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The world of structural model uncertainty
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What is structural model uncertainty?

Deterministic model y = η(x), designed to predict observable
quantity Y ∗

X : true values of the model inputs, also observable, with Y = η(X )

Model structure error if Y = η(X ) 6= Y ∗

Structural model uncertainty: uncertainty about Y ∗ given
uncertainty about η(.)

Some authors include uncertainty about p(X )

Probabilistic Sensitivity Analysis (PSA): sample x1, . . . , xn from
p(X ), evaluate η(x1), . . . , η(xn) to get sample from p(Y )

Quantifies uncertainty about Y , not Y ∗
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Structural model uncertainty: an example
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Figure 4: Illustrative example 2 – Taxane use in second-line treatment of breast cancer 
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Perspectives on model uncertainty

From Bernardo & Smith (1994). We have set of models {Mi , i ∈ I},
with Mi = {ηi(x(i)), pi(X(i))}.

1 The M− closed view:
One of the models in {Mi , i ∈ I} is “true”.

p(Y ∗) =
∑
i∈I

p(Y ∗|Mi)p(Mi).

No data: an expert weighting problem?
Suitable data: (Bayesian) model averaging

2 The M− open view:
None of the models in {Mi , i ∈ I} are correct. Not meaningful to
consider p(Mi)
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Bayesian Model Averaging

Given data D, need a likelihood p(D|Mi)

Weight models using posterior model probabilities

p(Y ∗|D) =
∑
i∈I

p(Y ∗|Mi , D)p(Mi |D)

Different models, or one model with particular prior structure?

M1 : response = α + βage + ε,

M2 : response = α + ε,

or just
M0 : response = α + βage + ε,

with p(β = 0) 6= 0?
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Bayesian Model Averaging

p(D|Mi) sensitive to choice of prior
Long running debate in the Bayesian literature

See Jackson et al (2009)

Proper prior specification hard (impossible?)

M1 : log costs|µ, σ2 ∼ N(µ, σ2)

M2 : costs|α, β ∼ Gamma(α, β),

Bojke et al (2006) propose explicitly parameterising model
structure uncertainty

Can consider value of reducing model structure uncertainty with
EVPI
But statistical formulation equivalent to model averaging (with
associated pitfalls)?
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M− open view and model discrepancy

In the computer experiments literature, we consider model
discrepancy (e.g. Kennedy and O’Hagan, 2001)

Y ∗ = η(X ) + δ.

Can we (usefully) specify p(δ)?

Yes, but need suitable data. Example: observations of treatment
outcomes at times t = 1, 2, wish to predict outcomes at times
t = 3, 4, . . .

Y ∗(t) = η(X , t) + δ(t).

Goldstein and Rougier (2009) propose reified modelling for
physical systems

Involves notion of model discrepancy, potential for dealing with
multiple (conflicting) models.
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Summary

1 M− closed view
Act as if one of the models is true

Model averaging type methods
Useful, but cannot fully account for structural model uncertainty

2 M− open view
Acknowledges that none of the models are true
Methods developed in computer experiments literature
Can fully account for structural model uncertainty, even with only
one model...
...probably less practical here, given data requirements
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