

Comparing 3L and 5L EQ-5D

Allan Wailoo

Professor of Health Economics, Director NICE Decision Support Unit, Health Economics and Decision Science, School of Health and Related Research (ScHARR) University of Sheffield, UK

Contributions

3L to 5L mapping methods:

Dr Monica Hernandez, Prof Steve Pudney – ScHARR, University of Sheffield

Case studies:

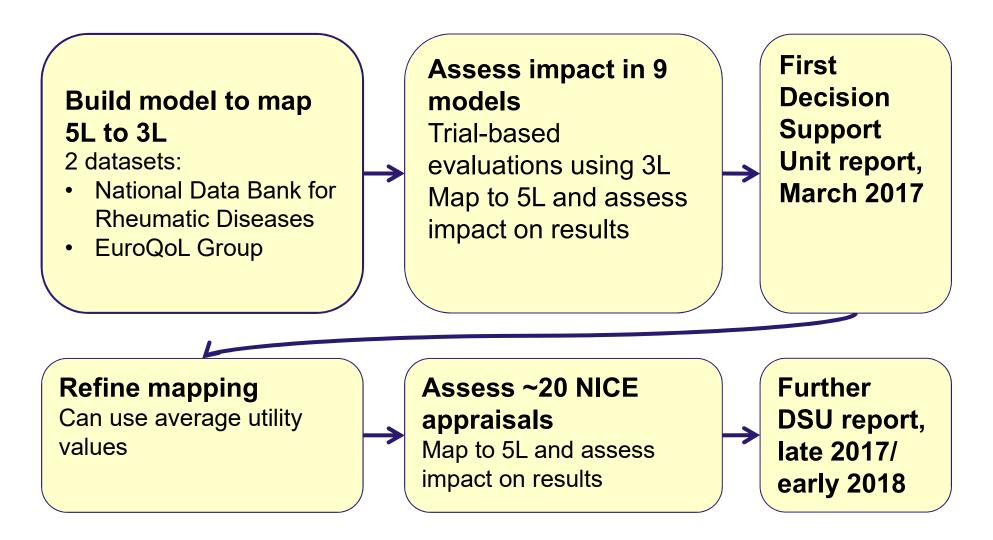
Dr Monica Hernandez, Dr Sabine Grimm – ScHARR, University of Sheffield

Dr Manuel Gomes, Dr Zia Sadique – LSHTM, London.

Dr David Meads, John O'Dwyer – University of Leeds

Model based case studies:

Contributors to NICE TA and HST programme Becky Pennington, University of Sheffield



Comparing 3L and 5L EQ-5D $\,^{\rm 2}$

- What is the impact of this likely to be in the UK?
 - How are the two related? (Mapping)
 - What is the impact on cost-effectiveness?
 Trial-based analyses
 Model based analyses
- (UK) Valuations are taken as given
 - EQ-5D-3L Dolan (1997)
 - EQ-5D-5L Devlin et al. (2017) England

Assessing impact of adopting 5L³ valuation set in UK

Modelling method

Simple mapping methods suffer from bias

DSU developed methods to overcome this:

- 1. Need to map from 3L to 5L, and the other way round
 - joint model 10 equation model (5 domains x 2 instruments)
- 2. Avoid making unnecessary/unwarranted assumptions:
 - 5L is simply more detailed categorisation of 3L
 - Influence of covariates the same
- 3. Capture strong association between 3L and 5L domains without assuming same strength across distribution
 - Different copulas joining each pair
- 4. Flexible models to fit " odd" distributions (use mixture models)
- 5. Allow dependencies across domains capturing
 - Common underlying causes
 - Individual specific response styles
- See Hernandez and Pudney, JHE 2017
- Results tested and validated in DSU report (July 2017)

08/11/2017 $\ensuremath{\mathbb{C}}$ The University of Sheffield

Datasets

Datasource	National Data Bank for Rheumatic Diseases	EuroQoL Group
N (estimation)	5,311 (5,205)	3,691 (3,551)
Patient characteristics	Rheumatoid Arthritis	8 broad patient groups and students.
Setting	United States and Canada	Denmark, England, Italy, the Netherlands, Poland, and Scotland
Method	Postal and web. 5L first then 3L. Substantial separation.	Paper and pencil. England online. 5L first then 3L, little separation.
Year	January 2011	August 2009 to September 2010
Descriptive stats. Median age % females	64 81%	54 53%

Impact on cost-effectiveness⁶

- 9 case studies provide 12 pairwise comparisons between technologies
- Trial based economic evaluations conducted using 3L
- Re-analysis using identical methods, substituting in 5L estimates

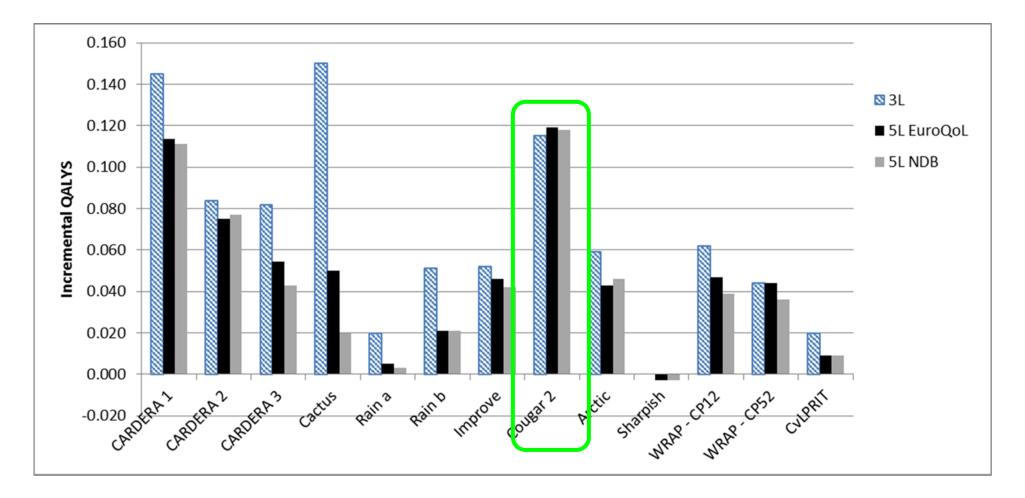
CARDERA	Combination of Anti-Rheumatic Drugs in Early Rheumatoid Arthritis
CACTUS	Aphasia Computer Treatment after stroke
RAIN	Risk Adjustment in Neurocritical care for acute Traumatic Brain Injury
IMPROVE	Endovascular repair vs open repair for ruptured abdominal aortic aneurysm
COUGAR-02	Docetaxel chemotherapy in <u>oesophagogastric cancer</u>
ARCTIC	Rituximab for Chronic Lymphocytic Leukaemia
SHARPISH	Self help booklets for smoking cessation
WRAP	Weight loss programmes
CvLPRIT	Complete vs Lesion only revascularisation for <u>ST-segment elevation Myocardial</u> Infarction

Effect on ICERS (inc QALYs) 7

Title	3L	5L EuroQoL	5L NDB
CARDERA1	4648	5940	6054
	(0.145)	(0.113)	(0.111)
CARDERA2	13,666	15,252	14,846
	(0.084)	(0.075)	(0.077)
CARDERA3	15929	23940	30418
	(0.082)	(0.054)	(0.043)
CACTUS	3,058	9,481	23,022
040703	(0.15)	(0.05)	(0.02)
RAIN a)	184,700	738,800	1,231,333
	(0.02)	(0.005)	(0.003)
RAIN b)	294,137	714,333	714,333
	(0.051)	(0.021)	(0.021)
IMPROVE	-44,617	-48,113	-54,742
	(0.052)	(0.046)	(0.042)
COUGAR II	27,180	26,434	26,484
COUGANII	(0.115)	(0.119)	(0.118)
ARCTIC	112,193	162,744	152,130
ANCTIC	(0.058)	(0.043)	(0.046)
Sharpish	(0.000)	(-0.003)	(-0.003)
WRAP - CP12	1812	2373	2840
WRAP - CP12	(0.062)	(0.047)	(0.039)
WRAP - CP52	4305	4312	5316
WRAF - 6832	(0.044)	(0.044)	(0.036)
CvLPRIT	21496	46761	47521
-	(0.020)	(0.010)	(0.009)

08/11/2017 © The University of Sheffield

Effect on ICERS (inc QALYs) ⁸


Title	3L	5L EuroQoL	5L NDB
CARDERA1	4648	5940	6054
	(0.145)	(0.113)	(0.111)
CARDERA2	13,666	15,252	14,846
	(0.084)	(0.075)	(0.077)
CARDERA3	15929	23940	30418
	(0.082)	(0.054)	(0.043)
CACTUS	3,058	9,481	23,022
	(0.15)	(0.05)	(0.02)
RAIN a)	184,700	738,800	1,231,333
	(0.02)	(0.005)	(0.003)
RAIN b)	294,137	714,333	714,333
	(0.051)	(0.021)	(0.021)
IMPROVE	-44,617	-48,113	-54,742
	(0.052)	(0.046)	(0.042)
COUGAR II	27,180	26,434	26,484
	(0.115)	(0.119)	(0.118)
ARCTIC	112,193	162,744	152,130
	(0.058)	(0.043)	(0.046)
Sharpish	(0.000)	(-0.003)	(-0.003)
WRAP - CP12	1812	2373	2840
	(0.062)	(0.047)	(0.039)
WRAP - CP52	4305	4312	5316
	(0.044)	(0.044)	(0.036)
CvLPRIT	21496 (0.020) The University of Sheffield	46761 (0.010)	47521 (0.009)

Marginal health gain lower with 5L ICERs ↑

Except COUGAR II (advanced cancer trial): Mortality gains important!

08/11/2017 © The University of Sheffield

9

Effect on ICERS (inc QALYs)¹⁰

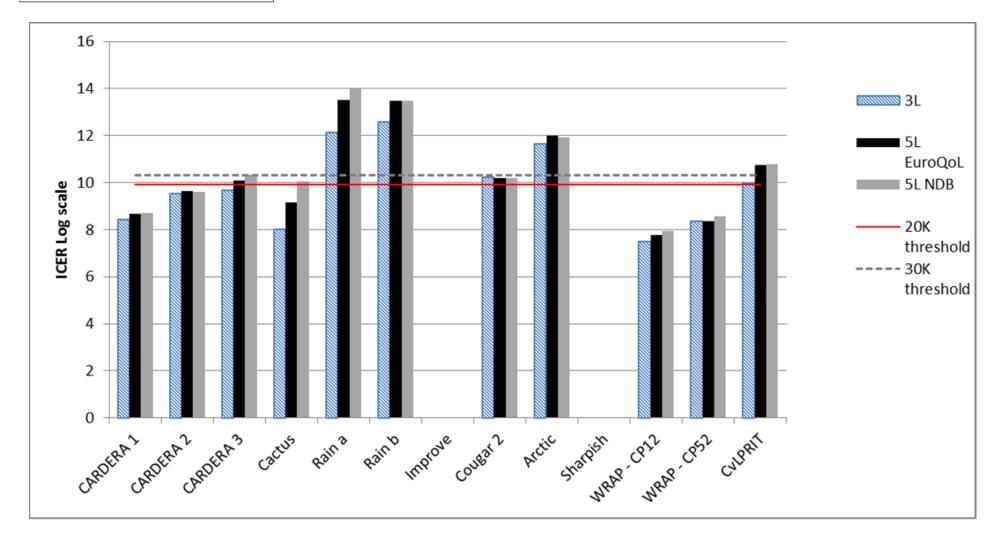
Title	3L	5L EuroQoL	5L NDB
CARDERA1	4648	5940	6054
	(0.145)	(0.113)	(0.111)
CARDERA2	13,666	15,252	14,846
	(0.084)	(0.075)	(0.077)
CARDERA3	15929	23940	30418
	(0.082)	(0.054)	(0.043)
CACTUS	3,058	9,481	23,022
	(0.15)	(0.05)	(0.02)
RAIN a)	184,700	738,800	1,231,333
	(0.02)	(0.005)	(0.003)
RAIN b)	294,137	714,333	714,333
	(0.051)	(0.021)	(0.021)
IMPROVE	-44,617	-48,113	-54,742
	(0.052)	(0.046)	(0.042)
COUGAR II	27,180	26,434	26,484
	(0.115)	(0.119)	(0.118)
ARCTIC	112,193	162,744	152,130
	(0.058)	(0.043)	(0.046)
Sharpish	(0.000)	(-0.003)	(-0.003)
WRAP - CP12	1812	2373	2840
	(0.062)	(0.047)	(0.039)
WRAP - CP52	4305	4312	5316
	(0.044)	(0.044)	(0.036)
CvLPRIT	21496 (0.020) ne University of Sheffield	46761 (0.010)	47521 (0.009)

Marginal health gain is usually lower when using NDB mapping compared to EuroQoL dataset

Effect on ICERS (inc QALYs)¹¹

Title	3L	5L EuroQoL	5L NDB	
CARDERA1	4648 (0.145)	5940 (0.113) <mark>22%</mark>	6054 (0.111) <mark>23%</mark>	Impact is particularly
CARDERA2	13,666 (0.084)	15,252 (0.075) <mark>10%</mark>	14,846 (0.077) <mark>8%</mark>	pronounced in
CARDERA3	15929 (0.082)	23940 (0.054) <mark>34%</mark>	30418 (0.043) <mark>48%</mark>	CACTUS (aphasia in stroke), RAIN
CACTUS	3,058 (0.15)	9,481 (0.05) <mark>67%</mark>	23,022 (0.02) <mark>87%</mark>	(traumatic brain injury) and
RAIN a)	184,700 (0.02)	738,800 (0.005) <mark>75%</mark>	1,231,333 (0.003) <mark>85%</mark>	CvLPRIT (MI) studies
RAIN b)	294,137 (0.051)	714,333 (0.021) <mark>59%</mark>	714,333 (0.021) <mark>59%</mark>	Severity of
IMPROVE	-44,617 (0.052)	-48,113 (0.046) <mark>12%</mark>	-54,742 (0.042) <mark>19%</mark>	patients?
COUGAR II	27,180 (0.115)	26,434 (0.119) +4%	26,484 (0.118) <mark>+3%</mark>	- RAIN 0.3 at baseline
ARCTIC	112,193 (0.058)	162,744 (0.043) 27%	152,130 (0.046) <mark>22%</mark>	- CACTUS 0.55 - But CARDERA
Sharpish	(0.000)	(-0.003)	(-0.003)	only 0.4
WRAP - CP12	1812 (0.062)	2373 (0.047) <mark>24%</mark>	2840 (0.039) <mark>36%</mark>	- And CvLPRIT 0.8
WRAP - CP52	4305 (0.044)	4312 (0.044) 0%	5316 (0.036) <mark>19%</mark>	
CvLPRIT	21496 (0.020)	46761 (0.010) 53%	47521 (0.009) <mark>53%</mark>	

08/11/2017 © The University of Shemiela



Effect on ICERS (inc QALYs)¹²

Title	3L	5L EuroQoL	5L NDB	5L NDB *
CARDERA1	4648 (0.145)	5940 (0.113)	6054 (0.111)	6,941 (0.097)
CARDERA2	13,666 (0.084)	15,252 (0.075)	14,846 (0.077)	17,627 (0.065)
CARDERA3	15929 (0.082)	23940 (0.054)	30418 (0.043)	20,304 (0.064)
CACTUS	3,058 (0.15)	9,481 (0.05)	23,022 (0.02)	Better mapping
RAIN a)	184,700 (0.02)	738,800 (0.005)	1,231,333 (0.003)	model uses HAQ and pain as
RAIN b)	294,137 (0.051)	714,333 (0.021)	714,333 (0.021)	covariates. Lowers marginal
IMPROVE	-44,617 (0.052)	-48,113 (0.046)	-54,742 (0.042)	QALY still further in
COUGAR II	27,180 (0.115)	26,434 (0.119)	26,484 (0.118)	2 comparisons
ARCTIC	112,193 (0.058)	162,744 (0.043)	152,130 (0.046)	
Sharpish	(0.000)	(-0.003)	(-0.003)	
WRAP - CP12	1812 (0.062)	2373 (0.047)	2840 (0.039)	
WRAP - CP52	4305 (0.044)	4312 (0.044)	5316 (0.036)	
CvLPRIT	21496 (0.020)	46761 (0.010)	47521 (0.009)	

08/11/2017 © The University of Sheffield

Impact on cost-effectiveness ¹⁴

- 16 model-based analyses from NICE Technology Appraisals
 programme
- Extensions of mapping model allows estimation of 5L utility from 3L utility score (and vice versa)
- Utility score does not need to be unique to a health state. Can be a mean score (for example).
- Rounded for anonymity and divided into oncology technologies, others with and without mortality gains.

Effect on ICERS

Area	3L	5L EuroQoL	5L NDB
	33,000	33,000	36,000
	44,000	40,000	39,000
Intervention in	45,000	39,000	39,000
oncology	45,000	40,000	40,000
	46,000	44,000	45,000
	47,000	44,000	46,000
	Dominant	Dominant	Dominant
	5,000	6,000	7,000
Intervention	6,000	6,000	6,000
improves survival and quality of life	7,000	7,000	7,000
	18,000	29,000	38,000
	23,000	23,000	27,000
	Dominant	Dominant	Dominant
Intervention improves quality of life only	19,000	33,000	42,000
	21,000	25,000	38,000
	22,000	36,000	48,000

If intervention increases LYs in pre-progression but not postprogression, QALY gain decreases as difference in utilities is less, so ICER increases.

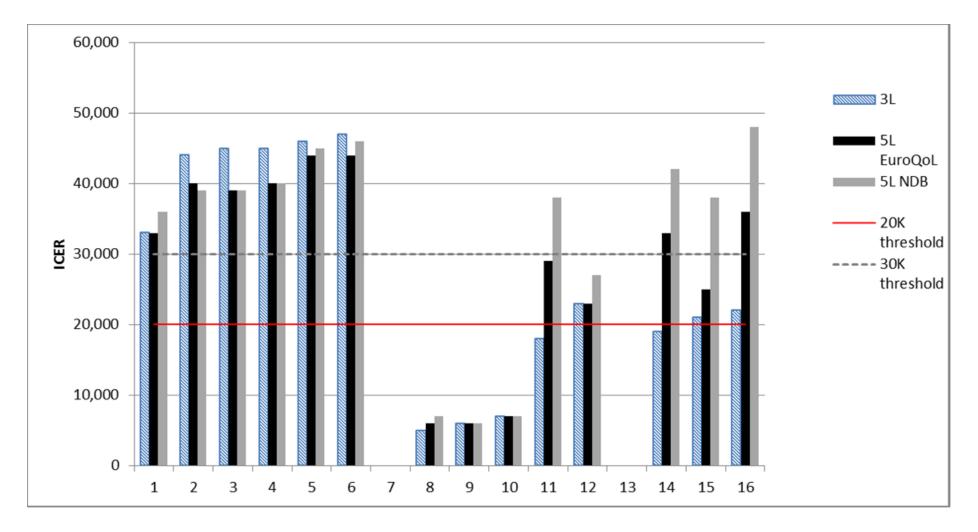
Most oncology ICERs decrease, as there are more QALYs gained from increasing survival.

Effect on ICERS

Area	3L	5L EuroQoL	5L NDB
	33,000	33,000	36,000
	44,000	40,000	39,000
Intervention in	45,000	39,000	39,000
oncology	45,000	40,000	40,000
	46,000	44,000	45,000
	47,000	44,000	46,000
	Dominant	Dominant	Dominant
	5,000	6,000	7,000
Intervention	6,000	6,000	6,000
improves survival and quality of life	7,000	7,000	7,000
	18,000	29,000	38,000
	23,000	23,000	27,000
Intervention improves quality of life only	Dominant	Dominant	Dominant
	19,000	33,000	42,000
	21,000	25,000	38,000
	22,000	36,000	48,000

If there is a survival benefit, change in ICER depends on size of survival benefit and change in utility.

If there is no survival benefit, ICERs increase as difference in utilities is less.



Effect on ICERS

Area	3L	5L EuroQoL	5L NDB	
	33,000	33,000	36,000	
	44,000	40,000	39,000	
Intervention in	45,000	39,000	39,000	
oncology	45,000	40,000	40,000	
	46,000	44,000	45,000	ICERs
	47,000	44,000	46,000	using I
	Dominant	Dominant	Dominant	mappir becaus margin gain is compa EuroQo
	5,000	6,000	7,000	
Intervention	6,000	6,000	6,000	
improves survival and quality of life	7,000	7,000	7,000	
	18,000	29,000	38,000	
	23,000	23,000	27,000	
Intervention improves quality of life only	Dominant	Dominant	Dominant	
	19,000	33,000	42,000	
	21,000	25,000	38,000	
	22,000	36,000	48,000	

ICERs are higher using NDB mapping because marginal health gain is lower compared to EuroQoL dataset

Discussion

Impact on ICERs

- 5L entails movement up the severity scale and compression within smaller range
- Technologies that improve QoL
 - ICERs get higher, often the change is substantial
- Technologies that improve length of life
 - ICERs can get lower, but most technologies that lengthen life also improve quality
- Impact also depends on the dataset used for mapping model
- Threshold? Should we move to 5L? Cannot use 3L and 5L interchangeably
 - Simple proportional adjustment not appropriate. Changes differ across the distribution
- Will need to link 3L and 5L for a long time...

Discussion

References:

Hernandez, M and Pudney, S (2017) "Econometric modelling of multiple self-reports of health states: The switch from EQ-5D-3L to EQ-5D-5L in evaluating drug therapies for rheumatoid arthritis.", Journal of health Economics, Vol. 55: 139-152.

Hernandez, M., Wailoo, A., Pudney, S. (2017) "Methods for Mapping Between the EQ-5D-5L and the 3L for Technology Appraisal", NICE DSU Report, available at: http://scharr.dept.shef.ac.uk/nicedsu/wp-content/uploads/sites/7/2017/05/Mapping-5L-to-3L-DSU-report.pdf

Wailoo, A., Hernandez, M., Grimm, S., et al. (2017) "Comparing the EQ-5D-3L and 5L Versions. What are the Implications for Cost-Effectiveness Estimates?", NICE DSU Report, available at: http://scharr.dept.shef.ac.uk/nicedsu/wp-content/uploads/sites/7/2017/05/DSU_3L-to-5L-FINAL.pdf

To Discover And Understand.