An Overview of Structural Model Uncertainty

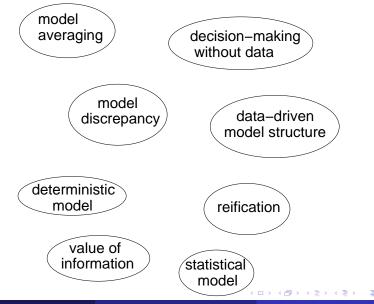
Jeremy Oakley

Department of Probability and Statistics, University of Sheffield

25/03/2009

Jeremy Oakley (Probability & Statistics) An Overview of Structural Model Uncertainty

The world of structural model uncertainty



 Deterministic model y = η(x), designed to predict observable quantity Y*

- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$

- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$
- Model structure error if $Y = \eta(X) \neq Y^*$

- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$
- Model structure error if $Y = \eta(X) \neq Y^*$
- Structural model uncertainty: uncertainty about Y* given uncertainty about η(.)

- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$
- Model structure error if $Y = \eta(X) \neq Y^*$
- Structural model uncertainty: uncertainty about Y* given uncertainty about η(.)
 - Some authors include uncertainty about *p*(*X*)

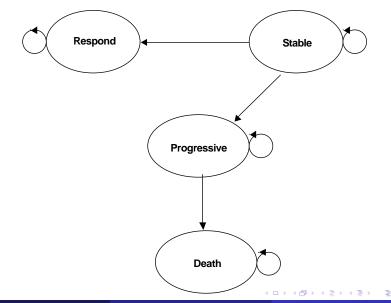
- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$
- Model structure error if $Y = \eta(X) \neq Y^*$
- Structural model uncertainty: uncertainty about Y* given uncertainty about η(.)
 - Some authors include uncertainty about *p*(*X*)
- Probabilistic Sensitivity Analysis (PSA): sample x_1, \ldots, x_n from p(X), evaluate $\eta(x_1), \ldots, \eta(x_n)$ to get sample from p(Y)

→ ∃ →

- Deterministic model y = η(x), designed to predict observable quantity Y*
- X: true values of the model inputs, also observable, with $Y = \eta(X)$
- Model structure error if $Y = \eta(X) \neq Y^*$
- Structural model uncertainty: uncertainty about Y* given uncertainty about η(.)
 - Some authors include uncertainty about p(X)
- Probabilistic Sensitivity Analysis (PSA): sample x_1, \ldots, x_n from p(X), evaluate $\eta(x_1), \ldots, \eta(x_n)$ to get sample from p(Y)
 - Quantifies uncertainty about Y, not Y*

.

Structural model uncertainty: an example



Jeremy Oakley (Probability & Statistics) An Overview of Structural Model Uncertainty

25/03/2009 4 / 10

Perspectives on model uncertainty

From Bernardo & Smith (1994). We have set of models $\{M_i, i \in I\}$, with $M_i = \{\eta_i(x_{(i)}), p_i(X_{(i)})\}$.

• • • • • • • • • • • •

• The \mathcal{M} – *closed* view: One of the models in { M_i , $i \in I$ } is "true".

• The \mathcal{M} – *closed* view: One of the models in { M_i , $i \in I$ } is "true".

$$p(Y^*) = \sum_{i \in I} p(Y^*|M_i) p(M_i).$$

• The $\mathcal{M} - closed$ view: One of the models in $\{M_i, i \in I\}$ is "true".

$$p(Y^*) = \sum_{i \in I} p(Y^*|M_i) p(M_i).$$

• No data: an expert weighting problem?

• The \mathcal{M} – *closed* view: One of the models in { M_i , $i \in I$ } is "true".

$$p(Y^*) = \sum_{i \in I} p(Y^*|M_i) p(M_i).$$

- No data: an expert weighting problem?
- Suitable data: (Bayesian) model averaging

• The $\mathcal{M} - closed$ view: One of the models in $\{M_i, i \in I\}$ is "true".

$$p(Y^*) = \sum_{i \in I} p(Y^*|M_i) p(M_i).$$

- No data: an expert weighting problem?
- Suitable data: (Bayesian) model averaging

② The *M* − *open* view: None of the models in {*M_i*, *i* ∈ *I*} are correct. Not meaningful to consider *p*(*M_i*)

• Given data *D*, need a likelihood $p(D|M_i)$

- Given data *D*, need a likelihood $p(D|M_i)$
- Weight models using posterior model probabilities

$$p(Y^*|D) = \sum_{i \in I} p(Y^*|M_i, D) p(M_i|D)$$

- Given data *D*, need a likelihood $p(D|M_i)$
- Weight models using posterior model probabilities

$$p(Y^*|D) = \sum_{i \in I} p(Y^*|M_i, D) p(M_i|D)$$

Different models, or one model with particular prior structure?

- Given data *D*, need a likelihood $p(D|M_i)$
- Weight models using posterior model probabilities

$$p(Y^*|D) = \sum_{i \in I} p(Y^*|M_i, D) p(M_i|D)$$

Different models, or one model with particular prior structure?

- Given data *D*, need a likelihood $p(D|M_i)$
- Weight models using posterior model probabilities

$$p(Y^*|D) = \sum_{i \in I} p(Y^*|M_i, D) p(M_i|D)$$

Different models, or one model with particular prior structure?

or just

$$M_0$$
: response = $\alpha + \beta age + \varepsilon$,

with $p(\beta = 0) \neq 0$?

- $p(D|M_i)$ sensitive to choice of prior
- Long running debate in the Bayesian literature
 - See Jackson et al (2009)

- $p(D|M_i)$ sensitive to choice of prior
- Long running debate in the Bayesian literature
 - See Jackson et al (2009)
- Proper prior specification hard (impossible?)

$$M_1$$
 : log *costs* $|\mu, \sigma^2 \sim N(\mu, \sigma^2)$

 M_2 : costs $|\alpha, \beta \sim \text{Gamma}(\alpha, \beta)$,

- $p(D|M_i)$ sensitive to choice of prior
- Long running debate in the Bayesian literature
 - See Jackson et al (2009)
- Proper prior specification hard (impossible?)

$$M_1$$
 : log *costs* | $\mu, \sigma^2 \sim N(\mu, \sigma^2)$

$$M_2$$
 : costs $|\alpha, \beta \sim Gamma(\alpha, \beta),$

 Bojke et al (2006) propose explicitly parameterising model structure uncertainty

- **→ → →**

- p(D|M_i) sensitive to choice of prior
- Long running debate in the Bayesian literature
 - See Jackson et al (2009)
- Proper prior specification hard (impossible?)

$$\begin{array}{ll} M_1 &: & \log costs | \mu, \sigma^2 \sim N(\mu, \sigma^2) \\ M_2 &: & costs | \alpha, \beta \sim Gamma(\alpha, \beta), \end{array}$$

- Bojke et al (2006) propose explicitly parameterising model structure uncertainty
 - Can consider value of reducing model structure uncertainty with EVPI

< ロ > < 同 > < 回 > < 回 >

- p(D|M_i) sensitive to choice of prior
- Long running debate in the Bayesian literature
 - See Jackson et al (2009)
- Proper prior specification hard (impossible?)

 M_1 : log costs $|\mu, \sigma^2 \sim N(\mu, \sigma^2)$ M_2 : costs $|\alpha, \beta \sim Gamma(\alpha, \beta)$.

- Bojke et al (2006) propose explicitly parameterising model structure uncertainty
 - Can consider value of reducing model structure uncertainty with EVPI
 - But statistical formulation equivalent to model averaging (with associated pitfalls)?

A (10) > A (10) > A (10)

$\mathcal{M} - open$ view and model discrepancy

 In the computer experiments literature, we consider model discrepancy (e.g. Kennedy and O'Hagan, 2001)

$$Y^* = \eta(X) + \delta.$$

$\mathcal{M} - open$ view and model discrepancy

 In the computer experiments literature, we consider model discrepancy (e.g. Kennedy and O'Hagan, 2001)

$$Y^* = \eta(X) + \delta.$$

• Can we (usefully) specify $p(\delta)$?

$\mathcal{M}-\textit{open}$ view and model discrepancy

 In the computer experiments literature, we consider model discrepancy (e.g. Kennedy and O'Hagan, 2001)

$$Y^* = \eta(X) + \delta.$$

- Can we (usefully) specify $p(\delta)$?
- Yes, but need suitable data. Example: observations of treatment outcomes at times t = 1, 2, wish to predict outcomes at times t = 3, 4, ...

$$Y^*(t) = \eta(X, t) + \delta(t).$$

$\mathcal{M}-\textit{open}$ view and model discrepancy

 In the computer experiments literature, we consider model discrepancy (e.g. Kennedy and O'Hagan, 2001)

$$Y^* = \eta(X) + \delta.$$

- Can we (usefully) specify $p(\delta)$?
- Yes, but need suitable data. Example: observations of treatment outcomes at times t = 1, 2, wish to predict outcomes at times t = 3, 4, ...

$$Y^*(t) = \eta(X, t) + \delta(t).$$

 Goldstein and Rougier (2009) propose reified modelling for physical systems

$\mathcal{M}-\textit{open}$ view and model discrepancy

 In the computer experiments literature, we consider model discrepancy (e.g. Kennedy and O'Hagan, 2001)

$$Y^* = \eta(X) + \delta.$$

- Can we (usefully) specify $p(\delta)$?
- Yes, but need suitable data. Example: observations of treatment outcomes at times t = 1, 2, wish to predict outcomes at times t = 3, 4, ...

$$Y^*(t) = \eta(X, t) + \delta(t).$$

- Goldstein and Rougier (2009) propose reified modelling for physical systems
 - Involves notion of model discrepancy, potential for dealing with multiple (conflicting) models.

$\textcircled{0} \mathcal{M} - \textit{closed view}$

• Act as if one of the models is true

- Act as if one of the models is true
- Model averaging type methods

- Act as if one of the models is true
- Model averaging type methods
- Useful, but cannot fully account for structural model uncertainty

- Act as if one of the models is true
- Model averaging type methods
- Useful, but cannot fully account for structural model uncertainty
- 2 $\mathcal{M} open$ view
 - Acknowledges that none of the models are true
 - Methods developed in computer experiments literature

- Act as if one of the models is true
- Model averaging type methods
- Useful, but cannot fully account for structural model uncertainty
- 2 \mathcal{M} open view
 - Acknowledges that none of the models are true
 - Methods developed in computer experiments literature
 - Can *fully* account for structural model uncertainty, even with only one model...

- Act as if one of the models is true
- Model averaging type methods
- Useful, but cannot fully account for structural model uncertainty
- 2 \mathcal{M} open view
 - Acknowledges that none of the models are true
 - Methods developed in computer experiments literature
 - Can *fully* account for structural model uncertainty, even with only one model...
 - ...probably less practical here, given data requirements

References

- Bernardo, J. M. and Smith, A. F. M. (1994) *Bayesian Theory*. Chichester: Wiley
- Jackson, C. H., Thompson, S. G. and Sharples, L. D. (2009). Accounting for uncertainty in health economic decision models by using model averaging. Journal of the Royal Statistical Society, Series A 172(2), 383-404.
- Bojke, L., Claxton, K., Palmer, S. and Sculpher, M. (2006) Defining and characterising structural uncertainty in decision analytic models. Research Paper 9, University of York: Centre for Health Economics.
- Kennedy, M. and O'Hagan, A. (2001). Bayesian calibration of computer models (with discussion). Journal of the Royal Statistical Society, Series B. 63, 425-464.
- Goldstein, M. and Rougier, J. C. (2009), Reified Bayesian Modelling and Inference for Physical Systems, Journal of Statistical Planning and Inference, 139(3), 1221-1239. With discussion and rejoinder.