
 

community project 
encouraging academics to share statistics support resources 

All stcp resources are released under a Creative Commons licence 
 

© Sofia Maria Karadimitriou and Ellen Marshall                                                                      Reviewer: Jim Bull    
University of Sheffield                                                                                                                 University of Swansea  

 stcp-karadimitriou-furtherRegressionR 

 

 

 
Outliers, Durbin-Watson and interactions for regression in R 
Dependent variable: Continuous (scale)  
Independent variables: Continuous/ binary 
Data: The data set ‘Birthweight reduced.csv’ contains details of 42 babies and their parents at birth. 
The dependant variable is Birthweight (pounds = lbs) and the independent variables are the 
gestational age of the baby (weeks) and whether the mother smokes (0 = non-smoker, 1 = smoker).    

Investigating outliers and influential observations 
An assumption of regression is that there are no influential observations.  These are extreme 
values which pull the regression line towards them therefore having a significant impact on the 
coefficients of the model.   

Outliers: Outliers are observations where the observed 
dependent value does not follow the general trend given 
the independent value (unusual y given x).  In this 
situation, the residual for that observation is likely to be 
large unless it is also influential and has pulled the line 
towards it.  A residual is the difference between 
observed and predicted values and standardised 
residuals (with a mean of 0 and SD of 1) can be 
requested in SPSS.  Approximately 5% of standardised 
residuals will be outside ±1.96 and 0.3% of values are 
classified as extreme outliers which are outside ±3.  
Large samples are more likely to contain extreme 
outliers just by chance. 

Deleted residuals are the residuals obtained if the 
regression was repeated without the individual 
observation. 

Leverage: An observation with high leverage will pull the 
regression line towards it.  The average leverage score 
is calculated as (k + 1)/ n where k is the number of 
independent variables in the model and n is the number 
of observations.  Observations with high leverage will 
have leverage scores 2 or 3 times this value. 

 

Outlier without leverage changes 
intercept only  
y=-6.05+0.33x 

Leverage (unusual x) but not an outlier 
y= -5.86+0.34x 

The following resources are associated: the dataset ‘Reduced birthweight.csv’ and the Multiple linear 
regression in R script file. Simple and multiple linear regression in R resources. 
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Influence: An influential observation is one which 
is an outlier with leverage and affects the 
intercept and slope of a model significantly.  
Calculations are based on how the predictions 
would differ if the observation was not included. 

Cooks distance: This is calculated for each 
individual and is based on the squared 
differences between the predicted values from 
regression with and without an individual 
observation.  A large Cook’s Distance indicates 
an influential observation.  Compare the Cooks 

value for each observation with 4/n where n is the number of observations.  Values above this 
indicate observations which could be a problem. 

 
Steps in R 
Open the birthweight reduced dataset from a csv file, call it birthweightR, then attach the data. 
birthweightR<-read.csv("D:\\Birthweight reduced.csv",header=T) 
attach(birthweightR)  
Tell R that ‘smoker’ is a factor and attach labels to the categories e.g. 1 is a smoker.  
smoker<-factor(smoker,c(0,1),labels=c('Non-smoker','Smoker')) 
Fit the regression model from the Simple linear regression resource using the 
lm(dependent~Independent) command and give it 
a name (reg1). 
reg1<-lm(Birthweight~Gestation) 
To produce a bar chart of Cook’s distance for each 
observation: 
plot(reg1, which = 4) 
 

R identifies observation with Cooks > 4/n where n = 
number of observations. 
The bottom left graph shows the values of the Cook's 
Distances and we can see that three observations could 
be problematic for our model.  
 
To produce a scatterplot of leverage values against 
standardised residuals:   
plot(reg1, which = 5) 

 
R identifies outliers outside ±1.96 but extreme 
outliers will have standardised residuals outside 
±3.  There are none here. 
Leverage values 3 times (k + 1)/ n are large 
where k = number of independent variables.  
The cut off here is 3*(1+1)/42 = 0.14.  R 
identifies observation 2 as an observation with 
high leverage.  If an observation has a very 
large leverage score, try running the model with 
and without the value to see how much the 
coefficients in the model change. 
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Influential observation is an outlier with leverage 
y= -10.87+0.47x 

http://www.statstutor.ac.uk/
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The Durbin Watson test 
One of the assumptions of regression is that the observations are independent.  If observations are 
made over time, it is likely that successive observations are related.  The Durbin Watson statistic 
tests the hypothesis that there is no autocorrelation.   If there is no autocorrelation (where 
subsequent observations are related), the Durbin-Watson statistic should be between 1.5 and 2.5 
and the p-value will be above 0.05.  

Fit a regression model using the lm(dependent~Independent) command and give it a name (reg1). 
reg1<-lm(Birthweight~Gestation) 
To carry out the Durbin Watson Statistic for autocorrelation the library car must be loaded. 
library(car) 
If this command does not work, go to the Packages --> Install package(s) and select the UK 
(London)CRAN mirror.  Then look for the package 'car' and click.  For Rstudio, use Tools  Install 
packages.  You may find that some earlier versions of Rstudio may not run the following command. 
 
Request the Durbin Watson test 
dwt(reg1) 

 
 
 
 

The Durbin Watson test statistic is 2.38 and the p-value is 0.262 so the hypothesis of no 
autocorrelation is not rejected and the observations can be classed as independent. 
 
Interactions in regression 
An interaction is the combined effect of two independent variables on one dependent variable.  
Interactions in SPSS must be calculated before including in a model.   The following example uses 
the birthweight data with birthweight as the dependent variable and gestation and whether or not 
the mother smokes (smoker) as the independent variables.   
  
The scatterplot to the right shows the regression 
lines for birthweight (y) without an interaction 
between the two independents in the model.  

The continuous x variable ‘Gestational age’ 
contributes to the slope of the line.  For both lines, 
the slope is 0.34 so a baby increases in weight by 
0.34 lbs for each extra week of gestation.  The 
binary variable ‘Smoking status of mother’ 
changes the intercept so smokers/ non-smokers 
have a different intercept. 

The lines are parallel but smokers tend to have 
lighter babies at each gestational age (intercept is 
0.6 lbs lower). 

If there is an interaction between gestational age 
and smoking status, the slopes of the two lines would be different.  This means that the effect of 
gestational age (x) on birthweight (y) is different depending on whether or not the mother smokes. 

 

y = -5.9 + 0.34x 
y = -6.5 + 0.34x 

http://www.statstutor.ac.uk/
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Including interaction terms in regression 

To run a regression model with only the main effects of gestation and smoker use the command 
lm(Birthweight~Gestation+smoker).   
Placing a ‘:’ symbol between the two independents lm(Birthweight~Gestation:smoker) 
means that only the interaction is contained in the model. 
Finally, using an ‘*’ between the two variables means that both the interaction and the main effects 
are included in the model.   
 
To run the regression with both the interaction and the main effects of gestation and smoker 
Reg4<-lm(Birthweight~Gestation*smoker) 
 
The table contains the coefficients (Estimate) for the model (regression equation), their standard 
errors, the t-test values and p-values for each independent variable. Furthermore, the R-squared 
and the F test for the model is given on the second part. The output shows that only gestation is 
significant (p < 0.001) once the interaction term is added. 

 
Calculations for the equations of the lines with an interaction term 

The regression model uses the 
Unstandardized Coefficients  

Birth weight y = -3.431 –5.734*(smoker) 
+ 0.282*(Gest) + 0.13*(Smoker*Gest) 

For non-smokers, smoker = 0 so the 
model becomes y = -3.431 + 0.282(Gest) 

For smokers, smoker = 1: y = -3.431 –
5.734*(1) + 0.282*(Gest) + 0.13*(1*Gest) 

                      = -9.165 + 0.412*(Gest) 

Note: Where there are interactions 
between two scale variables, the 
coefficient of the interaction can be quite 
small and more difficult to interpret. 
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