes’ law (first stated in 1845):

|R| = 6πµr|v| (3.13)
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where µ is the coefficient of viscosity of the fluid surrounding a sphere of radius r. According to
Stokes’ law, c1 = 3πµ. This gives c1 = 0.17 × 10−4 kg m−1s−1 for air. Similarly, the quadratic
approximation is consistent with a relationship deduced by Prandtl (first stated in 1917) for a sphere:

|R| = 0.625ρr2|v|2 (3.14)

where ρ is the density of the fluid. This implies that c2 = 0.625ρ/4 = 0.202 kg m−3 for air.
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Figure 32
Resistive force, as a function of the product of diameter and speed,

predicted by Equation (3.10) (solid line) and the approximations Equation (3.11) (broken line)
and Equation (3.12) (dash-dot line), for a sphere of diameter 0.01m

The mathematical complexity of the equations for projectile motion in 2D resulting from the quadratic
approximation is considerable. Consider an object with an initial horizontal velocity and the same
coordinate axes as before, but this time the resistive force is given by c|v|v (the quadratic approxi-
mation). For this case Newton’s second law gives

ma = m(ẍi + ÿj) = −cẋ
√

(ẋ2 + ẏ2)i− cẏ
√

(ẋ2 + ẏ2)j −mgj.

The corresponding scalar differential equations are

mẍ = −cẋ
√

(ẋ2 + ẏ2)

and
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mÿ = −cẏ
√

(ẋ2 + ẏ2)−mg.

You should note that ẋ and ẏ appear in both equations and cannot be separated out. These differential
equations are coupled. (Ways of dealing with such coupled equations is introduced in 20.)

Task

Suppose that the academic in Example 1.5 screws up sheets of paper into spheres
of radius 0.03 m and mass 0.01 kg. Calculate the effect of linear air resistance on
the likelihood of the chosen trajectory entering the waste paper basket.

Your solution

Answer
Since D|v| = 4.75×0.06 = 0.285, the linear approximation for air resistance is not valid. If however
it is assumed that it is, then κ = c1D/m = 1.55× 10−4 × 0.06/0.01 = 9.3× 10−4. A plot of the
resulting trajectory according to Equation (3.9) is shown in the diagram below.
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Predicted trajectory of paper balls with linear air resistance

With the stated assumptions, air resistance is predicted to have little or no effect on the trajectory
of the paper balls.
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Vertical motion with quadratic resistance

Although it is not straightforward to model motion in 2D with resistance proportional to velocity
squared, it is possible to consider the motion of an object falling vertically under gravity experiencing
quadratic air resistance. In this case the equation of motion may be written in terms of the (vertical)
velocity ( ẏ = v) as

m
dv

dt
= mg − cv2.

This nonlinear differential equation can be solved by using separation of variables ( 19). First
we rearrange the differential equation to give

dt

dv
=

−m/c

−mg

c
+ v2

.

Then we integrate both sides with respect to v, and write κ1 = c/m (note that this c is different
from the c used for linear air resistance) which yields

t + C =
1

2
√

gκ1

ln

(
a + v

a− v

)
where a =

√
g/κ1 . If the object starts from rest C = 0, so

a + v

a− v
= e2t

√
gκ1 and

v = a

(
1− e−2t

√
gκ1

)
(1 + e−2t

√
gκ1)

= a tanh(t
√

gκ1). (3.15)

Note that for t → ∞ this predicts that the terminal velocity vt = a =
√

g/κ1. This expression
for terminal velocity may be compared with that for linear air resistance (g/κ). So the quadratic
resistance model predicts a square root form for terminal velocity. Note that the expression for the
terminal velocity for vertical motion of a particle subject to resistance proportional to the square of

the velocity could be obtained from m
dv

dt
= mg − cv2 by setting

dv

dt
= 0. If we write τ =

vt

g
(note

that this has units of time), then Equations (3.6) and (3.15) may be written

v = vt

(
1− e−t/τ

)
and

v = vt
(1− e−2t/τ )

(1 + e−2t/τ )
.

Using these expressions, it is possible to compare the variation of the ratio v/vT as a function of
time in units of τ as in Figure 33. The graph shows the intuitive result that a falling object subject
to quadratic resistance approaches its terminal velocity more rapidly than a falling object subject to
resistance proportional to velocity. For example, at t/τ = 5, v/vt is 0.993 with linear resistance and
0.9991 with quadratic resistance. Note however that the terminal velocities and the time steps used
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in the graph are different.
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Figure 33
Comparison of the variations in vertical velocities

for a falling object subject to linear and quadratic resistance

Task

Note that the curves in Figure 33 are very close to each other and almost straight
for small values of t/τ . Why should this be the case? As well as proposing an
intuitive explanation, consider the result of expanding the exponential term in (3.6)
in a Maclaurin power series.

Your solution

Answer
It is to be expected that, in the initial stages of motion when v and t are small, the gravitational
force will dominate over air resistance i.e. v ≈ −gt. A Maclaurin power series expansion of the
exponential term in (3.6) gives

e−κt = 1− κt +
1

2
(κt)2 − . . .

So e−kt − 1 = −κt +
1

2
(κt)2 − . . . so v ≈ g

κ
× (−κt +

1

2
(κt)2 − . . . )

If t is much smaller than 1/κ, then only the first term need be considered which gives v ≈ −gt.
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