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EXECUTIVE SUMMARY 
This Technical Support Document focuses on heterogeneity in relative treatment effects. 

Heterogeneity indicates the presence of effect-modifiers. A distinction is usually made 

between true variability in treatment effects due to variation between patient populations or 

settings, and biases related to the way in which trials were conducted. Variability in relative 

treatment effects threatens the external validity of trial evidence, and limits the ability to 

generalise from the results, imperfections in trial conduct represent threats to internal 

validity. In either case it is emphasised that, although we continue to focus attention on 

evidence from trials, the study of effect-modifying covariates is in every way a form of 

observational study, because patients cannot be randomised to covariate values. This 

document provides guidance on methods for outlier detection, meta-regression and bias 

adjustment, in pair-wise meta-analysis, indirect comparisons and network meta-analysis, 

using illustrative examples. 

Guidance is given on the implications of heterogeneity in cost-effectiveness analysis. We 

argue that the predictive distribution of a treatment effect in a “new” trial may, in many cases, 

be more relevant to decision making than the distribution of the mean effect. Investigators 

should consider the relative contribution of true variability and random variation due to 

biases, when considering their response to heterogeneity.  

Where subgroup effects are suspected, it is suggested that a single analysis including an 

interaction term is superior to running separate analyses for each subgroup.  

Three types of meta-regression models are discussed for use in network meta-analysis where 

trial-level effect-modifying covariates are present or suspected: (1) Separate unrelated 

interaction terms for each treatment; (2) Exchangeable and related interaction terms; (3) A 

single common interaction term. We argue that the single interaction term is the one most 

likely to be useful in a decision making context. Illustrative examples of Bayesian meta-

regression against a continuous covariate and meta-regression against “baseline” risk are 

provided and the results are interpreted. Annotated WinBUGS code is set out in an Appendix. 

Meta-regression with individual patient data is capable of estimating effect modifiers with far 

greater precision, because of the much greater spread of covariate values. Methods for 

combining IPD in some trials with aggregate data from other trials are explained. 

Finally, four methods for bias adjustment are discussed: meta-regression; use of external 

priors to adjust for bias associated with markers of lower study quality; use of network 
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synthesis to estimate and adjust for quality-related bias internally; and use of expert 

elicitation of priors for bias. 
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1. INTRODUCTION 

This Technical Support Document (TSD) is concerned with heterogeneity, and specifically 

with between-trials variation in relative treatment effects. It aims to provide guidance on 

techniques that can be used to explore the reasons for heterogeneity, as recommended in the 

NICE Guide to Methods of Technology Appraisal.1 Variation in “baseline” natural history is 

dealt with in TSD5.2 In common with other documents in this series, we focus particularly on 

the implications of different forms of heterogeneity in a decision making context, on the 

technical specification of models that can estimate or adjust for potential causes of 

heterogeneity, and on the interpretation of such models in a decision context. There is a 

considerable literature on the origins and implications of heterogeneity and the reader is 

referred to the Cochrane Handbook3 for an introduction to the issues and further references. 

Heterogeneity in treatment effects is an indication of the presence of effect-modifying 

mechanisms, in other words of interactions between the treatment effect and the trial or trial-

level variable. A distinction is usually made between two kinds of interaction effect. The first 

results from variation between treatment effects due to different patient populations, settings, 

or variation in protocols across trials. We will refer to this as clinical variation in treatment 

effects. This variation is said to represent a threat to the external validity of trials, and it limits 

the extent to which one can generalise trial results from one situation to another. The trial 

may deliver an unbiased estimate of the treatment effect in a certain setting, but it may be 

“biased” with respect to the target population in a specific decision problem. Careful 

consideration of inclusion and exclusion criteria can help to minimise this type of bias, at the 

expense of having little or no evidence to base decisions on. 

The second type of interaction effect is due to deficiencies in the way the trial was conducted, 

which threaten its internal validity. Here, the trial delivers a biased estimate of the treatment 

effect in its target population, which may or may not be the same as the target population for 

decision. Typically, these biases are considered to vary randomly in size over trials, and do 

not necessarily have a zero mean. The clearest examples are the biases associated with 

markers of poor trial quality such as lack of allocation concealment or lack of double 

blinding: these have been shown to be associated with larger treatment effects.4,5 A general 

model for heterogeneity that encompasses both types can be found in Higgins et al.,6 but it is 

seldom possible to determine what the causes of heterogeneity are, or how much is due to 

true variation in clinical factors and how much is due to other unknown causes of biases.  
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This document provides guidance on methods for meta-regression and bias adjustment that 

can address the presence of heterogeneity. In a network meta-analysis context, variability in 

relative treatment effects can also induce inconsistency (see TSD47) across pair-wise 

comparisons. The methods introduced here are therefore also appropriate for dealing with 

inconsistency. Unless otherwise stated, when we refer to heterogeneity this can be interpreted 

as heterogeneity and / or inconsistency. 

The document should be seen as an adjunct to TSD2,8 which sets out a generalised linear 

modelling framework for network meta-analysis, indirect comparisons (IC) and pair-wise 

meta-analysis. TSD28 explains how the same core model can be applied with different 

likelihoods and linking functions. It should be understood that this carries over entirely to the 

Bayesian models developed for cross-validation (Section 3) sub-groups or meta-regression 

(Section 4) and bias-adjustment (Section 5) presented below. 

 

1.1. AN OVERVIEW OF META-REGRESSION 

Meta-regression is used to relate the size of a treatment effect obtained from a meta-analysis, 

to certain numerical characteristics of the included trials, with the aim of explaining some, or 

all, of the observed between-trial heterogeneity. These characteristics can be due to specific 

features of the individual participants in the trial, or they can be directly due to the trial 

setting or conduct. In common with other forms of meta-analysis, meta-regression can be 

based on aggregate (trial-level) outcomes and covariates, or Individual Patient Data (IPD) 

may be available. Textbooks3,9 correctly emphasise that, even if we restrict attention to 

randomised controlled trial (RCT) data, the study of effect-modifiers is inherently 

observational. This is because it is not possible to randomise patients to one covariate value 

or another. As a consequence, the meta-regression techniques described in this document 

inherit all the difficulties of interpretation and inference that attach to non-randomised 

studies: confounding, correlation between covariates, and, most important, the inability to 

infer causality from association. However, although this restriction on the confidence we can 

have in inference based on meta-regression is applied across the board, there are major 

differences in the quality of evidence from meta-regression that depend on the nature of the 

covariate in question, and the structure of the data, as described below.  
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1.1.1. Within-trial and between-trial covariates 

We will define trial-level covariates as covariates that relate to trial-characteristics or to trial 

participant characteristics which have been aggregated at trial-level and for which IPD, or a 

suitable breakdown of results by characteristic, are not available. Patient-level covariates are 

defined as covariates which relate to patient attributes and can be attributed to specific 

patients in each trial, either because IPD are available, or because a sufficient breakdown of 

results has been provided. 

If we begin with categorical covariates, we can distinguish between the following scenarios: 

A1. Trial-level covariates which relate to trial characteristics. For example, trials 

which have been conducted on primary and secondary prevention patient populations. 

This covariate relates to a between-trial treatment-covariate interaction. Methods for 

analysis are discussed under the heading Sub-Group effects (Section 4.1). 

A2. Trial-level covariates which relate to patient characteristics. Examples include 

(a) Separate trials on men and women: sex as a between-trial covariate. This is 

equivalent to A1 and methods are discussed in Section 4.1. 

(b) Trials that include both men and women and report the proportions of men and 

women in the trial, but do not provide a separate breakdown of estimates 

(including uncertainty) by sex. The proportion is sometimes taken as a between-

trial continuous covariate. Methods for this type of meta-regression are discussed 

in Section 4.3. 

(c) Trials that include both men and women and do not report proportions or a 

breakdown of outcomes by sex. No meta-regression can be carried out unless 

further assumptions are made. 

A3. Patient-level covariates  

(a) Trials which have IPD available for the outcome and covariate of interest. In this 

case the covariate can be used to explore within-trial covariate effects, which can 

then be explored further in the meta-regression. 

(b) Trials that include, for example, both men and women, but report the treatment 

effect with a measure of precision separately for each group. This is a within-trial 

effect, and for the purpose of meta-regression, is equivalent to having IPD on sex. 

This is true whether binary or continuous outcomes are reported, but only applies 

to categorical covariates. 
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A similar set of distinctions can be drawn for continuous covariates: 

B1. Trial-level covariates which relate to trial characteristics. For example, the dose 

of a drug. Methods are discussed in Sections 4.3 and 4.4. 

B2. Trial-level covariates which relate to patient characteristics. For example, the 

mean age of the patients in the trial. This is equivalent to B1 and methods are discussed in 

Sections 4.3 and 4.4. 

B3. Patient-level covariates. With binary outcomes, if mean age and a measure of 

uncertainty are reported separately for events and non-events then, for the purpose of 

meta-regression, this is as good as having IPD with each patient’s exact age recorded. If 

the mean covariate values are not reported separately, then IPD would be needed to 

perform meta-regression. For continuous outcomes with continuous covariates, IPD is 

always required for meta-regression. This is discussed in Section 4.5. 

When investigating an interaction between treatment and covariate, one is comparing the 

treatment efficacy at one covariate value with the efficacy at another. There are two key 

differences between within- and between-trial comparisons. Firstly, with a categorical 

covariate, like sex, the difference between the within-trial comparison and the between-trial 

comparison is very similar to the difference between a paired and an unpaired t-test. With 

between-trial comparisons, a given covariate effect (i.e. interaction) will be harder to detect 

as it has to be distinguishable from the “random noise” created by the between-trial variation. 

However, for within-trial comparisons the between-trial variation is controlled for, and the 

interaction effect needs only to be distinguishable from sampling error. With between-trial 

comparisons, because the number of observations (trials) may be very low while the precision 

of each trial may be relatively high, it is quite possible to observe a highly statistically 

significant relation between the treatment effect and the covariate that is entirely spurious.10 

1.1.2. Ecologic Fallacy 

A second difference is that between-trial comparisons are vulnerable to ecologic bias or 

ecologic fallacy.11 This is a phenomenon in which for example, a linear regression coefficient 

of treatment effect against the covariate in the between-trial case can be entirely different to 

the coefficient for the within-trial data. It is perfectly possible, of course, to have both within-

trial, A3(b), and between-trial information, A2(a), in the same evidence synthesis. With 

continuous covariates, if all the data are IPD (B3), it is possible to fit a model that estimates 

both a between-trial coefficient based on the mean covariate value, and a within-trial 
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coefficient based on individual variation of the covariate around the mean. Methods for IPD 

analysis are discussed in Section 4.5.  

1.1.3.  Greater power of IPD with continuous covariates 

With continuous covariates and IPD, not only does the within-trial comparison avoid 

ecological bias, but it also has far greater statistical power to detect a true covariate effect. 

This is because the variation in patient covariate values will be many times greater than the 

variation between the trial means, and the precision in any estimated regression coefficient 

depends directly on the variance in covariate values.  

1.1.4. Use of collapsed category data 

The situation in A2(b) has been referred to as “collapsed category” data,12,13 where the data 

have been pooled and the treatment effect statistic has been computed from the pooled data, 

as if the covariate had not been reported. In these cases there is a within-trial comparison, but 

the data has been degraded. A data structure that is quite commonly found is a mixture of 

trials: some on men, some on women, and a third category that report the proportion of men 

and women. It is possible to combine these trials into a single analysis with the proportion of 

men as a covariate in a between-trial comparison. The covariate would take the value one for 

trials on men, zero for trials on women. Such data can be analysed using the methodology for 

Sub-Groups (Section 4.1). However it is essential to note that this model is only strictly 

correct for linear models, in other words models with an identity link (see TSD28). It is not 

valid for logit, log or other commonly used models.11 There are collapsed category methods 

for incorporating all these forms of data, using non-linear models, without introducing bias. 

This is beyond the scope of this document, but readers are referred to published papers whose 

ideas can be adapted to solve this problem.12-14 These methods can be extended still further to 

incorporate data from trials of type A2(c) in which information on the covariate is entirely 

“missing”. This has not been attempted for treatment effects, but again ideas and 

programming code from similar applications12,13 can be adapted.  

1.1.5. Aggregation bias 

Finally, it needs to be appreciated that in cases where the covariate does not interact with the 

treatment effect, but modifies the baseline risk, the effect of pooling data over the covariate is 

to bias the estimated treatment effect towards the null effect. This is a form of ecologic bias 

known as aggregation bias11 but it does not affect strictly linear models, where pooling data 

across such covariates will not create bias. Usually it is significant only when both the 
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covariate effect on baseline risk and the treatment effect are quite strong. It is a particular 

danger in survival analysis because the effect of covariates like age on cancer risk can be 

particularly marked, and because the log-linear models routinely used are highly non-linear. 

When covariates that affect risk are present, even if they do not modify the treatment effect, 

the analysis must be based on pooled estimates of treatment effects from a stratified analysis 

for group covariates and regression for continuous covariates, and not on treatment effects 

estimated from pooled data. 

 

1.2.  OVERVIEW OF BIAS ADJUSTMENT 

The aim of bias adjustment is in effect to transform estimates of treatment effect that are 

biased relative to the desired effect in the target population, into unbiased estimates. It is 

necessary in all cases to take into account the uncertainty in external data or prior opinions 

that are used. In Section 5 we discuss four methods, of which two are types of meta-

regression. These are: covariate adjustment for external validity biases (Section 5.1); 

adjustment and down-weighting of evidence at risk of bias, based on external data, for 

internal biases (Section 5.2); estimation of bias associated with markers of risk of internal 

bias within a network meta-analysis (Section 5.3); and adjustment for internal and/or external 

biases based on expert opinion or other evidence (Section 5.4).  

 

1.3. NETWORK META-ANALYSIS AS A FORM OF META-REGRESSION 

It should be emphasised that although network meta-analysis can be understood as a form of 

meta-regression, it is based on randomised comparisons.15 Indeed, it can be shown that the 

coherent estimates of treatment effects assuming consistency (see TSD28) are weighted 

averages of the estimates from the individual trials,16 just as is the case in pair-wise meta-

analysis. It is also misleading to state that network meta-analyses or indirect comparisons 

suffer from the biases of observational studies.3 They suffer from problems of unobserved 

effect modifiers, in the same way as pairwise meta-analysis. Both give unbiased estimates of 

the treatment effects in the target population, as long as their constituent trials are unbiased 

for that target population. Both are superior to observational studies as they are based on 

randomised comparisons. 
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2. MEASURES OF HETEROGENEITY 

A number of standard methods for measuring between-trials heterogeneity have been 

proposed, and readers can be referred to standard texts.3,9,17 In the literature, tests of the null 

hypothesis of homogeneity in Fixed Effect (FE) models, e.g. Cochran’s Q, are often used to 

justify the choice of a Random Effects (RE) model. The I2 statistic has the advantage of being 

scale-free, but it is dependent on the number and size of the included studies, making it hard 

to interpret in a typical meta-analysis.18 The approach taken in TSD2,8 in keeping with the 

Bayesian framework, has been to compare the Fixed and Random Effects models’ residual 

deviance and DIC statistics.19 An advantage of the Bayesian approach is that it provides a 

posterior distribution of the between-trials variance – or, perhaps easier to interpret – the 

between trial standard deviation, which gives investigators some insight into the range of 

values that are compatible with the data. It is also possible to obtain a measure of uncertainty 

for the between-trials variance using classical approaches,20 but this is not often done. 

We must, however, repeat the important warning given in TSD28 (Section 6.2) that the 

posterior for the between trial standard deviation is likely to be extremely sensitive to the 

prior, and in particular that our “default” practice of using vague priors is likely to result in 

posteriors which allow for unrealistically high levels of heterogeneity. This will inevitably 

occur whenever the number of trials is small, or when the majority of trials are small. The 

solution is to use informative priors, based on expert opinion or on meta-epidemiological 

data. The easiest approach might be to identify a large meta-analysis of other treatments for 

the same condition and using the same outcome measures, and use the posterior distribution 

for the between-trial heterogeneity from this meta-analysis to inform the current analysis.21 

 

2.1. IMPLICATIONS OF HETEROGENEITY IN DECISION MAKING 

The critical issue, which has received comparatively little attention, is how to respond to high 

levels of heterogeneity in a decision making context. It is essential that investigators compare 

the size of the treatment effect to the extent of between trials variation. Figure 1 portrays a 

situation where a RE model has been fitted. The posterior mean of the mean treatment effect 

is 0.70 with posterior standard deviation (sd)=0.2, making the mean effect clearly different 

from zero with 95% CrI (0.31, 1.09). However, the posterior mean of the between-trials 

standard deviation is =0.68, comparable in size to the mean effect. Now consider the 

question: what is a reasonable confidence interval for our prediction of the outcome of a 



17 

 

future trial of infinite size? An approximate answer in classical statistics is found by adding 

the variance of the mean to the between-trials variance, which gives 2 2sd 0.50   giving a 

predictive standard deviation of 0.71. Note that the 95% predictive interval is now (-0.69, 

2.09) easily spanning zero effect, including a range of harmful effects. If we interpret these 

distributions in a Bayesian way, we would find that the probability that the mean effect is less 

than zero only is 0.0002, while the probability that a new trial would show a negative effect is 

much higher: 0.162 (Figure 1). 

 

Figure 1 Posterior (solid) and predictive (dashed) densities for a treatment effect with mean=0.7, standard 

deviation=0.2 and heterogeneity (standard deviation)=0.68. The area under the curve to the left of the 

vertical dotted line is the probability of a negative value for the treatment effect. 

 

This issue has been discussed before,6,22-24 and it has been proposed that, in the presence of 

heterogeneity, the predictive distribution, rather than the distribution of the mean treatment 

effect, better represents our uncertainty about the comparative effectiveness of treatments in a 

future “roll out” of a particular intervention. In a Bayesian Markov chain Monte Carlo 

(MCMC) setting, a predictive distribution is easily obtained by drawing further samples from 

the distribution of effects: 

 2~ ( , )new N d    
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where d is the estimated (common) mean treatment effect and 2, the estimated between-trial 

heterogeneity variance (see TSD28).  

The mean of the predictive distribution, on its linear scale, will be the same as the mean of 

the distribution of the mean effect. But the implications of this recommendation on the 

uncertainty in a decision, in cases where there are high levels of unexplained heterogeneity, 

could be quite profound, and it is therefore important that the degree of heterogeneity is not 

exaggerated. This immediately raises the question: what are the causes of the 

heterogeneity.25,26 This is taken up in greater detail in subsequent sections, where we discuss 

methods that can reduce heterogeneity by adjusting trial results for factors that, putatively, 

cause it. For present purposes we can distinguish between true variability in the size of the 

treatment effect across patient populations, and apparent random variation due to biases 

caused by the way in which the trial was conducted.  

Higgins et al.6 make it clear that the variance term in the predictive distribution should consist 

only of true variation between trial populations. At the present time, however, there is no 

clear methodology, or source of information, that would allow one to distinguish the different 

sources of variation. Recent meta-epidemiological studies of very large numbers of meta-

analysis are beginning to throw light on this, but all that can confidently be said at this time is 

that the observed heterogeneity is likely to be an over-estimate of the true variation in effect 

size.  

This discussion has assumed exchangeability over all included trials. However, the target 

population for decision might be more similar to that of some trials than others. In this case 

adjustments for external validity should be considered – see Section 5. 

 

3. OUTLIER DETECTION 

Closely related to the question of heterogeneity is the matter of outlier detection. Here the 

focus is not on the overall level of variation in trial results, but on one or two trials that seem 

to have results that are particularly different from the others. The two issues are closely 

related, as a single outlying trial may impact greatly on the measure of heterogeneity. 

Conversely, a high level of heterogeneity makes it difficult to detect a true outlier.  
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3.1. PREDICTIVE CROSS-VALIDATION IN PAIR-WISE META-ANALYSIS 

Figure 2 shows a forest plot with the crude log-odds ratios calculated from the data in Table 

1, and the “shrunken” estimates from a RE model (i.e. the trial-specific treatment effects, 

assumed to be exchangeable), for a set of 16 trials of intravenous magnesium against placebo, 

for patients with acute myocardial infarction.27 WinBUGS code for all analyses is presented 

in the Appendix (Example 1). 

 

Table 1 Number of deaths out of the total number of patients for 16 trials of intravenous magnesium 

against placebo, for patients with acute myocardial infarction.27 

   Placebo Magnesium 
Trial ID Trial Name Year Deaths Total Deaths Total 

1 Morton 1984 2 36 1 40 
2 Rasmussen 1986 23 135 9 135 
3 Smith 1986 7 200 2 200 
4 Abraham 1987 1 46 1 48 
5 Feldstedt 1988 8 148 10 150 
6 Shechter 1989 9 56 1 59 
7 Ceremuzynski 1989 3 23 1 25 
8 Bertschat 1989 1 21 0 22 
9 Singh 1990 11 75 6 76 
10 Pereira 1990 7 27 1 27 
11 Shechter1 1991 12 80 2 89 
12 Golf 1991 13 33 5 23 
13 Thorgersen 1991 8 122 4 130 
14 LIMIT-2 1992 118 1157 90 1159 
15 Shechter2 1995 17 108 4 107 
16 ISIS-4 1995 2103 29039 2216 29011 

 

The choice of a RE model for this data was based on a posterior mean of the residual 

deviance of 29.6 (which compares well to 32 data points) and DIC=54.2, compared to a 

posterior mean of the residual deviance of 77.5 and DIC=94.5 for a FE model (see TSD28 for 

more details). The posterior median of the standard deviation is 0.68 with 95% CrI (0.35, 

1.30), which is comparable in size to the mean treatment effect of -0.89 with 95% CrI (-1.49, 

-0.41) on the log-odds ratio scale. This indicates that there is substantial heterogeneity.  

Figure 2 shows that one particular trial, the ISIS-4 “mega-trial”, has an estimated trial-

specific log-odds ratio of 0.055 with 95% CrI (-0.007, 0.117) which is somewhat different 

from the other trials. In particular neither the crude 95% Confidence Interval (CI) nor the 

“shrunken” 95% CrI for this trial overlap with the 95% CrI for the mean treatment effect 

(Figure 2). Investigators might wonder whether this trial is an “outlier” in some sense. The 

appropriate tool for examination of single trials in a meta-analysis is cross-validation28,29 
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based on a “leave one out” approach. The procedure is to remove the trial from the synthesis, 

and compare the observed treatment effect to the predictive distribution of effects that we 

would expect based on an analysis of the remaining trials. So, the first step in predictive 

cross-validation is to fit the RE meta-analysis model to the data in Table 1, excluding trial 16, 

ISIS-4. 

 

 

Figure 2 Magnesium Example: Crude log-odds ratios with 95% CI (filled squares, solid lines); posterior 

mean with 95% CrI of the trial-specific log-odds ratios, “shrunken” estimates, (open squares, dashed 

lines); posterior mean with 95% CrI of the posterior (filled diamond, solid line) and predictive 

distribution (open diamond, dashed line) of the pooled treatment effect, obtained from a RE model 

including all the trials. 

 

Following the notation in TSD28, rik represents the number of events (deaths), out of the total 

number of patients in each arm, nik, for arm k of trial i, and is assumed to have a Binomial 

likelihood ~ Binomial( , )ik ik ikr p n ,where pik represents the probability of an event in arm k of 

trial i for i=1,…, 15 (excluding ISIS-4, trial 16); k=1,2. The RE model is  

 ,1 { 1}logit( )ik i i k kp I      

where 

 { }
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 


 (1) 

Morton 1984
Rasmussen 1986

Smith 1986
Abraham 1987
Feldstedt 1988
Shechter 1989

Ceremuzynski 1989
Bertschat 1989

Singh 1990
Pereira 1990

Shechter 1991
Golf 1991

Thorgersen 1991
LIMIT-2 1992

Shechter 1995
ISIS-4 1995

posterior mean

predictive mean

-4 -2 0 2 4
log-odds ratio



21 

 

and the trial-specific log-odds ratios come from a common distribution: 2
,12 ~ ( , )i N d  . The 

next step is to draw the predicted treatment effect in a future trial, δnew, from the predictive 

distribution 

 2~ ( , )new N d    

where d and  are drawn from the posterior distributions. We now need to draw a replicate 

study of the same size and with the same baseline risk as ISIS-4, onto which we will apply 

the predictive treatment effect δnew. In this example the baseline effect is the logit of the 

probability of mortality on Placebo, pbase, which could be estimated from the proportion of 

mortalities on the placebo arm of ISIS-4 as 2103/29039=0.072. However, this would not 

convey our uncertainty about this probability. Instead we can assume that the probability of 

mortality in a new study like ISIS-4 has a Beta distribution 

 ~ Beta( , )basep a b   

where a=r16,1=2103, the number of events in the placebo arm of trial 16 (ISIS-4) and b=n16,1-

r16,1=26936, the number of non-events in the control arm of trial 16. The predictive 

probability of mortality on Magnesium in a future study like ISIS-4, given the remaining 15 

trials, pnew, is given by 

 logit( ) logit( )new base newp p     

and the predicted number of events, rnew, in the Magnesium arm of a future trial of the same 

size as trial 16 (ISIS-4) can be drawn from a binomial distribution with probability pnew 

 16,2~ Binomial( , )new newr p n   

and compared to the observed number of events in trial 16 (ISIS-4) to obtain a Bayesian p-

value: the probability of obtaining a value as extreme as that observed in trial 16, i.e. 

Pr(rnew>r16,2). Within a Bayesian MCMC framework, this is done by setting up a variable 

that, at each iteration, takes the value 1 if rnew>r16,2 and is 0 otherwise. By averaging over a 

large number of iterations this variable gives the desired probability. 

WinBUGS code to fit the original RE model is given in TSD28 (Programs 1(a) or (c)). Code 

for predictive cross-validation is provided in the Appendix (Program 1). The result is a p-

value of 0.056, indicating that a trial with a result as extreme as ISIS-4 would be unlikely, but 

still possible, given our model for the remaining data (convergence was achieved after 20,000 

burn-in iterations and results are based on 50,000 samples from three independent chains). In 

examining these results, however, one must take into account the effective number of tests 

that could be undertaken. In carrying out cross-validation for ISIS-4 we have picked the most 
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extreme of 16 trials, so there is an implication that n=16 tests could be performed and the test 

on ISIS-4 would give the most extreme result (i.e. have the smallest p-value). To correctly 

interpret the significance of the observed p-value we need to compare it to its expected value, 

which is 1/(n+1) = 0.059, the value of the n-th Uniform order statistic. The observed p-value 

therefore suggests that ISIS-4 is not necessarily incompatible with a RE model fitted to the 

remaining data. This can also be seen in Figure 3 which now presents the “shrunken” 

estimates (δi2, i=1,…,15), mean and predictive treatment effects for a RE meta-analysis 

excluding the ISIS-4 trial, but includes the observed log-odds ratio and CI for this trial. It can 

be seen that the observed log-odds ratio from the ISIS-4 trial although well outside the CrI for 

the posterior mean still lies within the bounds of the CrI for the predictive mean treatment 

effect, which is the basis for predictive cross-validation. 

This is a statistical result only: it is impossible to deduce whether ISIS-4 is a deviant result, or 

whether the other trials are. This particular meta-analysis has been discussed repeatedly30,31 

and current opinion is that ISIS-4 is in fact the “correct” result.32  

 

 

Figure 3 Magnesium Example: Crude log-odds ratios with 95% CI (filled squares, solid lines); posterior 

mean with 95% CrI of the trial-specific log-odds ratios, “shrunken” estimates, (open squares, dashed 

lines); posterior mean with 95% CrI of the posterior (filled diamond, solid line) and predictive 

distribution (open diamond, dashed line) of the pooled treatment effect, obtained from a RE model 

excluding the ISIS-4 trial. 
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The Magnesium dataset holds several important messages about RE models in decision 

making. First, note that the RE models with and without the ISIS-4 trial fit equally well (the 

posterior means of the residual deviances for the two models are 29.7 and 27.9 to compare to 

32 and 30 data points respectively). This is because a RE model can generally fit any random 

distribution of effects, it is not greatly affected by the spread. Second, it illustrates the 

weakness in basing inference on the mean effect. Within the entire ensemble of trials, 

whether including or even excluding itself, ISIS-4 is not particularly remarkable. It is, 

however, markedly different from the mean effect. To base the decision on the mean effect is, 

therefore, to base a decision on a model in which the different sources of evidence are in an 

unexplained conflict. A model based on the predictive distribution is compatible with all the 

data. 

 

3.2. PREDICTIVE CROSS-VALIDATION FOR INDIRECT COMPARISONS AND 

NETWORK META-ANALYSIS 

Cross-validation can be applied without modification to broader networks of evidence, 

including multiple treatments and multi-arms trials. However, it needs to be borne in mind 

that, when there are multiple treatments, the predictive distribution is multi-variate normal. 

So, for a network with s treatments, the predictive distribution for the s-1 treatment effects 

relative to treatment 1 (the basic parameters, see TSD28) is given by 
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where d and  are sampled from the posterior distributions (given the data). This can be re-

written as a series of conditional univariate normal distributions33 
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 (3) 

Either the multivariate distribution in equation (2) or the conditional distributions in equation 

(3) must be used to estimate the predictive random effects of each treatment relative to 

treatment 1 (the reference treatment). The code presented in the Appendix (Program 2) 

follows the code in TSD28 and uses the formulation in equation (3) as it allows for a more 

generic code which works for networks with any number of treatments.  
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To ensure that the correlations between the predictive treatment effects are carried through 

correctly to all treatment contrasts, the predictive distributions for the other treatment 

comparisons are obtained from the consistency equations (TSD28): 

 1 1
new new new
XY Y X      

See Example 2 in the Appendix for an illustration and WinBUGS code.  

In the context of network meta-analysis, cross-validation for outlier detection is closely 

related to methods of inconsistency checking such as the node-split,34 where “direct” 

evidence from trials on a specific contrast is separated from the rest of the network to produce 

an estimate of the relative treatment effect, which is then compared to the relative effect 

predicted from the rest of the network. In effect, the node-split method is analogous to a 

cross-validation where a subset of trials, rather than just one trial, is removed from the 

original analysis.  

However, one crucial difference between these methods is that although cross-validation is 

essentially a method for detecting “outliers”, the concept of inconsistency between “direct” 

and “indirect” evidence refers to inconsistency in expected (i.e. mean) effects. It is for this 

reason that node-splitting for inconsistency checking, as presented in TSD4,7 is based on the 

posterior distributions of the mean effects. This will frequently result in a situation where, 

with a triangular network in which one edge consists of a singleton trial, node splitting might 

show inconsistency in the expected effects, while cross-validation fails to show that the 

singleton trial is an outlier. Such an outcome is by no means paradoxical: the ISIS-4 trial is 

not an outlier when the predictive distribution is considered, although it departs very 

markedly from the expected effect based on the remaining evidence. However, this example 

indicates that investigators need to be clear about whether they are looking for evidence that, 

for example, the mean AB and AC effects are inconsistent with the mean BC effect (based 

albeit on a single trial), or whether they are concerned that the single BC trial is an “outlier” 

in the context of an evidence synthesis. 

Of course, technically there is no reason why inconsistency checks cannot be made on the 

predictive distributions of the treatment effects, and this may be desirable if inference is to be 

based on the predictive treatment effects from a network meta-analysis. 
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4. SUBGROUPS, META-REGRESSION AND ADJUSTING FOR 

BASELINE RISK  

4.1. AN INTRODUCTION TO META-REGRESSION: SUB-GROUP EFFECTS 

In the context of treatment effects in RCTs, a sub-group effect can be understood as a 

categorical trial level covariate that interacts with the treatment, and this corresponds to 

scenario A1 in Section 1.1.1. The hypothesis would be that the size of treatment effect is 

different in, for example, male and female patients, or that it depends on age group, previous 

treatment, etc. The simplest way of analysing such data is to carry out separate analyses for 

each group and then examine the estimates of the relative treatment effects. However, this 

approach has two disadvantages. First, if the models have random treatment effects, having 

separate analyses means having different estimates of between-trial variation. As there is 

seldom enough data to estimate the between-trial variation, it may make more sense to 

assume that it is the same for all subgroups. A second problem is that running separate 

analyses does not immediately produce the test of interaction that is required to reject the null 

hypothesis of equal effects. The alternative to running separate analyses for each subgroup is 

a single integrated analysis with a shared between-trial heterogeneity parameter, and an 

interaction term, β, introduced on the treatment effect.  

The RE model for separate pairwise meta-analyses, introduced in TSD2,8 is 

 ,1 { 1}ik i i k kI       

where ik  is the linear predictor (for example the log-odds) in arm k of trial i, μi are the trial-

specific baseline effects in a trial i, treated as unrelated nuisance parameters and δi,1k are the 

trial-specific treatment effects of the treatment in arm k relative to the control treatment in 

arm 1 in that trial, with k=1,2 and I defined in equation (1).  

The meta-regression model with random treatment effects is 

  ,1 { 1}ik i i k i kx I        (4) 

where xi is the trial-level covariate for trial i, which can represent a subgroup, a continuous 

covariate or baseline risk. We can re-write equation (4) as 

 1

2 ,12

i i

i i i ix
 
   



  
  

and note that the treatment and covariate interaction effects (δ and β) only act in the treatment 

arm, not in the control. For a RE model the trial-specific log-odds ratios come from a 
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common distribution: 2
,12 ~ ( , )i N d  . For a FE model we replace equation (4) with 

  { 1}ik i i kd x I      . In the Bayesian framework d, β and  will be given independent 

(non-informative) priors: for example d, β ~ N(0, 1002) and  ~ Uniform(0,5). 

Section 4.1.1 provides a worked example contrasting the results obtained with separate 

analyses and those from a sub-group interaction analysis. 

Ideally, we would want to include subgroup terms whether they were “statistically 

significant” or not, possibly using informative priors elicited from clinical experts. However, 

the NICE Methods Guide1 suggests that subgroup effects should be statistically robust if they 

are to be considered in a cost-effectiveness model, as well as having some a priori 

justification. In practice, it would be difficult to sustain an argument that a treatment should 

be accepted or rejected based on a statistically weak interaction. 

4.1.1. Subgroups in a pair-wise meta-analysis: Statins Example 

A meta-analysis of 19 trials of Statins for cholesterol lowering, against placebo or usual 

care35 included some trials on which the aim was primary prevention (patients included had 

no previous heart disease), and others on which the aim was secondary prevention (patients 

had previous heart disease). Note that the subgroup indicator is a trial-level covariate. The 

outcome of interest was all-cause mortality and the data are presented in Table 2. The 

potential effect-modifier, primary vs secondary prevention, can be considered a subgroup in a 

pair-wise meta-analysis of all the data, or two separate meta-analyses can be conducted on 

the two types of study. 

  



27 

 

Table 2 Meta-analysis of Statins against Placebo for cholesterol lowering in patients with and without 

previous heart disease:35 number of deaths due to all-cause mortality in the control and Statin arms of 19 

RCTs. 

 
Placebo/Usual care Statin 

 Trial 
ID 

number of deaths 
ri1 

number of patients 
ni1 

number of deaths 
ri2 

number of patients 
ni2 

Type of prevention 
xi 

1 256 2223 182 2221 Secondary 
2 4 125 1 129 Secondary 
3 0 52 1 94 Secondary 
4 2 166 2 165 Secondary 
5 77 3301 80 3304 Primary 
6 3 1663 33 6582 Primary 
7 8 459 1 460 Secondary 
8 3 155 3 145 Secondary 
9 0 42 1 83 Secondary 
10 4 223 3 224 Primary 
11 633 4520 498 4512 Secondary 
12 1 124 2 123 Secondary 
13 11 188 4 193 Secondary 
14 5 78 4 79 Secondary 
15 6 202 4 206 Secondary 
16 3 532 0 530 Primary 
17 4 178 2 187 Secondary 
18 1 201 3 203 Secondary 
19 135 3293 106 3305 Primary 

 

The number of deaths in arm k of trial i, rik, is assumed to have a Binomial likelihood 

~ Binomial( , )ik ik ikr p n , i=1,…,19; k=1,2. Defining xi as the trial-level subgroup indicator 

such that 

 
0 if study  is a primary prevention study
1 if study  is a secondary prevention studyi

i
x

i


 


  

our interaction model is given in equation (4) where =logit( )ik ikp  is the linear predictor (see 

TSD28). In this setup, i  represent the log-odds of the outcome in the ‘control’ treatment (i.e. 

the treatment indexed 1) and ,12i  are the trial-specific log-odds ratios of success on the 

treatment group compared to control for primary prevention studies.  

WinBUGS code to fit two separate fixed or random effects models is given in TSD28 

(programs 1(a) to 1(d)). Code for a single analysis with an interaction term for subgroup is 

given in the Appendix to this document (Example 3, Programs 3(a) and 3(b)). 

The results (including the model fit statistics introduced in TSD28) of the two separate 

analyses and the single analysis using the interaction model for fixed and random treatment 
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effects models are shown in Table 3. For the FE models, convergence was achieved after 

10,000 burn-in iterations for separate analyses (20,000 iterations for the joint analysis) and 

results are based on 50,000 samples from three independent chains. For the RE models 

40,000 burn-in iterations were used for the separate analyses, 50,000 burn-in iterations were 

used for the joint analysis and results are based on 100,000 samples from three independent 

chains. Note that in a FE context the two analyses deliver exactly the same results for the 

treatment effects in the two groups, while in the RE analysis, due to the shared variance, 

treatment effects are not quite the same: they are more precise in the single analysis, 

particularly for the primary prevention subgroup where there was less evidence available to 

inform the variance parameter, leading to very wide Credible Intervals (CrI) for all estimates 

in the separate RE meta-analysis. However, within the Bayesian framework, only the joint 

analysis offers a direct test of the interaction term β, which, in both cases has a 95% Credible 

Interval (CrI) which includes the possibility of no interaction, although the point estimate is 

negative, suggesting that Statins might be more effective in secondary prevention patients. 
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Table 3 Posterior summaries, mean, standard deviation (sd) and 95% Credible Interval (CrI) of the log-odds ratio (LOR), odds ratio (OR) and posterior median, sd 

and 95% CrI between-trial heterogeneity () of all-cause mortality when using Statins (LOR<0 and OR<1 favour Statins) for primary and secondary prevention 

groups for both fixed and random effects models; and measures of model fit: posterior mean of the residual deviance (resdev), number of parameters (pD) and DIC. 

 Fixed effects Random effects 
 Primary Prevention Secondary Prevention Primary Prevention Secondary Prevention 
 Separate analyses Separate analyses 
 mean sd CrI mean sd CrI mean/median sd CrI mean/median sd CrI 
LOR -0.11 0.10 (-0.30,0.09) -0.31 0.05 (-0.42,-0.21) -0.18 0.74 (-2.01,1.12) -0.36 0.16 (-0.72,-0.06) 
OR 0.90 0.09 (0.74,1.09) 0.73 0.04 (0.66,0.81) 1.12 3.65 (0.13,3.07) 0.71 0.11 (0.49,0.94) 
 - - - - - - 0.79 0.98 (0.06,3.90) 0.16 0.23 (0.01,0.86) 
resdev 16.9†   29.0‡   11.9†   28.3‡   
pD 6.0   15.0   9.3   16.8   
DIC 22.9   44.0   21.1   45.1   
 Single analysis with interaction term, β, for subgroup Single analysis with interaction term, β, for subgroup 
 mean sd CrI mean sd CrI mean/median sd CrI mean/median sd CrI 
β -0.21 0.11 (-0.42,0.01)    -0.29 0.26 (-0.86,0.20)    
LOR -0.11 0.10 (-0.30,0.09) -0.31 0.05 (-0.42,-0.21) -0.07 0.20 (-0.48,0.36) -0.36 0.16 (-0.72,-0.07) 
OR 0.90 0.09 (0.74,1.09) 0.73 0.04 (0.66,0.81) 0.95 0.21 (0.62,1.43) 0.70 0.11 (0.49,0.94) 
 - - - - - - 0.19 0.20 (0.01,0.76)    
resdev* 45.9      42.6      
pD 21.0      24.2      
DIC 66.9      66.8      
† compare to 10 data points 
‡ compare to 28 data points 
* compare to 38 data points 
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These ideas extend naturally, but not necessarily easily, from binary effect modifiers to 

multiple categories. For example, for trials on patients categorised as mild, moderate and 

severe, two interaction terms can be introduced one for moderate compared to mild, the 

second for severe compared to mild. Alternatively, disease severity can be examined as a 

continuous covariate (see Section 4.3) or as regression on baseline risk (see Section 4.4). A 

further variant is to introduce random interaction terms. Applications in decision making are 

probably rare, but such a model could be valuable in the analysis of variation in treatment 

effects between countries or regions, assuming that a sufficiently large number of trials 

within regions are available for synthesis. In this case, a different interaction term is proposed 

for each region, and these are sampled randomly from a common distribution with a mean 

and between-region variance. For a meta-analysis of S studies, the random interaction model 

is then 

  ,1 { 1}ik i i k i i kx I         

with βi=Bj if trial i was conducted in region j, i=1,…,S, k=1,2 and  

 2~ ( , )j bB N b    

where Bj represent the region-specific interaction effects, b represents the mean interaction 

effect across regions and 2
b is the between-region variability. 

 

4.2. THE RANGE OF INTERACTION MODELS AND THEIR INTERPRETATION IN 

NETWORK META-ANALYSIS 

In principle the same ideas apply to a network synthesis with multiple treatments. However, 

there are a very large number of models that can be proposed, each with very different 

implications. Below we set out the range of models available, and discuss their interpretation. 

Note that although we develop the range of models in the context of sub-group effects, sub-

group interaction models are structurally the same as meta-regression with continuous 

covariates (Section 4.3) or meta-regression on baseline risk (Section 4.4), and exactly the 

same range of models can be developed in these cases, too. We argue that only a restricted 

class of interaction models have interpretations that are likely to be useful in a practical 

decision making context. This conclusion is then applied not only to sub-group interactions, 

but to continuous covariates and to baseline risk as a covariate. 

We set out three general approaches to meta-regression models in a multiple treatment 

context: separate and unrelated interaction terms for each treatment; exchangeable and related 

interaction terms; and one single interaction effect for all treatments.  
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Consider a binary between-trial covariate, for example primary versus secondary prevention, 

in a case where multiple treatments T1,T2,…,Ts are being compared. Following the approach 

to consistency models adopted in TSD2,8 we have (s-1) basic parameters for the relative 

treatment effects d12,d13,…,d1s of each treatment relative to treatment 1. As before, we shall 

assume that treatment 1 is a placebo or standard treatment, which will be taken as the 

reference treatment in the network meta-analysis (see TSD28). The remaining (s-1)(s-2)/2 

treatment contrasts are expressed in terms of these parameters using the consistency 

equations: for example the effect of treatment 4 compared to treatment 3 is written as d34=d14-

d13 (see TSD28 for details). We can now set out a range of fixed treatment effect interaction 

models as detailed in Box 1. These models can be easily extended to allow for between-trial 

variation in treatment effects. Examples are given in Sections 4.3.2 and 4.4.1.  

Box 1 
1. Independent, treatment-specific interactions.  

In this case there is an interaction effect between say, primary/secondary prevention and 

treatment, but these interactions are different for every treatment. To model this, we introduce 

as many interaction terms as there are basic treatment effects, for example β12,β13,…,β1s. 

Each of these added terms represents the additional (interaction) treatment effect in 

secondary prevention (compared to primary) in comparisons of treatments 2,3,…,s to 

treatment 1. These terms are exactly parallel to the main effects d12,d13,…,d1s, which now 

represent the treatment effects in primary prevention populations. As with the main effects 

for trials comparing say, treatments 3 and 4, the interaction term would be the difference 

between the interaction terms on the effects relative to treatment 1, so that β34=β14-β13. 

Following the notation in TSD28, the fixed treatment effects model for the linear predictor 

would be  

    1 1 1 1, , { 1} 1 1 1 1 { 1}( )
i ik i ik ik i ik iik i t t t t i k i t t t t i kd x I d d x I               (5) 

with tik representing the treatment in arm k of trial i, xi the covariate/subgroup indicator and I 

defined in equation (1). In this model we set d11=β11=0. The remaining interaction terms are 

all unrelated, and would be given unrelated vague prior distributions in a Bayesian analysis. 

Thus, the relative treatment effects in secondary prevention are d12+β12, d13+β13,…,d1s+β1s. 

The interpretation of this model would be that, in effect, the relative efficacy of each of the s 

treatments in primary prevention populations is entirely unrelated to their relative efficacy in 

secondary prevention populations. One might, indeed, carry out two separate analyses, except 

that this would make it harder to test the interaction terms, and would also prevent the use of 

shared variance terms in random treatment effect models, as noted in Section 4.1.1. 
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2. Exchangeable, related, treatment-specific interactions 

This model has the same structure, and the same number of parameters as the model above. 

The only difference is that the (s-1) ‘basic’ interaction terms would not be given unrelated 

vague priors, but would be drawn from a random distribution with a common mean and 

between-treatment variance: 2
1 ~ ( , )k N b  , for treatment k=2,…,s. 

The mean interaction effect and its variance would be estimated from the data, although 

informative priors, that limit how similar or different the interaction terms could also be used.  

3. The same interaction effect for all treatments 

In this final variant there is a single interaction b term that applies to relative effects of all the 

treatments relative to treatment 1, so we have 1k b   for all treatments k=2,…s. Thus the 

treatment effects relative to treatment 1, d12, d13…d1s in primary prevention, are all higher or 

lower by the same amount, b in secondary: d12+b, d13+b …d1s+b. However, the effects of 

treatments 2,3,...,s relative to each other in primary and secondary prevention populations are 

exactly the same, because the interaction terms now cancel out. This means that the choice of 

reference treatment 1 becomes important and results for models with covariates are sensitive 

to this choice. Readers should be aware of the interpretation of parameters when coding 

models. For example, consider the effect of treatment 4 relative to treatment 3 in secondary 

prevention. This will be 14 13 14 13( )d b d b d d     , which is the same as in primary 

prevention. 

Box 1 A Range of interaction models 

 

When considering models that allow for effect-modification, we come to a series of choice 

points in model construction. One of the factors that can influence choice of model is the 

amount of data available. If a fixed treatment effect model is being considered, the unrelated 

interactions model (model 1, in Box 1) requires two connected networks (one for each 

subgroup) including all the treatments, i.e. with at least (s-1) trials in each. With random 

treatment effects even more data is required to estimate the common between-trials variance.  

It may be possible to estimate the exchangeable interaction model (model 2, in Box 1) with 

less data. However, to use this model we need to have a clear rationale for exchangeability. 

One rationale could be to allow for different covariate effects for different treatments within 

the same class. Thus, treatment 1 is a standard or placebo treatment while some of the 

treatments 2,…,s belong to a “class”. For example, one might imagine one set of 
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exchangeable interaction terms for aspirin-based treatments for atrial fibrillation relative to 

placebo, and another set of interactions for warfarin-based treatments relative to placebo.36  

Although related and exchangeable interactions might seem at first sight to offer an attractive 

approach, the difficulty is that, even with ample data, their use in clinical practice and in 

decision making could lead to recommendations that are counter-intuitive and difficult to 

defend. The claim made by the related and exchangeable interactions model is that there are 

real differences between the relative efficacies of the treatments within the class. If models 1 

or 2 were used as a basis for treatment recommendation, a strict application of incremental 

cost-effectiveness analysis (CEA) could lead to different treatments being recommended for 

different sub-groups. This might be considered perverse, unless the hypothesis of different 

interaction effects was shown to be statistically robust.  

For these reasons, this document explores only the last of the three general models described 

in Box 1, which assumes an identical interaction effect across all treatments with respect to 

treatment 1, the reference treatment. An example is given in Section 4.3.2. We do not rule out 

alternative models for unrelated or exchangeable interaction effects: they certainly have a role 

in exploratory analyses, or hypothesis-forming exercises, and readers may consult literature 

for examples and approaches to coding.36,37  

There are situations where it is reasonable to propose an even more restricted model. Rather 

than a single interaction term for all active treatments within a class, we could simply have a 

single interaction term for all active treatments, regardless of class. For example, some 

treatments are so effective that they can virtually eliminate adverse symptoms: here it is 

almost inevitable that there will be an “interaction” between severity and treatment efficacy, 

because the extent of improvement is inevitably greater in more severely affected patients. 

Potential examples might be different classes of biologic therapy for inflammatory arthritis, 

or perhaps certain treatments for pain relief. In these cases the “interaction” may reflect a 

property of the scale of measurement, rather than the pharmacological effects of the 

treatment. Informed clinical and scientific input to model formulation is, as ever, critical.  

 

4.3. META-REGRESSION WITH A CONTINUOUS COVARIATE  

When dealing with a continuous covariate, the analysis should use centred covariate values to 

improve the mixing of the MCMC chains. This is achieved by subtracting the mean covariate 

value, x , from each xi. For the simple pairwise meta-analysis case, the model in equation (4) 

becomes 
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   { 1}( )ik i ik i kx x I         (6) 

The treatment effects are estimated at the mean covariate value and can be un-centred and 

transformed to produce treatment effect estimates at any covariate value. So the mean 

treatment effect at covariate value z, is ( )d x z  . 

For network meta-analysis, the model in equation (5) can be centred in the same way. 

4.3.1. Pair-wise meta-regression with continuous covariate: BCG vaccine Example 

A meta-analysis of trials evaluating the efficacy of a BCG vaccine for preventing tuberculosis 

(TB) suggested that the absolute latitude, or distance from the equator, at which the trials was 

conducted might influence vaccine efficacy.38 This corresponds to scenario B1 in Section 

1.1.1. Data were available on the number of vaccinated and unvaccinated patients and the 

number of patients diagnosed with TB during the study follow-up period for each group as 

well as the absolute latitude at which the trial was conducted (Table 4). 

Table 4 BCG Example: number of patients diagnosed with TB, r, out of the total number of patients, n, in 

the vaccinated and unvaccinated groups, and absolute latitude at which the trial was conducted, x. 

 Not vaccinated Vaccinated  
Trial 

number 

number diagnosed 
with TB 

ri1 

total number 
of patients 

ni1 

number diagnosed 
with TB 

ri2 

total number 
of patients 

ni2 

Absolute degrees 
latitude 

xi 
1 11 139 4 123 44 
2 29 303 6 306 55 
3 11 220 3 231 42 
4 248 12867 62 13598 52 
5 47 5808 33 5069 13 
6 372 1451 180 1541 44 
7 10 629 8 2545 19 
8 499 88391 505 88391 13 
9 45 7277 29 7499 27 

10 65 1665 17 1716 42 
11 141 27338 186 50634 18 
12 3 2341 5 2498 33 
13 29 17854 27 16913 33 

 

The crude odds ratios obtained from Table 4, are plotted (on a log-scale) against distance 

from the equator in Figure 4 where, for each study, the size of the plotted bubble is 

proportional to its precision so that larger, more precise studies have larger bubble diameters. 

It seems plausible that the effect of the vaccine may differ at varying latitudes according to a 

linear relationship (on the log-odds ratio scale). 
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Figure 4 BCG Vaccine for prevention of TB: Plot of the crude odds ratios against absolute distance from 

the equator in degrees latitude on a log-scale. The size of the bubbles is proportional to the studies’ 

precisions, the horizontal line (dashed) represents no treatment effect and the solid line is the regression 

line estimated by the RE interaction model. An odds ratio below 1 favours the vaccine. 

Assuming a binomial distribution for the number of cases of diagnosed TB in arm k of trial i, 

~ Binomial( , )ik ik ikr p n , and letting xi be the continuous covariate representing absolute 

degrees latitude, the meta-regression model in equation (6) was fitted to the data with both 

fixed and random treatment effects and mean covariate value x 33.46° latitude. The 

treatment effects obtained are log-odds ratios at the mean covariate value. WinBUGS code is 

presented in the Appendix (Example 4, Programs 4(a) and 4(b)). 

The fixed effects model had a very poor fit to the data (posterior mean of the residual 

deviance of 40 compared to 26 data points) so we present only the results for the RE model 

(based on 50,000 iterations from 3 independent chains after a burn-in of 20,000). The results 

obtained for a RE model with and without the covariate ‘absolute degrees latitude’ are 

presented in Table 5. Note that, the treatment effect for the model with covariate adjustment 

is interpreted as the effect at the mean value of the covariate (33.46° latitude). The estimated 

log-odds ratios at different degrees latitude are represented by the solid line in Figure 4. 
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Table 5 Posterior mean, standard deviation (sd) and 95% Credible Interval (CrI) of the log-odds ratio 

(LOR), odds ratio (OR) and the interaction estimate (b), and posterior median, sd and 95% CrI of the 

between-trial heterogeneity () for the number of patients diagnosed with TB (LOR<0 and OR<1 favour 

Vaccination) for the RE models without covariate and measures of model fit: posterior mean of the 

residual deviance (resdev), number of parameters (pD) and DIC. 

 
No covariate Model with Covariate† 

 
mean/median sd CrI mean/median sd CrI 

b - - - -0.032 0.009 (-0.05,-0.01) 
LOR -0.762 0.220 (-1.21,-0.34) -0.763 0.126 (-1.04,-0.52) 
OR 0.478 0.107 (0.30,0.71) 0.470 0.059 (0.35,0.59) 
 0.649 0.202 (0.39,1.17) 0.272 0.188 (0.03,0.75) 

resdev* 26.1   30.4   
pD 23.5   21.1   

DIC 49.6   51.5   
* Compare to 26 data points 
† treatment effects are at the mean value of the covariate Latitude=33.46°  

 

Comparing the values of the DIC, it would appear that the models with and without the 

covariate are not very different, differences of less than 3 or 5 are not considered important – 

although the model without covariates has a smaller posterior mean of the residual deviance, 

the model with the covariate allows for more shrinkage of the random treatment effects, 

resulting in a smaller effective number of parameters (pD). We can however see that the 

heterogeneity is considerably reduced in the model with the covariate: the posterior medians 

are 0.649 for the model with no covariate and 0.270 for the model with covariate, and the CrI 

for the interaction term b does not include zero (Table 5). In deciding whether a covariate 

should be included, the posterior mean of the regression coefficient should be compared to 

the posterior standard deviation. The DIC is not a reliable criterion for deciding whether to 

include a covariate in RE models. This is because RE models can fit the data equally well, 

whatever the between-trial variation. 

4.3.2. Network meta-regression with continuous covariate: Certolizumab Example 

A review of trials of Certolizumab Pegol (CZP) for the treatment of rheumatoid arthritis (RA) 

in patients who had failed on disease-modifying anti-rheumatic drugs (DMARDs), including 

Methotrexate (MTX), was conducted for a recent single technology appraisal at NICE.39 

Twelve MTX controlled trials were identified, comparing seven different treatments: Placebo 

plus MTX (coded 1), CZP plus MTX (coded 2), Adalimumab plus MTX (coded 3), 

Etanercept plus MTX (coded 4), Infliximab plus MTX (coded 5), Rituximab plus MTX 

(coded 6) and Tocilizumab plus MTX (coded 7); forming the network presented in Figure 5. 

This type of network, where comparisons are all relative to the same treatment, is often called 

a “star network”.  
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Figure 5 Certolizumab example: Treatment network. Lines connecting two treatments indicate that a 

comparison between these treatments has been made. The numbers on the lines indicate how many RCTs 

compare the two connected treatments. 

 

Table 6 shows the number of patients achieving ARC50 at 6 months (ARC50 at 3 months 

was used when this was not available), rik, out of all included patients, nik, for each arm of the 

included trials, along with the mean disease duration in years for patients in each trial, xi 

(i=1,…,12; k=1,2). It is thought that mean disease duration can affect relative treatment 

efficacy, and this corresponds to scenario B2 in Section 1.1.1. The crude odds ratios (OR) 

from Table 6, are plotted (on a log-scale) against mean disease duration in Figure 6, with the 

numbers 2 to 7 representing the OR of that treatment relative to Placebo plus MTX (chosen 

as the reference treatment). The crude OR for the Abe 2006 study was calculated by adding 

0.5 to each cell. 
  

Placebo + MTX (1)

Tocilizumab + MTX (7)

Infliximab + MTX (5)
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Table 6 Certolizumab Example: number of patients achieving ACR50 at 6 months, r, out of the total 

number of patients, n, in the arms 1 and 2 of the 12 trials, and mean disease duration (in years) for 

patients in trial i, xi. All trial arms had MTX in addition to the placebo or active treatment. 

 
  

Arm 1 Arm 2 
 

Study name 

Treatment in 

arm 1 

ti1 

Treatment in 

arm 2 

ti2 

number 

achieving 

ACR50 

ri1 

total 

number of 

patients 

ni1 

number 

achieving 

ACR50 

ri2 

total 

number of 

patients 

ni2 

Mean disease 

duration 

(years) 

xi 

RAPID 1 Placebo CZP 15 199 146 393 6.15 

RAPID 2 Placebo CZP 4 127 80 246 5.85 

Kim 2007 Placebo Adalimumab 9 63 28 65 6.85 

DE019 Placebo Adalimumab 19 200 81 207 10.95 

ARMADA Placebo Adalimumab 5 62 37 67 11.65 

Weinblatt 1999 Placebo Etanercept 1 30 23 59 13 

START Placebo Infliximab 33 363 110 360 8.1 

ATTEST Placebo Infliximab 22 110 61 165 7.85 

Abe 2006* Placebo Infliximab 0 47 15 49 8.3 

Strand 2006 Placebo Rituximab 5 40 5 40 11.25 

CHARISMA* Placebo Tocilizumab 14 49 26 50 0.915 

OPTION Placebo Tocilizumab 22 204 90 205 7.65 

* ACR50 at 3 months 
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Figure 6 Certolizumab Example: Plot of the crude odds ratios (on a log-scale) of the six active treatments 

relative to Placebo plus MTX, against mean disease duration (in years). The plotted numbers refer to the 

treatment being compared to Placebo plus MTX and the lines represent the relative effects of the 

following treatments (from top to bottom) compared to Placebo plus MTX based on a RE meta-

regression model: Etanercept plus MTX (treatment 4, dotted green line), CZP plus MTX (treatment 2, 

solid black line), Tocilizumab plus MTX (treatment 7, short-long dash purple line), Adalimumab plus 

MTX (treatment 3, dashed red line), Infliximab plus MTX (treatment 5, dot-dashed dark blue line) and 

Rituximab plus MTX (treatment 6, long-dashed black line). Odds ratios above 1 favour the plotted 

treatment and the horizontal line (thin dashed) represents no treatment effect.  

 

We will fit a model which assumes a common interaction effect for all treatments. The FE 

model with common interaction term is described in Box 1. To fit the equivalent random 

treatment effects model with covariate centring, we re-write equation (5) as 
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  1,1 1 1 { 1}logit( ) ( )( )
ik iik ik i i k t t i kp x x I            (7) 

where 8.21x  , β11=0, β1k=b (k=2,…,7) and 
1

2
,1 1 1~ ( , )

ik ii k t tN d d  . 

The model can be expressed, and coded for computer implementation, in many ways. In this 

formulation we retain the treatment-specific interaction effects, but set them all equal to b. 

This guarantees that the terms cancel out in active vs active comparisons. This formulation 

mirrors the code provided in the Appendix (Example 5). 

Finally, note that since pairwise meta-analysis is a special case of network meta-analysis 

(TSD28), in the case of only two treatments, the model in equation (7) simplifies to the model 

in equation (6).  

The basic parameters d1k and b are given non-informative normal priors. See Example 5 in 

the Appendix for details on the prior for the between-trials standard deviation and 

corresponding WinBUGS code. 

Since the analysis used centred covariate values, the treatment effects obtained are the 

estimated log-odds ratios at the mean covariate value (8.21 years in this case), which can be 

un-centred and transformed to produce the estimate at covariate value z from 1 ( )kd b x z  , 

k=2,…,7. 

Table 7 shows the results of fitting fixed and random treatment effects network meta-analyses 

(see TSD28) and interaction models with disease duration as the covariate (results are based 

on 100,000 iterations from 3 independent chains after a burn-in of 40,000). The estimated 

odds ratios for different durations of disease are represented by the parallel lines in Figure 6.  
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Table 7 Certolizumab Example: Posterior mean, standard deviation (sd) and 95% Credible Interval (CrI) for the interaction estimate (b), and log-odds ratios dXY of 

treatment Y relative to treatment X, and posterior median, sd and 95% CrI of the between-trial heterogeneity () for the number of patients achieving ACR50 for 

the fixed and random effects models with and without covariate ‘disease duration’ and measures of model fit: posterior mean of the residual deviance (resdev), 

effective number of parameters (pD) and DIC. Treatment codes are given in Figure 5. 

 
No covariate Covariate ‘disease duration’ 

 
FE RE† FE RE† 

 

mean sd CrI mean/ 
median sd CrI mean sd CrI mean/ 

median sd CrI 

b - - - - - - 0.14 0.06 (0.01,0.26) 0.14 0.09 (-0.03,0.32) 

d12 2.21 0.25 (1.73,2.72) 2.27 0.39 (1.53,3.10) 2.50 0.29 (1.96,3.08) 2.57 0.42 (1.79,3.44) 

d13 1.93 0.22 (1.52,2.37) 1.97 0.33 (1.33,2.64) 1.66 0.25 (1.19,2.16) 1.71 0.34 (1.04,2.41) 

d14 3.47 1.34 (1.45,6.74) 3.46 1.41 (1.26,6.63) 2.82 1.34 (0.71,5.96) 2.77 1.42 (0.42,6.01) 

d15 1.38 0.17 (1.06,1.72) 1.48 0.33 (0.90,2.21) 1.40 0.17 (1.08,1.74) 1.48 0.30 (0.95,2.15) 

d16 0.00 0.71 (-1.40,1.39) 0.01 0.82 (-1.61,1.63) -0.42 0.73 (-1.86,1.04) -0.44 0.84 (-2.08,1.21) 

d17 1.65 0.22 (1.22,2.10) 1.56 0.38 (0.77,2.28) 1.98 0.28 (1.45,2.53) 2.00 0.45 (1.12,2.93) 

 - - - 0.34 0.20 (0.03,0.77) - - - 0.28 0.19 (0.02,0.73) 

resdev* 37.6   
30.9 

  33.8   30.2   
pD 18.0   

21.2 
  19.0   21.3   

DIC 55.6   
52.1 

  52.8   51.4   
* compare to 24 data points 
† Using informative prior for   
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The DIC and posterior means of the residual deviances for the 4 models in Table 7 do not 

decisively favour a single model. Comparing only the FE models we can see that the fit is 

improved by including the covariate interaction term b which also has a CrI which does not 

include zero. Although the RE model with covariate reduces the heterogeneity (from a 

posterior median of 0.34 in the RE model with no covariate to 0.28 for the RE model with 

covariate) the CrI for the interaction parameter b includes zero. The meta-regression models 

are all reasonable but not strongly supported by the evidence. Nevertheless the finding of 

smaller treatment effects with a shorter disease duration has been reported with larger sets of 

studies,37 and the implications for the decision model need to be considered. The issue is 

whether or not the use of biologics should be confined to patients whose disease duration was 

above a certain threshold. This is not an unreasonable idea but it would be difficult to 

determine this threshold on the basis of the regression in Figure 6 alone. The slope is largely 

determined by treatments 3 and 7 (Adalimumab and Tocilizumab) which are the only 

treatments trialled at more than one disease duration, and which appear to have different 

effects at each duration. The linearity of relationships is highly questionable and the 

prediction of negative effects for treatment 6 (Rituximab) is not plausible. This suggests that 

the meta-regression model used is not plausible and other explorations of the causes of 

heterogeneity should be undertaken (see Section 4.4.1). 

 

4.4. META-REGRESSION ON BASELINE RISK 

The meta-regression model on baseline risk is the same as in equation (7), but now xi=i, the 

trial-specific baseline for the control arm in each trial. An important property of this Bayesian 

formulation is that it takes the “true” baseline (as estimated by the model) as the covariate 

and automatically takes the uncertainty in each i into account.40,41 Naïve approaches which 

regress against the observed baseline risk fail to take into account the correlation between the 

treatment effect and baseline risk, and the consequent regression to the mean phenomenon.  

It is important to note that the covariate value i is on the same scale as the linear predictor 

(e.g. the logit, log or identity scales – see TSD28) and therefore the mean covariate value for 

centring needs to be on this scale too. For example, when using a logit link function, the 

covariate should be centred by subtracting the mean of the log-odds in the baseline arm (k=1) 

of each trial which compares treatment 1 from i. In a network meta-analysis context, the 

treatment in arm 1 will not always be treatment 1 (the reference treatment). However, for the 
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model in equation (7), which assumes the same interaction effect for all treatments compared 

to treatment 1, the regression terms will cancel for all other comparisons, so no baseline risk 

adjustment is performed for trials which do not include treatment 1. If fitting one of the other 

models in Box 1, care should be taken to ensure that the risk being adjusted for refers to the 

estimated risk for the reference treatment (treatment 1) which may not have been compared in 

every trial. 

4.4.1. Network Meta-regression on baseline risk: Certolizumab Example 

Figure 7 shows the crude OR obtained from Table 6 plotted against the baseline odds of 

ACR50 (on a log-scale), for the Certolizumab example. Numbers 2 to 7 represent the OR of 

that treatment relative to Placebo plus MTX (chosen as the reference treatment). For plotting 

purposes, the crude OR for the Abe 2006 study was calculated by adding 0.5 to each cell and 

the baseline log-odds was assumed to be 0.01. Figure 7 seems to suggest a strong linear 

relationship between the treatment effect and the baseline risk (on the log-scale). As 

discussed in Section 4.3.2 the model in equation (7) assumes that parallel regression lines are 

fitted to the points in Figure 7, where the differences between the lines represent the true 

mean treatment effects adjusted for baseline risk.  

Both fixed and random treatment effects models with a common interaction term were fitted. 

The basic parameters d1k and b are given non-informative normal priors N(0,1002) and  ~ 

Uniform(0,5). WinBUGS code for meta-regression on baseline risk is given in Example 6 in 

the Appendix. 

The analysis used centred covariate values, achieved by subtracting the mean covariate value 

(mean of the observed log-odds on treatment 1, 2.421x   ) from each of the estimated i. 

The treatment effects obtained are then the estimated log-odds ratios at the mean covariate 

value, which can be un-centred and transformed to produce the estimate at baseline risk z 

from 1 ( )kd b x z  , k=2,…,7. 

Table 8 shows the results of the interaction models with fixed and random treatment effects, 

with baseline risk as the covariate (results are based on 100,000 iterations from 3 independent 

chains after a burn-in of 60,000). The treatment effects for the models with covariate 

adjustment are interpreted as the effects for patients with a baseline logit probability of 

ACR50 of -2.421 which can be converted to a baseline probability of ACR50 of 0.082, using 

the inverse logit function (TSD28, Table 3).  
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Figure 7 Certolizumab Example: Plot of the crude odds ratios of the six active treatments relative to 

Placebo plus MTX, against odds of baseline response on a log-scale. The plotted numbers refer to the 

treatment being compared to Placebo plus MTX and the lines represent the relative effects of the 

following treatments (from top to bottom) compared to Placebo plus MTX based on a RE meta-

regression model: Tocilizumab plus MTX (7, short-long dash purple line), Adalimumab plus MTX (3, 

dashed red line), Etanercept plus MTX (4, dotted green), CZP plus MTX (2, solid black line), Infliximab 

plus MTX (5, dot-dashed dark blue line), Rituximab plus MTX (6, long-dashed black line). Odds ratios 

above 1 favour the plotted treatment and the horizontal line (dashed) represents no treatment effect. 
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Table 8 Certolizumab Example: Posterior mean, standard deviation (sd) and 95% Credible Interval (CrI) 

for the interaction estimate (b) and log-odds ratios dXY of treatment Y relative to treatment X. Posterior 

median, sd and 95% CrI of the between-trial heterogeneity () for the number of patients achieving 

ACR50 for the fixed and random effects models with covariate ‘baseline risk’ with measures of model fit: 

posterior mean of the residual deviance (resdev), number of parameters (pD) and DIC. Treatment codes 

are given in Figure 5. 

 FE RE 
 mean sd CrI mean/median sd CrI 
b -0.93 0.09 (-1.03,-0.69) -0.95 0.10 (-1.10,-0.70) 
d12 1.85 0.10 (1.67,2.06) 1.83 0.24 (1.35,2.29) 
d13 2.13 0.11 (1.90,2.35) 2.18 0.22 (1.79,2.63) 
d14 2.08 0.34 (1.47,2.80) 2.04 0.46 (1.19,2.94) 
d15 1.68 0.10 (1.49,1.86) 1.71 0.22 (1.30,2.16) 
d16 0.36 0.50 (-0.72,1.27) 0.37 0.59 (-0.86,1.45) 
d17 2.20 0.14 (1.93,2.46) 2.25 0.27 (1.75,2.79) 
 - - - 0.19 0.19 (0.01,0.70) 
resdev* 27.3   24.2   pD 19.0   19.4   DIC 46.3   43.6   * compare to 24 data points 

 

Both the fixed and random effects models with covariate have a credible region for the 

interaction term which is far from zero, suggesting a strong interaction effect between the 

baseline risk and the treatment effects. The estimated odds ratios for different durations for 

the RE model with baseline risk interaction are represented by the different parallel lines in 

Figure 7. The DIC statistics and the posterior means of the residual deviance also marginally 

favour the RE model with the covariate. 

An important point to note is that the assumption of a common regression term b allows the 

interaction parameter to be estimated even for comparisons which only have one trial. It also 

allows estimation of treatment effects at values of the baseline risk outside the ranges 

measured in trials involving certain comparisons. For example, there is only one trial 

comparing Rituximab plus MTX (treatment 6) with Placebo plus MTX. The model 

assumptions imply that a line parallel to the others is drawn through this point (Figure 7). 

This analysis also suggests that adding Rituximab to MTX may be of much less benefit to 

patients than the other treatments and predicts, perhaps implausibly, that it can be harmful if 

baseline risk is above 0.15. 

The striking support in Figure 7 for a single interaction term for all treatments, except maybe 

treatment 6, has several implications for decision making and for synthesis in practice. Firstly 

it clearly suggests a relation between efficacy and baseline risk that needs to be incorporated 

into CEA models. Secondly, Figure 7 illustrates how variation in effect size due to a 
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covariate will, if not controlled for, introduce severe heterogeneity in pairwise meta-analysis 

and potential inconsistency in network synthesis. It is clear that both the differences between 

trials (within treatments) and the differences between the anti TNF- drugs are minimal once 

baseline risk is accounted for. 

 

4.5. INDIVIDUAL PATIENT DATA IN META-REGRESSION 

Individual Patient Data meta-analyses have been described as the gold standard42 and they 

enjoy certain advantages over syntheses conducted on summary data, including the 

possibility of standardising analysis methods.43 Further, when patient level covariates are of 

interest, using the IPD to regress individual patient characteristics on individual patient 

outcomes will produce a more powerful and reliable analysis44,45 compared to the use of 

aggregate outcome and covariate data  considered in Sections 4.1-4.4. Not only is such an 

analysis usually much more powerful than one based on aggregate data, it can avoid the 

potential ecological biases. An IPD meta-regression analysis is essential when dealing with a 

continuous covariate and a continuous outcome. 

Below we distinguish the situation where IPD is available on all trials and where it is only 

available on a subset of trials. 

4.5.1. How to use Individual Patient Data on patient level covariates to explore 

heterogeneity 

In meta-analysis of IPD, historically, two broad approaches have been considered, the one- 

and two-step approaches.46 In a two-step approach, the analyst first estimates the effect 

size(s) of interest from each study, together with a measure of uncertainty (e.g. standard 

error), and then conducts a meta-analysis in the standard way using this summary data. In the 

context of exploring heterogeneity, the effect size could relate to a treatment by covariate 

interaction.47 In some circumstances, it may be possible to carry out an IPD analysis such as 

this even if the analyst does not have access to all the IPD, i.e. owners of the data may be 

willing to calculate and supply such interaction effects when they are not willing to supply 

the whole IPD dataset. However, such an approach becomes cumbersome/infeasible if 

multiple covariates are to be considered simultaneously.  

The two-stage approach can be useful for inference about the existence of an interaction, but 

it is unhelpful for decision making where the main effects and interactions need to be 

estimated simultaneously so that parameter correlations can be propagated through the model. 
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In a one-step approach all the IPD is compiled into a single dataset and analysed 

simultaneously while preserving the within study comparisons within the data. IPD random-

effects pairwise meta-analysis models have been developed for continuous,48,49 binary,50 

survival51 and ordinal52 variables and all can allow the inclusion of patient level covariates. 

Although most of the models are presented in the single pair-wise comparison context, it is 

possible to extend them to a network meta-analysis context.48,53 A recent paper47 considers 

simple criteria for determining the potential benefits of IPD to assess patient level covariates 

and this is recommended reading.  

Thus, treatment by covariate interactions can be estimated exclusively using between-study 

information when only summary data are available (meta-regression) and exclusively using 

within-study (variability) information if IPD are available. However, a subtlety when using 

IPD is that both between- and within-study coefficients can be estimated.48 This can be 

achieved by including two covariates: the mean covariate value in that study (i.e. each 

individual in a study gets the same value – which is the value that would be used if an 

aggregate meta-regression analysis were being conducted), and a second covariate which is 

the individual patient response minus the mean value in that study. Specific modelling details 

are available elsewhere.54 Note that this applies most naturally to continuous covariates, but it 

can also be applied to binary covariates (for example if the binary covariate is sex, the 

between-study covariate would be the proportion of women). 

There are a number of ways in which these dual effect (within and between) models can be 

used. The most appealing option is to use the estimate derived exclusively from the within-

trial variability, since this is free from ecological/aggregation biases and other potential 

sources of confounding between studies. Potentially, power could be gained by including the 

information in the between trial variability by having the same parameter for within and 

between covariates. This, of course, comes at the cost of potentially inducing bias. It has been 

suggested54 that a statistical test of the difference between the two estimates could be carried 

out and the decision of whether to have the same interaction effect for within and between 

covariates could be based on this test. However, we suspect this test will have low power in 

many situations, and further investigation of this approach is required before it can be 

recommended.  

4.5.2. Using a combination of Individual Patient Data and Aggregate Data 

The situation may exist where IPD is available from a number of, but not all, relevant studies. 

When this is the case, in a pair wise meta-analysis context, there are three potential options 
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available for exploring heterogeneity. The first is to exclude all trials for which IPD is not 

available. This keeps the analysis simple, and can be based exclusively on within study 

comparisons (using the methods described in the previous section), but has the disadvantage 

of not including all of the relevant trials. Furthermore, the analysis could potentially be biased 

if the reason for not providing IPD is related to the treatment effect. The second is to carry 

out a meta-regression on the aggregate data. This would potentially mean all trials could be 

included, but the benefits of having some IPD would be forgone. Finally, models have been 

developed which allow the incorporation if IPD, where available, and aggregate data where 

not.55 This approach allows all the data to be included at the most detailed level available 

from all the studies, but as for an IPD only analysis, a decision has to be made on whether 

between study variability is to be included in the estimation of effects. Again, a test of the 

difference between the effect using between and within study variability can be constructed 

and used to decide which approach to take (but again noting its probable low power in many 

contexts may make this a problematic approach). Models which allow the incorporation of 

IPD and aggregate data have been described for binary55,56 and continuous57 outcomes.  

Little work has been done to date on the simultaneous use of IPD and aggregate data in a 

network meta-analysis context. It is quite conceivable that IPD may be available for all trials 

of some comparisons, while none may be available for others. This may be particularly true 

for Single Technology Appraisals done by industry where a company may have complete 

access to trial data for their own products, but only aggregate data on competitors’ products. 

As described in Section 4.2, a decision has to be made on whether interaction effects with 

placebo/usual care are assumed to be the same, exchangeable, or different across treatments. 

Although we have suggested a single interaction parameter for all treatments within the same 

class, models for all these possibilities can be constructed. Extensions to the dual within- and 

between-covariate models are possible and there have been initial explorations of this.58  

The availability of IPD for several different treatments would allow a much more thorough 

investigation of whether patient-level interactions are the same across treatments. 

 

5. BIAS AND BIAS-ADJUSTMENT 

In this section we examine approaches to bias adjustment for both internal and external 

biases. The difference between “bias adjustment” and the meta-regression models described 

above is slight but important. In meta-regression we concede that even within the formal 

scope of the decision problem there are distinct differences in relative treatment efficacy. In 
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bias adjustment, we have in mind a target population for decision making, but the evidence 

available, or at least some of the evidence, provides “biased”, or potentially biased, estimates 

of the target parameter, perhaps because the trials have internal biases, perhaps because they 

concern different populations or settings, or both. Box 2 summarises four approaches to bias 

adjustment, which are discussed in more detail below.  

Although regression in usually seen as a form of adjustment for differences in covariates, we 

still refer to it as a method for “bias adjustment” since covariates affect the ‘external validity’ 

of trials, which has been seen as a bias adjustment issue.59 

 

Box 2 
 Meta-regression (Section 4): A decision is required for a specific target population and 

specific treatments, but much of the evidence involves other populations, or other 

(similar) treatments. This approach is suitable for pair-wise meta-analysis, IC and 

Network meta-analysis of RCTs and works better with larger datasets. 

 Adjustment for potential bias associated with trial-level markers:60 The evidence base 

contains some studies with markers of potential bias, and a prior distribution for this bias 

can be estimated from external meta-epidemiological data. This approach is suitable for 

pair-wise meta-analysis, IC, Network meta-analysis and RCTs of mixed “quality”, but 

could be extended to meta-analyses consisting of a mixture of trials and observational 

data. This approach is good for small datasets, including single trials, but depends on the 

relevance of the meta-epidemiological data used. 

 Estimation and adjustment of bias associated with trial-level markers:61-63 The extent of 

the bias can be estimated internally from the existing trial evidence. This approach is 

suitable for IC or Network meta-analysis of RCTs of mixed “quality”, but could be 

extended to mixtures of trial and observational data. Works better with larger datasets. 

 Elicitation of internal and external bias distributions from experts:59 Can be applied to 

any of the situations above and is suitable for pair-wise meta-analysis, IC, Network 

meta-analysis of RCTs and/or observational studies.64 This approach is good for small 

datasets, including single studies, but can be very time consuming. 

Box 2 Different approaches to bias adjustment 
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5.1. COVARIATE ADJUSTMENT BY META-REGRESSION 

This method uses the meta-regression models in Sections 4 or 5. The approach is an option in 

cases where evidence on the treatment effects in the target population or treatment is limited, 

but further information exists on other related populations or treatments. If it was felt that the 

treatment effects were systematically different in the two groups, then a meta-regression 

analysis would be a way in which to “borrow strength” from an additional set of related trials.  

For example, in the case of biologic treatments for RA, suppose a decision was required on 

treatments for patients who had failed on non-biologic DMARDs but who were unable to 

take MTX. Ideally, trials involving biologics and placebo would be needed. It might be felt 

that insufficient data was available in this patient group, but that the larger body of data on 

Biologics + MTX vs Placebo + MTX could be used. An interaction model could be used to 

borrow strength from this additional body of data, while adjusting for a common additional 

effect of biologics against placebo in the presence of MTX. Note that in this case the 

adjustment would only be relevant to the comparisons of biologics against placebo, not to the 

comparisons between biologics (see Box 1).  

Investigators would also have the option of assuming that there was no interaction, i.e. that 

the effect of biologics against placebo was the same when taken with or without MTX. In this 

case the entire body of data could be used to estimate the treatment effects of biologics 

relative to placebo and relative to each other, without the introduction of any interaction 

terms. 

 

5.2. ADJUSTMENT FOR BIAS BASED ON META-EPIDEMIOLOGICAL DATA 

Schulz et al.4 compared results from “high quality” RCTs to results from trials with certain 

indicators of potentially lower quality: lack of allocation concealment, or lack of double 

blinding. Their dataset included over 30 meta-analyses, in each of which both “high” and 

“low” quality trials were present. Their results suggested the relative treatment effect in 

favour of the newer treatment was, on average, higher in the lower quality studies. The effect 

was large, with odds ratios in favour of the newer treatment on average about 1.6 times 

higher. 

Confronted by trial evidence of mixed quality, investigators have had two options: they can 

restrict attention to studies of high quality, or they can include all trials, of both high and low 

quality, in a single analysis. Both options have disadvantages: the first ignores what may be a 
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substantial proportion of the evidence; the second risks delivering a biased estimate of the 

treatment effect. 

Welton et al.60 suggest an approach that uses all the data, but simultaneously adjusts and 

down-weights the evidence from lower quality studies. For a pairwise meta-analysis, the 

model for the “high quality” data is the standard model introduced in TSD2:8 

 ,1 { 1}ik i i k kI      (8) 

For the lower quality data, the assumption is that each trial provides information, not on ,1i k , 

but on a “biased” parameter ,1i k i  , where the trial-specific bias terms i  are drawn from a 

RE distribution, with a mean b0 representing the expected bias, and a between-trials variance 

κ2. Thus, for the lower quality trials: 

 ,1 { 1}

2
0

( )

~ ( , )
ik i i k i k

i

I

N b

   

 
  

 (9) 

Values for b0 and between trials variance are obtained from a Bayesian analysis of an external 

dataset, for example from collections of meta-analyses,4,65 and these values can be plugged 

into the prior distribution in equation (9). This analysis must produce at least three estimates: 

a value for the expected bias b0, a value for the standard error in the estimate of b0, and a 

value for the between-study variability on bias. These values can then be used to inform 

priors for bias parameters to adjust and down-weight treatment effects for lower-quality trials 

in a new meta-analysis. Welton et al.60 commented on the assumptions required by this 

method of bias adjustment. The analysis hinges critically on whether the study-specific biases 

in the dataset of interest can be considered exchangeable with those in the meta-

epidemiological data used to provide the prior distributions used for adjustment, and indeed 

on whether they would be considered exchangeable by the relevant stakeholders in the 

decision.  

At the time of writing, analyses of meta-epidemiological data are not yet available to inform 

priors while plausibly satisfying the exchangeability requirements. Nonetheless, one might 

take the view that any reasonable bias adjusted analysis is likely to give a better reflection of 

the true parameters than an unadjusted analysis. Welton et al.60 suggest that, even when there 

are doubts about a particular set of values for the bias distribution, investigators may wish to 

run a series of sensitivity analyses to show that the presence of studies of lower quality, with 

potentially over-optimistic results, is not having an impact on the decision. Extensive meta-

epidemiological analyses are currently an area of active research interest. It is already clear 
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that the degree of bias is dependent on the nature of the outcome measure, being greater with 

subjective (patient- or physician-reported) outcomes, and virtually undetectable with 

mortality.5 Increasingly detailed information on quality-related bias is being published, and it 

is likely that sets of priors tailored for particular outcome types and disease conditions will 

become available in the future. 

In principle the same form of bias adjustment could be extended to other type of bias, such as 

novelty bias, sponsorship bias, or small study bias, or to mixtures of RCTs and observational 

studies. Each of these extensions, however, depends on detailed and far-ranging analyses of 

very large meta-epidemiological datasets which have not yet been performed.  

We turn next to a method that removes the difficulties associated with the strong 

“exchangeability” assumptions by estimating the parameters of the bias distribution, b0 and 

variance κ2, internally, within the dataset of interest.  

 

5.3. ESTIMATION AND ADJUSTMENT FOR BIAS IN NETWORKS OF TRIALS 

The bias model above (equations (8) and (9)) can also be estimated internally, without 

recourse to external data. Imagine a set of trials, some of which are “high” and some “low” 

quality. One can always use such analyses to learn about the size of bias and – with enough 

data – the variability in bias across studies, but one cannot always use them to borrow 

strength from biased data. For example, if there are only two treatments, the analysis would 

tell us about the bias distribution, but it would add nothing to our knowledge of the true 

treatment effect: for this we might just as well look at the high quality data alone.  

However, with indirect comparisons or, in a network synthesis, if we assume that the mean 

and variance of the study-specific biases is the same for each treatment, then it is possible to 

simultaneously estimate the treatment effects and the bias effects in a single analysis, and 

thus to produce treatment effects that are based on the entire body of data, including both 

high and low quality studies, and also adjusted for bias.61 The model is exactly the same as in 

the previous section 

 ,1 { 1}( )ik i i k ik i kx I         

with xi=1 if study i is considered to be at risk of bias and zero otherwise, and βik is the trial-

specific bias of the treatment in arm k relative to the treatment in arm 1 of trial i. If A is 

placebo or standard treatment, and B,C,D are all active treatments, it would be reasonable to 

expect the same bias distribution to apply to the AB, AC, and AD trials. But it is less clear 
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how to code the bias model for BC, BD, and CD trials. We might make a distinction between 

active vs placebo/usual care and active vs active trials. If we assume that the average bias is 

always in favour of the newer treatment, then this becomes a model for novelty bias.62 

Another approach might be to propose a separate mean bias term for active vs active 

comparisons.61 For example, the first type of trials would have a bias term which is assumed 

to follow a normal distribution with mean bias b1: 2
1~ ( , )ik N b  . Active vs active trials 

could be assumed to have a different mean bias b2, 2
2~ ( , )ik N b  , which could be assumed 

to favour the newest treatment or set to zero (see Dias et al.61 for further details).  

The method can in principle be extended to include syntheses that are mixtures of trials and 

observational studies, but this does not appear to have been attempted yet. It can also be 

extended to any form of “internal” bias. Salanti et al.62 adopted this model in their study of 

novelty bias in cancer trials. A particularly interesting application is to “small-study bias”, 

which is one interpretation of “publication bias”. The idea here is that the smaller the study 

the greater the bias. The “true” treatment effect can therefore be conceived as the effect that 

would be obtained in a study of infinite size. This, in turn, is taken to be the intercept in a 

regression of the treatment effect against the study variance. Moreno et al.63,66 show that the 

bias-adjusted estimate from this approach approximates closely to the results found in a 

simple meta-analysis based on a register of prospectively reported data. Once again, in larger 

networks, some care would need to be exercised in how to code the direction of bias in 

“active-active” studies. 

Like the methods described in Section 5.2, these methods may be considered by some as 

semi-experimental. There is certainly a great need for further experience with applications, 

and there is a particular need for further meta-epidemiological data on the relationships 

between the many forms of internal bias that have been proposed.67 However, they appear to 

represent reasonable and valid methods for bias adjustment, and are likely to be superior to 

no bias adjustment in situations where data are of mixed quality. At the same time, the 

method is essentially a meta-regression based on “between-studies” comparisons. There is no 

direct evidence for a “causal” link between the markers of study quality and the size of the 

effect. It is therefore important to avoid using the method for small datasets, and to establish 

that the results are statistically robust, and not dependant on a small number of studies.  

Because the underlying bias models in this section and the previous one are the same, it 

would be perfectly feasible to combine them, although this again has not been done before. 
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5.4. ELICITATION OF BIAS DISTRIBUTIONS FROM EXPERTS, OR BASED ON DATA 

This method59 is conceptually the simplest of all bias adjustment methods, applicable to trials 

and observational studies alike. It is also the most difficult and time-consuming to carry out. 

One advantage may be that it can be used when the number of trials is insufficient for meta-

regression approaches (Sections 5.1, 5.3). Readers are referred to the original publication for 

details, but the essential ideas are as follows. Each study is considered by several independent 

experts using a pre-determined protocol. The protocol itemizes a series of potential internal 

and external biases, and each expert is asked to provide information that is used to develop a 

bias distribution. Among the internal biases that might be considered are selection biases (in 

observational studies), non-response bias, attrition bias, and so on. A study can suffer from 

both internal and external bias. When this process is complete the bias information on each 

study from each assessor is combined into a single bias distribution. The assessor 

distributions are then pooled mathematically. In the original publication the mean and 

variance of the bias distributions is statistically combined with the original study estimate and 

its variance, to create what is effectively a new, adjusted, estimate of the treatment effect in 

that study. The final stage is a conventional synthesis, in which the adjusted treatment effects 

from each study, and their variances, are treated as the data input for a standard pair-wise 

meta-analysis, indirect comparison or network synthesis. The methods in TSD28 (Section 3.5) 

can then be applied to the adjusted study-specific estimates.  

This methodology59 in its full form requires considerable time and care to execute. The key 

idea, replacing a potentially biased study estimate with an adjusted estimate based on expert 

opinion regarding bias, is one that can be carried out in many ways and with a degree of 

thoroughness that is commensurate with the sensitivity of the overall analysis to the 

parameters in question. 
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APPENDIX: ILLUSTRATIVE EXAMPLES AND WINBUGS CODE 
This appendix gives illustrative WinBUGS code for all the examples presented in the main 

document. All programming code is fully annotated. 

The program codes are printed here, but are also available as WinBUGS system files from 

http://www.nicedsu.org.uk. Users are advised to download the WinBUGS files from the 

website instead of copying and pasting from this document. We have provided the codes as 

complete programs. However, the majority of each meta-regression program is identical to 

the programs in TSD2.8 We have therefore highlighted the main differences in blue and bold, 

to emphasise the modular nature of the code. 

Table A1 gives an index of the programs and their relation to the descriptions in the text. 

Note that for each example there are random and fixed effects versions of the code except for 

the predictive cross-validation models which, by definition, only apply to RE models. All FE 

code can be run using the same data structure described for the random effects.  

The code presented in programs 2 to 6 is completely general and will be suitable for fitting 

pairwise or network meta-analyses with any number of treatments and multi-arm trials. We 

also provide an indication of the relevant parameters to monitor for inference and model 

checking for the various programs. The nodes to monitor for the fixed effects models are the 

same as those for the random effects models, except that there is no heterogeneity parameter. 

Table A1 Index of WinBUGS code with details of examples and sections where they are described. 

Program 
Fixed or 

Random Effects Example name Model specification 
1  RE Magnesium (Section 3.1) Predictive cross-validation for 

pairwise meta-analysis 
2  RE Adverse events in 

Chemotherapy (Section 3.2) 
Predictive cross-validation for 
network meta-analysis 

3 (a) RE Statins (Section 4.1.1) Meta-regression with subgroups 
 (b) FE  
4 (a) RE BCG Vaccine (Section 4.3.1) 

and Certolizumab (Section 
4.3.2) 

Meta-regression with 
continuous covariate  (b) FE 

6 (a) RE Certolizumab (Section 4.4.1) Meta-regression with 
adjustment for baseline risk  (b) FE  
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EXAMPLE 1. MAGNESIUM: PREDICTIVE CROSS-VALIDATION 

This example and results are described in Section 3.1. The WinBUGS code for predictive 

cross-validation in a pairwise meta-analysis is given in program 1. The code is identical to the 

simple code for pairwise meta-analysis presented in TSD28 (program 1(a)), apart from the 

lines highlighted below. 

Program 1: Binomial likelihood, logit link, predictive cross-validation, two-treatments 

(Magnesium example). Two-arm trials only. 
# Binomial likelihood, logit link, pairwise meta-analysis (2 treatments) 
# Random effects model with Predictive Cross-validation 
model{     # *** PROGRAM STARTS 
for(i in 1:ns){                        # LOOP THROUGH STUDIES 
    delta[i,1] <- 0                    # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)            # vague priors for all trial baselines 
    for (k in 1:2) {                   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]   # model for linear predictor 
        rhat[i,k] <- p[i,k] * n[i,k]          # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   #Deviance contribution 
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))         } 
    resdev[i] <- sum(dev[i,])        #  summed residual deviance contribution for this trial 
    delta[i,2] ~ dnorm(d[2],tau)      # trial-specific LOR distributions 
  }    
totresdev <- sum(resdev[])            #Total Residual Deviance 
d[1]<- 0                 # treatment effect is zero for reference treatment 
d[2] ~ dnorm(0,.0001)   # vague prior for treatment effect 
sd ~ dunif(0,5)          # vague prior for between-trial SD 
tau <- pow(sd,-2)        # between-trial precision = (1/between-trial variance) 
delta.new ~ dnorm(d[2],tau)   # predictive distribution for future trial 
p.base ~ dbeta(a,b)     # draw baseline (control group) effect 
a <- r[ns+1,1]            # no events in control group 
b <- n[ns+1,1]-r[ns+1,1]    # no of non-events in control group 
logit(p.new) <- logit(p.base) + delta.new    # predictive prob of event in treatment group 
r.new ~ dbin(p.new, n[ns+1,2]) # draw predicted number of events in treatment group 
# Bayesian p-value: probability of obtaining a value as extreme as the value 
# observed (r[ns+1,2]), given the model and the remaining data 
p.cross <- step(r.new - r[ns+1,2]) - 0.5*equals(r.new,r[ns+1,2])  # extreme value “larger” 
}                       # *** PROGRAM ENDS                          

 

The cross-validation p-value is obtained by monitoring p.cross. To obtain posterior summaries 

for other parameters of interest, the nodes d, delta.new and sd need to be monitored. To obtain 

the posterior means of the parameters required to assess model fit and model comparison, dev, 

totresdev and the DIC (from the WinBUGS DIC tool), need to be monitored. In addition, to 

produce plots of the “shrunken” estimates such as those in Figure 2 and Figure 3, the node 

delta needs to be monitored. 

The data structure is identical to that presented in TSD2,8 but the last row of data represents 

the trial for which we want to calculate the cross-validation p-value (ISIS-4 in this example). 

Briefly, ns is the number of studies in which the model is to be based, and in the main body of 
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data r[,1] and n[,1] are the numerators and denominators for the first treatment; r[,2] and n[,2], the 

numerators and denominators for the second listed treatment, and the trial to be excluded is 

given at the end. Text is included after the hash symbol (#) for ease of reference to the 

original data source. 

 
# Data (Magnesium Example) 
list(ns=15)    
 
r[,1] n[,1] r[,2] n[,2] # ID 
2 36 1 40 # 1 
23 135 9 135 # 2 
7 200 2 200 # 3 
1 46 1 48 # 4 
8 148 10 150 # 5 
9 56 1 59 # 6 
3 23 1 25 # 7 
1 21 0 22 # 8 
11 75 6 76 # 9 
7 27 1 27 # 10 
12 80 2 89 # 11 
13 33 5 23 # 12 
8 122 4 130 # 13 
118 1157 90 1159 # 14 
17 108 4 107 # 15 
2103 29039 2216 29011 # 16 
END 

 
# Initial values 
# Initial values for delta and other variables can be generated by WinBUGS. 
#chain 1 
list(d=c( NA, 0), sd=1, mu=c(0,0,0,0,0,    0,0,0,0,0,    0,0,0,0,0), p.base=0.5) 
#chain 2 
list(d=c( NA, -1), sd=4, mu=c(-3,-3,-3,-3,-3,    -3,-3,-3,-3,-3,    -3,-3,-3,-3,-3), p.base=.2) 
#chain 3 
list(d=c( NA, 2), sd=2, mu=c(-3,5,-1,-3,7,    -3,-4,-3,-3,0,    -3,-3,0,3,5), p.base=.8) 

 

EXAMPLE 2. PREDICTIVE CROSS-VALIDATION IN NETWORK META-

ANALYSIS 

A synthesis of evidence on three treatments to reduce the incidence of febrile neutropenia 

(FN), an adverse event during chemotherapy, was carried out for a cost-effectiveness 

analysis.68 We will take ‘No Treatment’, coded 1, as the reference for the analysis. The three 

treatments of interest, filgrastim, pegfilgrastim and lenograstim are coded 2 to 4. Table A2 

shows the number of patients with FN, rik, out of all included patients, nik, and the treatments 

compared, tik, in each arm of the included trials (i=1,…,25; k=1,2). The network diagram is 

presented in Figure A1.  
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Table A2 Number of adverse events rik, out of the total number of patients receiving chemotherapy nik, in 

arms 1 and 2 of 25 trials for the 4 treatments tik.  

 Treatments Number of events Number of patients 

Study ID arm 1 
ti1 

arm 2 
ti2 

arm 1 
ri1 

arm 2 
ri2 

arm 1 
ni1 

arm 2 
ni2 

1 2 3 15 10 75 77 
2 2 3 27 14 147 149 
3 2 3 2 5 25 46 
4 2 3 6 6 31 29 
5 2 3 1 0 13 14 
6 1 2 26 34 72 276 
7 1 2 17 9 39 41 
8 1 2 15 4 72 77 
9 1 2 86 72 192 197 

10 1 2 52 34 104 101 
11 1 2 62 40 125 125 
12 1 2 27 16 85 90 
13 1 2 80 38 104 95 
14 1 2 34 17 64 65 
15 1 2 38 25 130 129 
16 1 4 18 5 28 23 
17 1 4 42 36 59 61 
18 1 4 15 5 26 22 
19 1 4 62 52 80 82 
20 1 4 14 5 43 43 
21 1 3 27 11 73 73 
22 1 3 34 14 343 343 
23 1 3 5 4 29 30 
24 1 3 10 3 118 123 
25 1 3 78 6 465 463 

 

 

Figure A1 Adverse events in Chemotherapy: Treatment network. Lines connecting two treatments 

indicate that a comparison between these treatments has been made. The numbers on the lines indicate 

how many RCTs compare the two connected treatments. 

No treatment (1)

Lenograstim (4)

Filgrastim (2)

Pegfilgrastim (3)

10 5
5

5
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Figure A2 Adverse events in Chemotherapy: Crude log-odds ratios with 95% CI (filled squares, solid 

lines); posterior mean with 95% CrI of the trial-specific log-odds ratios, “shrunken” estimates, (open 

squares, dashed lines); posterior mean with 95% CrI of the posterior (filled diamond, solid line) and 

predictive distribution (open diamond, dashed line) of the pooled treatment effect for a RE model a) 

including all the trials and b) excluding trial 25 (cross-validation model). 

 

Figure A2(a) shows a forest plot with the crude log-odds ratios calculated from the data and 

the “shrunken” estimates (i.e. the trial-specific treatment effects, assumed to be 

exchangeable) for the trials comparing treatments 1 and 3, along with the posterior and 

predictive effects of treatment 1 compared to 3, from a RE model including all the trials in 

Table A2. Although the RE network meta-analysis fits the data well (posterior mean of the 

residual deviance is 49.6, compared to 50 data points), trial 25 has an estimated trial-specific 

log-odds ratio which is somewhat different from the other trials and may be contributing to 

the high estimated heterogeneity in this network (posterior median of =0.42 with 95% CrI 

(0.20, 0.73)). To investigate whether this trial is an “outlier”, cross-validation, based on a 

“leave one out” approach, was used as described in Section 3. The result is a p-value of 

0.004, indicating that a trial with a results as extreme as trial 25 would be very unlikely, given 

our model for the remaining data (convergence was achieved after 60,000 burn-in iterations 

and results are based on 100,000 samples from three independent chains).  

The WinBUGS code to fit the standard RE model is given in TSD28 (Program 1(c)). The 

WinBUGS code for predictive cross-validation in a network meta-analysis is given in 

Program 2. Note that this code is completely general and can be used for predictive cross-

validation in networks with or without multi-arm trials and in pairwise meta-analysis. 

a) All trials b) cross validation

21

22

23

24

25

mean effect

predictive effect

Study

-4 -3 -2 -1 0 1
log-odds ratio

21

22

23

24

25

mean effect

predictive effect

Study

-4 -3 -2 -1 0 1
log-odds ratio
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We have picked the most extreme of 25 trials, so there is an implication that n=25 tests could 

be performed. Taking into account the effective number of tests that could be undertaken, we 

need to compare the observed p-value to its expected value, which is 1/(n+1) = 0.038, the 

value of the n-th Uniform order statistic. The observed p-value is substantially less than this, 

indicating that trial 25 may be an “outlier”. This can also be seen in Figure A2(b) which now 

presents the “shrunken” estimates mean and predictive treatment effects for the trials 

comparing treatments 1 and 3, along with the posterior and predictive effects of treatment 1 

compared to 3, from a RE model excluding trial 25 (but including the observed log-odds ratio 

and CI for this trial). The 95% CI for the observed log-odds ratio from trial 25 is (-3.57, -

1.89) which is well outside the 95% CrI for the posterior mean (-1.61, -0.74) and only 

marginally within the bounds of the 95% CrI for the predictive mean treatment effect (-1.98, -

0.38), which is the basis for predictive cross-validation. The posterior median for the 

between-trials heterogeneity for the RE network meta-analysis excluding trial 25 is 0.29 with 

95% CrI (0.05, 0.58), smaller than for the model with the full data. 

Program 2: Binomial likelihood, logit link, predictive cross-validation, network meta-

analysis with multi-arm trials (Adverse Events in Chemotherapy example).  
# Binomial likelihood, logit link, network meta-analysis (multi-arm trials) 
# Random effects model with Predictive Cross-validation 
model{                                 # *** PROGRAM STARTS 
for(i in 1:ns){                        # LOOP THROUGH STUDIES 
    w[i,1] <- 0       # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0               # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)            # vague priors for all trial baselines 
    for (k in 1:na[i]) {               # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]   # model for linear predictor 
        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
         } 
    resdev[i] <- sum(dev[i,1:na[i]])        #  summed residual deviance contribution for this trial 
    for (k in 2:na[i]) {               # LOOP THROUGH ARMS 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k  # precision of LOR distributions (with multi-arm trial correction) 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])   # adjustment for multi-arm RCTs 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials 
      } 
  }    
totresdev <- sum(resdev[])            # Total Residual Deviance 
d[1]<-0          # treatment effect is zero for reference treatment 
for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } # vague priors for treatment effects 
sd ~ dunif(0,5)        # vague prior for between-trial SD 
tau <- pow(sd,-2)      # between-trial precision = (1/between-trial variance) 
# predictive distribution for future trial is multivariate normal 
delta.new[1] <- 0     # treatment effect is zero for reference treatment 
w.new[1] <- 0         # adjustment for conditional mean is zero for ref. treat. 
for (k in 2:nt) {            # LOOP THROUGH TREATMENTS 
    delta.new[k] ~ dnorm(m.new[k],tau.new[k])  # conditional distribution of each delta.new 
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    m.new[k] <-  d[k] + sw.new[k]    # conditional mean of delta.new 
    tau.new[k] <- tau *2*(k-1)/k     # conditional precision of delta.new  
    w.new[k] <- delta.new[k] - d[k]  # adjustment for conditional mean 
    sw.new[k] <- sum(w.new[1:k-1])/(k-1) # cumulative adjustment for cond. mean 
  } 
p.base ~ dbeta(a,b)         # draw baseline (control group) effect 
a <- r[ns+1,1]              # no. of events in control group 
b <- n[ns+1,1]-r[ns+1,1]    # no of non-events in control group 
for (k in 2:na[ns+1]) {         # LOOP THROUGH ARMS 
# predictive prob of event for each treatment arm of the new trial 
    logit(p.new[k]) <- logit(p.base) + (delta.new[t[ns+1,k]]- delta.new[t[ns+1,1]]) 
    r.new[k] ~ dbin(p.new[k], n[ns+1,k])   # draw predicted number of events for each arm of the new trial 
# Bayesian p-value: probability of obtaining a value as extreme as the  
# value observed (r[ns+1,2]), given the model and the remaining data 
    p.cross[k] <- step(r[ns+1,2] - r.new[k]) - 0.5*equals(r.new[k],r[ns+1,2])  # extreme value “smaller” 
  } 
}                    # *** PROGRAM ENDS                          

 

The relevant nodes to monitor are the same as in Program 1. 

The code below can be added before the closing brace to predict all pairwise log-odds ratios 

and odds ratios in a new trial. 
# pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2 
for (c in 1:(nt-1)) {   
    for (k in (c+1):nt)  {  
      lor.new[c,k] <- delta.new[k]- delta.new[c] 
      or.new[c,k] <- exp(lor.new[c,k]) 
      }   
 } 

 

The data structure is identical to that presented in TSD28 (Program 1(c)), but the last row of 

data represents the trial for which we want to calculate the cross-validation p-value for.  
# Data (Adverse events in Chemotherapy) 
list(ns=24, nt=4)    
 
t[,1] t[,2] na[] r[,1] r[,2] n[,1] n[,2] # ID 
2 3 2 15 10 75 77 # 1 
2 3 2 27 14 147 149 # 2 
2 3 2 2 5 25 46 # 3 
2 3 2 6 6 31 29 # 4 
2 3 2 1 0 13 14 # 5 
1 2 2 26 34 72 276 # 6 
1 2 2 17 9 39 41 # 7 
1 2 2 15 4 72 77 # 8 
1 2 2 86 72 192 197 # 9 
1 2 2 52 34 104 101 # 10 
1 2 2 62 40 125 125 # 11 
1 2 2 27 16 85 90 # 12 
1 2 2 80 38 104 95 # 13 
1 2 2 34 17 64 65 # 14 
1 2 2 38 25 130 129 # 15 
1 4 2 18 5 28 23 # 16 
1 4 2 42 36 59 61 # 17 
1 4 2 15 5 26 22 # 18 
1 4 2 62 52 80 82 # 19 
1 4 2 14 5 43 43 # 20 
1 3 2 27 11 73 73 # 21 
1 3 2 34 14 343 343 # 22 
1 3 2 5 4 29 30 # 23 



67 

 

1 3 2 10 3 118 123 # 24 
1 3 2 78 6 465 463 # 25 
END 

 
# Initial values 
# Initial values for delta and other variables can be generated by WinBUGS. 
#chain 1 
list(d=c( NA, 0,0,0), sd=1, mu=c(0,0,0,0,0,    0,0,0,0,0,    0,0,0,0,0,     0,0,0,0,0,     0,0,0,0), p.base=0.5) 
#chain 2 
list(d=c( NA, -1,-2,1), sd=4, mu=c(-3,-3,-3,-3,-3,    -3,-3,-3,-3,-3,    -3,-3,-3,-3,-3,    -3,-3,-3,-3,-3,    -3,-3,-3,-3), p.base=.2) 
#chain 3 
list(d=c( NA, 2,3,-3), sd=2, mu=c(-3,5,-1,-3,7,    -3,-4,-3,-3,0,    -3,5,-1,-3,7,    -3,-4,-3,-3,0,    -3,-3,0,3), p.base=.8) 
 

 

EXAMPLE 3. STATINS: META-REGRESSION WITH SUBGROUPS 

This example and results are described in Section 4.1.1. Although this example only included 

2 treatments, the code presented below can also be used for subgroup analysis with multiple 

treatments and including multi-arm trials. The WinBUGS code for random effects subgroup 

meta-regression model is given in program 3(a) and the fixed effects code is given in 

program 3(b). 

Program 3(a): Binomial likelihood, logit link, Random Effects, meta-regression with 

subgroups (Statins example) 
# Binomial likelihood, logit link, subgroup 
# Random effects model for multi-arm trials 
model{     # *** PROGRAM STARTS 
for(i in 1:ns){                        # LOOP THROUGH STUDIES 
    w[i,1] <- 0       # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0               # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)            # vague priors for all trial baselines 
    for (k in 1:na[i]) {               # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1  
        logit(p[i,k]) <- mu[i] + delta[i,k] + (beta[t[i,k]]-beta[t[i,1]]) * x[i] 
        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
         } 
    resdev[i] <- sum(dev[i,1:na[i]])        # summed residual deviance contribution for this trial 
    for (k in 2:na[i]) {              # LOOP THROUGH ARMS 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]  # mean of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k  # precision of LOR distributions (with multi-arm trial correction) 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials 
      } 
  }    
totresdev <- sum(resdev[])            # Total Residual Deviance 
d[1]<-0          # treatment effect is zero for reference treatment 
beta[1] <- 0     # covariate effect is zero for reference treatment 
for (k in 2:nt){     # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
    beta[k] <- B    # common covariate effect 
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  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
sd ~ dunif(0,5)        # vague prior for between-trial SD 
tau <- pow(sd,-2)      # between-trial precision = (1/between-trial variance) 
}                                                      # *** PROGRAM ENDS 

 

To obtain posterior summaries for other parameters of interest, the nodes d, B and sd need to 

be monitored. To obtain the posterior means of the parameters required to assess model fit 

and model comparison, dev, totresdev and the DIC (from the WinBUGS DIC tool), need to be 

monitored.  

Additional code can be added before the closing brace to estimate all the pair-wise log odds 

ratios and odds ratios and to produce estimates of absolute effects, given additional 

information on the absolute treatment effect on one of the treatments, for given covariate 

values. For further details on calculating other summaries from the results and on converting 

the summaries onto other scales, refer to the Appendix in TSD2.8 
################################################################################ 
# Extra code for calculating all odds ratios and log odds ratios, and absolute effects, for covariate  
# values in vector z, with length nz (given as data) 
################################################################################ 
for (k in 1:nt){   
    for (j in 1:nz) { dz[j,k] <- d[k] + (beta[k]-beta[1])*z[j] }  # treatment effect when covariate = z[j] 
  } 
# pairwise ORs and LORs for all possible pair-wise comparisons 
for (c in 1:(nt-1)) {   
    for (k in (c+1):nt)  {  
# when covariate is zero 
        or[c,k] <- exp(d[k] - d[c]) 
        lor[c,k] <- (d[k]-d[c]) 
# at covariate=z[j] 
        for (j in 1:nz) { 
            orz[j,c,k] <- exp(dz[j,k] - dz[j,c]) 
            lorz[j,c,k] <- (dz[j,k]-dz[j,c]) 
          } 
     }   
 } 
# Provide estimates of treatment effects T[k] on the natural (probability) scale  
# Given a Mean Effect, meanA, for ‘standard’ treatment 1, with precision (1/variance) precA, and covariate value z[j] 
A ~ dnorm(meanA,precA) 
for (k in 1:nt) {  
    for (j in 1:nz){ 
        logit(T[j,k]) <- A + d[k] + (beta[k]-beta[1]) * z[j]   
      } 
  } 

 

For a meta-regression with two subgroups vector z would be added to the list data statement 

as list(z=c(1), nz=1). 

 

The data structure is identical to that presented in TSD2,8 but now has an added column x[] 

which represents the value of the covariate (taking values 0 or 1) for each trial. The 
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remaining variables represent the number of treatments, nt, the number of studies, ns, r[,1] and 

n[,1] are the numerators and denominators for the first treatment, r[,2] and n[,2], the numerators 

and denominators for the second listed treatment, t[,1] and t[,2] are the treatment number 

identifiers for the first and second listed treatments, and na[] is the number of arms in each 

trial.  
# Data (Statins example) 
list(ns=19, nt=2)  
 
t[,1] t[,2] na[] r[,1] n[,1] r[,2] n[,2] x[] # ID name 
1 2 2 256 2223 182 2221 1 # 1 4S 
1 2 2 4 125 1 129 1 # 2 Bestehorn 
1 2 2 0 52 1 94 1 # 3 Brown 
1 2 2 2 166 2 165 1 # 4 CCAIT 
1 2 2 77 3301 80 3304 0 # 5 Downs 
1 2 2 3 1663 33 6582 0 # 6 EXCEL 
1 2 2 8 459 1 460 1 # 7 Furberg 
1 2 2 3 155 3 145 1 # 8 Haskell 
1 2 2 0 42 1 83 1 # 9 Jones 
1 2 2 4 223 3 224 0 # 10 KAPS 
1 2 2 633 4520 498 4512 1 # 12 LIPID 
1 2 2 1 124 2 123 1 # 13 MARS 
1 2 2 11 188 4 193 1 # 14 MAAS 
1 2 2 5 78 4 79 1 # 15 PLAC 1 
1 2 2 6 202 4 206 1 # 16 PLAC 2 
1 2 2 3 532 0 530 0 # 17 PMSGCRP 
1 2 2 4 178 2 187 1 # 18 Riegger 
1 2 2 1 201 3 203 1 # 19 Weintraub 
1 2 2 135 3293 106 3305 0 # 20 Wscotland 
END 

 
# Initial values 
# Initial values for delta can be generated by WinBUGS. 
#chain 1 
list(d=c( NA, 0), mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0), B=0, sd=1) 
#chain 2 
list(d=c( NA, -1), mu=c(-3,-3,3,-3,3,    -3,3,-3,3,-3,    -3,-3,3,3,-3,   3,-3,-3,3), B=-1, sd=3) 
#chain 3 
list(d=c( NA, 2), mu=c(-3,5,-1,-3,7,    -3,-4,-3,-3,0,    5,0,-2,-5,1,   -2,5,3,0), B=1.5, sd=0.5) 

Program 3(b): Binomial likelihood, logit link, Fixed Effects, meta-regression with 

subgroups (Statins example) 
# Binomial likelihood, logit link, subgroup 
# Fixed effects model with one covariate 
model{                            # *** PROGRAM STARTS 
for(i in 1:ns){                   # LOOP THROUGH STUDIES 
    mu[i] ~ dnorm(0,.0001)        # vague priors for all trial baselines 
    for (k in 1:na[i])  {         # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])      # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1 
        logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]] + (beta[t[i,k]]-beta[t[i,1]]) * x[i] 
        rhat[i,k] <- p[i,k] * n[i,k]  # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
             +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
      } 
    resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 
     }    
totresdev <- sum(resdev[])        # Total Residual Deviance 
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d[1] <- 0       # treatment effect is zero for reference treatment 
beta[1] <- 0    # covariate effect is zero for reference treatment 
for (k in 2:nt){     # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
    beta[k] <- B    # common covariate effect 
  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
}                                                      # *** PROGRAM ENDS 

 
# Initial values 
#chain 1 
list(d=c( NA, 0), mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0), B=0) 
#chain 2 
list(d=c( NA, -1), mu=c(-3,-3,3,-3,3,    -3,3,-3,3,-3,    -3,-3,3,3,-3,   3,-3,-3,3), B=-1) 
#chain 3 
list(d=c( NA, 2), mu=c(-3,5,-1,-3,7,    -3,-4,-3,-3,0,    5,0,-2,-5,1,   -2,5,3,0), B=1.5) 
 
 

EXAMPLE 4.  BCG VACCINE 

This example and results are described in Section 4.3.1. The WinBUGS code for random 

effects meta-regression model with a continuous covariate is given in program 4(a) and the 

fixed effects code is given in program 4(b). This code can also be used for networks with 

multiple treatments and including multi-arm trials (see Example 5). 

Program 4(a): Binomial likelihood, logit link, Random Effects, meta-regression with a 

continuous covariate (BCG vaccine example) 
# Binomial likelihood, logit link, continuous covariate 
# Random effects model for multi-arm trials 
model{                                 # *** PROGRAM STARTS 
for(i in 1:ns){                        # LOOP THROUGH STUDIES 
    w[i,1] <- 0       # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0               # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.0001)            # vague priors for all trial baselines 
    for (k in 1:na[i]) {               # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1 (centring) 
        logit(p[i,k]) <- mu[i] + delta[i,k] + (beta[t[i,k]]-beta[t[i,1]]) * (x[i]-mx) 
        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
         } 
    resdev[i] <- sum(dev[i,1:na[i]])        #  summed residual deviance contribution for this trial 
    for (k in 2:na[i]) {               # LOOP THROUGH ARMS 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]  # mean of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k  # precision of LOR distributions (with multi-arm trial correction) 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials 
      } 
  }    
totresdev <- sum(resdev[])            # Total Residual Deviance 
d[1]<-0          # treatment effect is zero for reference treatment 
beta[1] <- 0     # covariate effect is zero for reference treatment 
for (k in 2:nt){     # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
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    beta[k] <- B    # common covariate effect 
  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
sd ~ dunif(0,5)        # vague prior for between-trial SD 
tau <- pow(sd,-2)      # between-trial precision = (1/between-trial variance) 
}                                                      # *** PROGRAM ENDS 

 

The relevant nodes to monitor are the same as in Program 3. 

The data structure is the same as in Example 3, but now we add the mean covariate value mx 

to the list data, for centring. 
# Data (BCG vaccine example) 
list(ns=13, nt=2, mx=33.46)  
 
t[,1] t[,2] na[] r[,1] n[,1] r[,2] n[,2] x[] # ID 
1 2 2 11 139 4 123 44 # 1 
1 2 2 29 303 6 306 55 # 2 
1 2 2 11 220 3 231 42 # 3 
1 2 2 248 12867 62 13598 52 # 4 
1 2 2 47 5808 33 5069 13 # 5 
1 2 2 372 1451 180 1541 44 # 6 
1 2 2 10 629 8 2545 19 # 7 
1 2 2 499 88391 505 88391 13 # 8 
1 2 2 45 7277 29 7499 27 # 9 
1 2 2 65 1665 17 1716 42 # 10 
1 2 2 141 27338 186 50634 18 # 11 
1 2 2 3 2341 5 2498 33 # 12 
1 2 2 29 17854 27 16913 33 # 13 
END 

 

To estimate all the pair-wise Log Odds Ratios, Odds Ratios and absolute effects, for covariate 

values 0, 13 and 50, vector z could added to the list data as list(z=c(0,13,50), nz=3).  

 
# Initial values 
# Initial values for delta can be generated by WinBUGS. 
#chain 1 
list(d=c( NA, 0), mu=c(0,0,0,0,0,    0,0,0,0,0,    0,0,0), sd=1, B=0, sd=1) 
#chain 2 
list(d=c( NA, -1), mu=c(-3,-3,-3,3,-3,     -3,3,-3,-3,-3,    -3,-3,3), B=-2, sd=3) 
#chain 3 
list(d=c( NA, 2), mu=c(-3,5,-1,-3,7,     -3,-4,-3,-3,0,     5,0,-5), B=5, sd=0.5) 

Program 4(b): Binomial likelihood, logit link, Fixed Effects, meta-regression with a 

continuous covariate (BCG vaccine example) 
# Binomial likelihood, logit link 
# Fixed effects model with continuous covariate  
model{                            # *** PROGRAM STARTS 
for(i in 1:ns){                   # LOOP THROUGH STUDIES 
    mu[i] ~ dnorm(0,.0001)        # vague priors for all trial baselines 
    for (k in 1:na[i])  {         # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])      # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1 
        logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]] + (beta[t[i,k]]-beta[t[i,1]]) * (x[i]-mx) 
        rhat[i,k] <- p[i,k] * n[i,k]  # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
             +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
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      } 
    resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 
     }    
totresdev <- sum(resdev[])        # Total Residual Deviance 
d[1] <- 0       # treatment effect is zero for reference treatment 
beta[1] <- 0    # covariate effect is zero for reference treatment 
for (k in 2:nt){     # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
    beta[k] <- B    # common covariate effect 
  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
}                                                      # *** PROGRAM ENDS 

 
# Initial values 
#chain 1 
list(d=c( NA, 0), mu=c(0,0,0,0,0,    0,0,0,0,0,    0,0,0), B=0) 
#chain 2 
list(d=c( NA, -1), mu=c(-3,-3,-3,3,-3,     -3,3,-3,-3,-3,    -3,-3,3), B=-2) 
#chain 3 
list(d=c( NA, 2), mu=c(-3,5,-1,-3,7,     -3,-4,-3,-3,0,     5,0,-5), B=5) 

 

EXAMPLE 5. CERTOLIZUMAB: CONTINUOUS COVARIATE 

This example and results are described in Section 4.3.2. The WinBUGS code for random 

effects meta-regression model with a continuous covariate and non-informative priors is 

given in program 4(a) and the fixed effects code is given in program 4(b). The relevant nodes 

to monitor are the same as in Program 3. The data structure is the same as in Example 4, but 

now we have more than 2 treatments being compared. 
# Data (Certolizumab example – covariate is disease duration) 
list(ns=12, nt=7, mx=8.21)  
 
t[,1] t[,2] na[] n[,1] n[,2] r[,1] r[,2] x[] # ID Study name 
1 3 2 63 65 9 28 6.85 # 1 Kim 2007 (37) 
1 3 2 200 207 19 81 10.95 # 2 DE019 Trial (36) 
1 3 2 62 67 5 37 11.65 # 3 ARMADA Trial (34) 
1 2 2 199 393 15 146 6.15 # 4 RAPID 1 Trial (40) 
1 2 2 127 246 4 80 5.85 # 5 RAPID 2 Trial (41) 
1 5 2 363 360 33 110 8.10 # 6 START Study (57) 
1 5 2 110 165 22 61 7.85 # 7 ATTEST Trial (51) 
1 5 2 47 49 0 15 8.30 # 8 Abe 2006 (50) 
1 4 2 30 59 1 23 13.00 # 9 Weinblatt 1999 (49) 
1 6 2 40 40 5 5 11.25 # 11 Strand 2006 (62) 
1 7 2 49 50 14 26 0.92 # 12 CHARISMA Study (64) 
1 7 2 204 205 22 90 7.65 # 13 OPTION Trial (67) 
END 

 
# Initial values for RE model 
#chain 1 
list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), sd=1, B=0) 
#chain 2 
list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), sd=0.5, B=-1) 
#chain 3 
list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), sd=3, B=5) 

 
# Initial values for FE model 
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#chain 1 
list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), B=0) 
#chain 2 
list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), B=-2) 
#chain 3 
list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), B=5) 

 

A RE model with Uniform(0,5) prior for , the heterogeneity parameter is not identifiable. 

This is because there is a trial with a zero cell and not many replicates of each comparison. 

Due to the paucity of information from which the between-trial variation can be estimated, in 

the absence of an informative prior on , the relative treatment effect for this trial will tend 

towards infinity. We have therefore used an informative half-normal prior, represented by the 

solid line in Figure A3, which ensures stable computation: 

 2~ Half-Normal(0,0.32 )   

This prior distribution was chosen to ensure that, a priori, 95% of the trial-specific ORs lie 

within a factor of 2 from the median OR for each comparison. Under this prior the mean  is 

0.26. To fit the RE meta-regression model with this prior distribution, the line of code 

annotated as ‘vague prior for between-trial SD’ in Program 4(a) should be replaced with the 

two lines below: 

 
sd ~ dnorm(0,prec)I(0,)     # prior for between-trial SD 
prec <- pow(0.32,-2) 

 

This prior should not be used unthinkingly. Informative prior distributions allowing wider or 

narrower ranges of values can be used by changing the value of prec in the code above. 

In this example, the posterior distribution obtained for  is given by the dotted line in Figure 

A3, and shows that the range plausible values for  has not changed much, but the probability 

that  will have values close to zero has decreased.  
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Figure A3 Certolizumab: meta-regression with informative Half-Normal(0,0.322) prior distribution. 

Probability density function of the prior distribution is given by the solid line and the posterior density by 

the dotted line. 

 

EXAMPLE 6. CERTOLIZUMAB: BASELINE RISK 

This example and results are described in Section 4.4.1. The WinBUGS code for the meta-

regression model with adjustment for baseline risk for random and fixed treatment effects is 

similar to programs 4(a) and 4(b), respectively, but now x[i] is replaced with mu[i] in the 

definitions of the linear predictor. The variability of the normal prior distribution needs to be 

reduced to avoid numerical errors (this only minimally affects the posterior results).  

Program 6(a): Binomial likelihood, logit link, Random Effects, meta-regression with 

adjustment for baseline risk (Certolizumab example) 
# Binomial likelihood, logit link 
# Random effects model for multi-arm trials 
model{                                 # *** PROGRAM STARTS 
for(i in 1:ns){                        # LOOP THROUGH STUDIES 
    w[i,1] <- 0       # adjustment for multi-arm trials is zero for control arm 
    delta[i,1] <- 0               # treatment effect is zero for control arm 
    mu[i] ~ dnorm(0,.001)            # vague priors for all trial baselines 
    for (k in 1:na[i]) {               # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1  
        logit(p[i,k]) <- mu[i] + delta[i,k] + (beta[t[i,k]]-beta[t[i,1]]) * (mu[i]-mx) 
        rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
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            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
         } 
    resdev[i] <- sum(dev[i,1:na[i]])        #  summed residual deviance contribution for this trial 
    for (k in 2:na[i]) {               # LOOP THROUGH ARMS 
        delta[i,k] ~ dnorm(md[i,k],taud[i,k]) # trial-specific LOR distributions 
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]  # mean of LOR distributions (with multi-arm trial correction) 
        taud[i,k] <- tau *2*(k-1)/k  # precision of LOR distributions (with multi-arm trial correction) 
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])  # adjustment for multi-arm RCTs 
        sw[i,k] <- sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials 
      } 
  }    
totresdev <- sum(resdev[])            # Total Residual Deviance 
d[1]<-0          # treatment effect is zero for reference treatment 
beta[1] <- 0     # covariate effect is zero for reference treatment 
for (k in 2:nt){     # LOOP THROUGH TREATMENTS 
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
    beta[k] <- B    # common covariate effect 
  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
sd ~ dunif(0,5)        # vague prior for between-trial SD 
tau <- pow(sd,-2)      # between-trial precision = (1/between-trial variance) 
}                                                      # *** PROGRAM ENDS 

 

The relevant nodes to monitor are the same as in Program 3.  

The data structure is the same as Example 4, but without variable x[]. 
# Data (Certolizumab, baseline risk) 
list(ns=12, nt=7, mx=-2.421)  
 
t[,1] t[,2] na[] n[,1] n[,2] r[,1] r[,2] # ID Study name 
1 3 2 63 65 9 28 # 1 Kim 2007 (37) 
1 3 2 200 207 19 81 # 2 DE019 Trial (36) 
1 3 2 62 67 5 37 # 3 ARMADA Trial (34) 
1 2 2 199 393 15 146 # 4 RAPID 1 Trial (40) 
1 2 2 127 246 4 80 # 5 RAPID 2 Trial (41) 
1 5 2 363 360 33 110 # 6 START Study (57) 
1 5 2 110 165 22 61 # 7 ATTEST Trial (51) 
1 5 2 47 49 0 15 # 8 Abe 2006 (50) 
1 4 2 30 59 1 23 # 9 Weinblatt 1999 (49) 
1 6 2 40 40 5 5 # 11 Strand 2006 (62) 
1 7 2 49 50 14 26 # 12 CHARISMA Study (64) 
1 7 2 204 205 22 90 # 13 OPTION Trial (67) 
END 

 
# Initial values 
# Initial values for delta and other variables can be generated by WinBUGS. 
#chain 1 
list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), sd=1, B=0) 
#chain 2 
list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), sd=0.5, B=-1) 
#chain 3 
list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), sd=3, B=5) 

Program 6(b): Binomial likelihood, logit link, Fixed Effects, meta-regression with 

adjustment for baseline risk (Certolizumab example) 
# Binomial likelihood, logit link 
# Fixed effects model with one covariate (independent covariate effects) 
model{                            # *** PROGRAM STARTS 
for(i in 1:ns){                   # LOOP THROUGH STUDIES 
    mu[i] ~ dnorm(0,.001)         # vague priors for all trial baselines 
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    for (k in 1:na[i])  {         # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k])      # binomial likelihood 
# model for linear predictor, covariate effect relative to treat in arm 1 
        logit(p[i,k]) <- mu[i] + d[t[i,k]] - d[t[i,1]] + (beta[t[i,k]]-beta[t[i,1]]) * (mu[i]-mx) 
        rhat[i,k] <- p[i,k] * n[i,k]  # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  #Deviance contribution 
             +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
      } 
    resdev[i] <- sum(dev[i,1:na[i]]) # summed residual deviance contribution for this trial 
     }    
totresdev <- sum(resdev[])        # Total Residual Deviance 
d[1] <- 0       # treatment effect is zero for reference treatment 
beta[1] <- 0    # covariate effect is zero for reference treatment 
for (k in 2:nt){   
    d[k] ~ dnorm(0,.0001)   # vague priors for treatment effects 
    beta[k] <- B    # common covariate effect 
  } 
B ~ dnorm(0,.0001)   # vague prior for covariate effect 
}                                                      # *** PROGRAM ENDS 

 
# Initial values 
#chain 1 
list(d=c( NA, 0,0,0,0,0,0), mu=c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0), B=0) 
#chain 2 
list(d=c( NA, -1,1,-1,1,-1,1), mu=c(-3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3), B=-2) 
#chain 3 
list(d=c( NA, 2,-2,2,-2,2,-2), mu=c(-3, 5, -1, -3, 7, -3, -4, -3, -3, 0, 5, 0), B=5) 

 

 

 
 
 


