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that provides an overview of the key principles and methods of health technology 
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provide detailed advice on how to implement and apply the methods it describes. This 

DSU series of Technical Support Documents (TSDs) is intended to complement the 

Methods Guide by providing detailed information on how to implement specific 

methods. 

 

The TSDs provide a review of the current state of the art in each topic area, and make 

clear recommendations on the implementation of methods and reporting standards 
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in submitting or critiquing evidence as part of NICE Technology Appraisals, whether 

companies, assessment groups or any other stakeholder type. 
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________________________________________ 

i National Institute for Health and Care Excellence. Guide to the methods of technology appraisal, 2013 
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EXECUTIVE SUMMARY 

Survival analysis modelling approaches are often required to capture the survival 

functions seen in clinical trial data and to further extrapolate to estimate lifetime 

benefits in economic evaluations. To accurately capture overall survival functions, 

there is a need to consider the hazards (rates of events) both within the trial period 

and beyond the duration of the trial. Often complex hazard function shapes can arise 

both within and beyond the trial period, meaning that increasingly sophisticated 

survival models are required and are being applied in NICE TAs, going beyond 

standard parametric survival models. In particular, the advent of immuno-therapy 

treatments for oncology has resulted in an increase in the use of complex survival 

models, because delayed responses to treatment and the existence of long-term 

survivors have been hypothesised to result in complex hazard functions. 

 

We take a single trial-based approach to this issue in this document. That is, we focus 

on methods that could be applied to data within a trial and then used (with the potential 

inclusion of external data) to provide a measure of the mean survival for that specific 

trial population. If the target population differs from those included in the trial, then 

methods to account for the different make-up of the population need to be accounted 

for when estimating absolute effect measures. We further concentrate on extrapolating 

treatment and control arms separately, and thereby have a treatment effect that is 

implied by those two separate extrapolations rather than directly modelling the 

treatment effect (and whether this may diminish or stabilise). We argue that one should 

explicitly plot the assumed long-term hazard in each trial arm and to plot the assumed 

treatment effect in the short and long-term. In taking this single trial-based approach, 

we do not cover the specific requirements needed when pooling evidence across 

studies – extra care is required when estimating absolute rather than relative effects 

in this context. Many of the issues outlined above are covered in separate, specific 

TSD documents.  

 

We describe a variety of survival modelling approaches that have been, and can be, 

used, when hazard functions are complex. Flexible parametric survival methods 

incorporating splines or fractional polynomials, models that enforce cure proportions, 

and more general mixture models have been applied in NICE TAs in the presence of 



   

 

6 

 

complexity of observed hazard functions. Further approaches that have been used in 

practice take a conditional approach to dealing with the issue of complex hazard 

functions, namely piecewise modelling approaches and landmarking on a point of 

treatment response. We present the motivation behind each approach, their details 

with respect to formulae and assumptions, and their limitations, all from the 

perspective of applying them to observed trial data. We further demonstrate their 

potential performance in a range of plausible and realistic simulated scenarios. 

However, a major consideration remains surrounding how to then extrapolate survival 

functions to a lifetime horizon, whether this is using standard parametric approaches 

or a more sophisticated survival modelling technique. Extensive discussion and 

consideration of the assumptions that are made under various approaches when 

extrapolating survival functions beyond the range of the data are therefore also given. 

 

Determining whether a complex survival model provides a good representation of 

hazards beyond the trial period is challenging, and general issues with extrapolation 

of survival functions still apply. Careful consideration should therefore be given to 

whether the extrapolation is realistic, which may involve using external data sources, 

clinical expert opinion, or arguments around biological plausibility (incorporating 

knowledge around expected shapes of survival functions in given populations, or 

knowledge of specific disease subgroup characteristics). However, retrospectively 

assessing the plausibility of extrapolations is inherently subjective and as a result may 

be prone to personal bias. Formal prior elicitation of likely long-term survival functions, 

potentially using a Bayesian framework for the technology assessment, is one possible 

solution, though not one that we cover in detail in this document nor one which has 

been extensively evaluated or used in practice, and is not one that necessarily avoids 

the issue of subjectivity. 

 

We apply each of the survival modelling approaches to complex simulated survival 

data; simulating from scenarios with turning points in the true hazard functions driven 

by competing risks of both disease-specific and other-cause mortality. We evaluate 

each of the described approaches in capturing the true survival functions both within 

the range of follow-up and extrapolated to a lifetime horizon. We discuss when, and 

why, both the simple and complex approaches fail, and further when the incorporation 

of external data may improve long-term extrapolation. We also provide illustrative 
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examples of some of the issues highlighted in the simulation study and discuss 

implications for practice. 

 

We provide specific recommendations for consideration for each of the considered 

complex approaches; both in their fitting to observed data and the consideration of 

how to evaluate extrapolated survival functions. These relate to model selection and 

convergence issues, the choice of cut-points should they be required, and when, and 

if, one should incorporate external data. We further provide general recommendations 

for all approaches; considering the incorporation of external data for extrapolation of 

survival functions, approaches for evaluating if model-based extrapolations are 

consistent with external data, and graphical approaches to allow the assessment of 

the appropriateness of the assumed treatment effect in the extrapolated portion of a 

survival function. We also provide recommendations for areas of further research and 

methods evaluation.  
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2. INTRODUCTION 

2.1. BACKGROUND 

2.1.1. Survival analysis in economic evaluation 

Survival analysis is required to extrapolate from clinical trial data to estimate the 

lifetime costs and benefits of interventions and comparators in economic evaluations. 

To accurately model survival, models need to consider the hazards (rates of events) 

within the trial period and hazards beyond the trial. 

 

Technical Support Document (TSD) 14 provides guidance on the process for selecting 

survival models, and explains the assumptions underpinning common, or “standard” 

parametric models[1, 2] (see list below for the models we include under this term). 

Each of the standard parametric models makes assumptions about the hazards over 

time: 

● Exponential models assume that the hazard remains constant over time 

(Figure 1) 

● Weibull models assume that hazards monotonically increase or decrease; that 

is there are no turning points and as time increases the hazard either 

consistently increases or decreases for larger values of time (Figure 1) 

● Gompertz models assume that hazards monotonically increase or decrease, 

but the rate of change is assumed to be exponential (Figure 2) 

● Log-logistic, log normal and Generalised Gamma models can represent 

hazards that monotonically decrease, or that initially increase and then 

decrease (one turning point) (illustrated for the log-logistic model in Figure 3). 

The Generalised Gamma can also represent hazards that initially decrease 

and then increase. 

 

Therefore, the standard parametric models are limited with respect to the types of 

hazard that they can represent. This means that none of the standard parametric 

models can accurately model survival where there are two or more turning points, or 

where there are multiple important changes in the slope of the hazard function. More 

flexible models are required where hazard functions are observed, or expected - in the 

longer-term, to have complex shapes. TSD14 acknowledges this point, but provides 

relatively little detail on the more complex survival models that could be used. 
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Figure 1: Hazard functions associated with Weibull and exponential models. The shape of the 
Weibull hazard function is determined by its shape parameter, 𝜸. 

 

 

Figure 2: Hazard functions associated with Gompertz models. The shape of the Gompertz hazard 
function is determined by its shape parameter, 𝜽 
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Figure 3: Hazard functions associated with Log-logistic models. The shape of the Log-logistic 
hazard function is determined by its shape parameter, 𝒌 

 

2.1.2. Hazard functions 

Economic evaluations seek to model the cost-effectiveness of treatment for diseased 

populations in practice rather than only clinical trial populations, but clinical trials are 

usually considered to provide suitable data for informing survival models, especially 

with respect to relative treatment effects. Hence, it is usually desirable to use survival 

models that fit well to clinical trial data but which also extrapolate beyond the trial in a 

realistic way. Therefore, models that allow hazard functions with complex shapes may 

be advantageous. 

 

The advent of immuno-therapy treatments for oncology has resulted in an increase in 

the use of complex survival models, because delayed responses to treatment and the 

existence of long-term survivors have been hypothesised to result in complex hazard 

functions[3-5]. However, complex hazard functions are not only conceivable in 

immuno-oncology. For instance, in most cancer trials the mortality (hazard) rate upon 

entry to the trial may be relatively low, due to trial eligibility criteria meaning that 

recruited patients must be fit enough to receive treatment with a potentially toxic (new) 

therapy. However, due to the nature of the disease, the mortality rate is likely to rise 

in the short-term. Then, over time, as the case-mix of the cohort changes because the 
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sicker patients die, healthier patients and treatment responders survive and so the 

mortality rate decreases. In the longer term the effectiveness of the treatment might 

wane, or disease progression might occur, resulting in an increase in the hazard. Even 

if the treatment represented a cure for a small proportion of patients, in the very long-

term hazards would be expected to rise, reflecting age-related mortality (Figure 4).  

Figure 4: More complex hazard function 

 
  

Longer-term changes in the hazard may not be observed within the trial period, but - 

given a realistic expectation that they will be observed beyond the trial period - these 

are relevant for inclusion in a model used for economic evaluation, where a lifetime 

time horizon is typically used. None of the standard parametric models could 

adequately represent the hazard function illustrated in Figure 4. It may be useful to 

consider survival models that can capture such hazard functions. Hazard functions are 

not routinely presented in NICE Technology Appraisals, but their inclusion may add to 

an understanding of the longer-term assumptions that are being made.  

 

To determine whether survival models adequately represent the hazards observed in 

a trial, the model can be compared to the observed trial data. This is straightforward, 

and whilst important, often several models may be shown to provide a close fit to the 

trial data. The trial duration is usually very short in relation to the extrapolated period - 

that is, the period from the end of trial follow-up to the point at which all patients are 

expected to have died (if assuming a lifetime time horizon). It is the extrapolated period 
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in which survival models typically diverge, often resulting in dramatically varying mean 

survival and cost-effectiveness estimates. The models which best fit the clinical trial 

data may not necessarily be the most appropriate for extrapolation. Determining which 

survival model provides the best representation of hazards beyond the trial period is 

challenging, as there are no trial data with which to compare. Consideration should 

therefore be given to whether the extrapolation is realistic, which may involve using 

external data sources, clinical expert opinion, or arguments around biological 

plausibility (incorporating knowledge around expected shapes of survival functions in 

given populations, or knowledge of specific disease subgroup characteristics).  

 

Comparing various extrapolations of survival to external data sources represents one 

option for evaluating plausibility. An alternative approach would be to start with a pre-

defined understanding of the various risks and mechanisms (such as competing risks, 

ageing effects, changes in case mix, and the waning effect of treatment), and their 

likely impact when governing the marginal survival. The model choice could then be 

consistent with, and directly model, these mechanisms, or this information could be 

used to define prior probability distributions in a Bayesian statistical analysis. Directly 

modelling these mechanisms, for example in a competing risk or multistate disease 

progression model, may require synthesis of evidence from multiple external sources 

and a Bayesian multi-parameter evidence synthesis approach may be appropriate in 

this setting[6]. We cover aspects of Bayesian approaches further in Section 2.8, and 

in our recommendations for future research.  

 

2.1.3. Use of flexible models in NICE Technology Appraisals 

The model selection algorithm presented in TSD14 advises when models that are 

more flexible than the standard parametric models may be required, but does not 

provide specific guidance on specific flexible models, their assumptions and 

limitations, or when they should be used. Flexible survival models are being 

increasingly considered in NICE Technology Appraisals. For instance, in TA498 

(Lenvatinib with everolimus for previously treated advanced renal cell carcinoma) the 

evidence review group (ERG) used a flexible parametric model incorporating splines 

to model treatment duration[7]. In TA517 (Avelumab for treating metastatic Merkel cell 

carcinoma) the company used flexible parametric models with splines to model 
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progression-free survival (PFS) and overall survival (OS)[8]. In TA478 (Brentuximab 

vedotin for treating relapsed or refractory systemic anaplastic large cell lymphoma) the 

company used mixture cure models for PFS and OS[9], and in TA463 (Cabozantinib 

for previously treated advanced renal cell carcinoma) the company used fractional 

polynomial models for PFS and OS[10]. 

These more complex modelling methods have not been used or interpreted 

consistently across appraisals. In TA483 the company, ERG and appraisal committee 

all interpreted a flexible parametric survival model with 2-knots as representing a 

model that implied that there were 3 heterogeneous subgroups within the patient 

population[11]. In fact, such a model simply represents a way of modelling a complex 

hazard function – it makes no assumptions about the number of heterogeneous 

subgroups directly. Such assumptions could be more justifiably associated with 

mixture models, which are different to spline-based flexible parametric models – 

however, even mixture models are usually interpreted simply as an alternative way for 

modelling complex functions. Inconsistent use and interpretation of complex survival 

models demonstrates the need for guidance explaining which flexible methods exist, 

how they work and what assumptions underpin them, and when they may (and may 

not) be appropriate. 

 

This document 

Our aim is to describe different flexible survival models, and to use simulation studies 

and illustrative examples to demonstrate when and how these models can be used. 

Importantly, we also demonstrate the limitations associated with flexible (and 

standard) survival models, particularly with respect to extrapolation. Our intention is 

that companies preparing submissions and ERGs reviewing submissions can use this 

document to aid understanding of these models, which should improve the 

consistency with which they are used. This document can also be used by NICE 

technical staff and committee members to understand analyses performed. As 

mentioned, careful thought should be given to the biological and clinical justification to 

any statistical approach selected; the approaches detailed herein should not be 

considered as an extended list of survival methods to “try out” on data. Instead, care 

should be taken to think through the underlying mechanisms likely to be dictating short 

and long-term hazard/survival functions. 
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Survival analysis is particularly relevant in oncology where overall survival and 

progression-free survival are usually key components of the economic analysis, and 

where clinical trials are usually subject to a large amount of administrative censoring, 

with a short duration of follow-up in trials relative to the lifespan of patients. In this 

document our focus is on oncology, but the principles apply to other therapeutic areas. 

 

We concentrate here on modelling and extrapolating the survival experiences of 

patients in a single arm of a trial. We do so because whether the effect of treatment is 

modelled as a relative effect (and applied to a baseline) or the two arms of a trial are 

modelled separately, the fundamental issues surrounding extrapolation over a longer 

time horizon remain the same.  However, it is still critical to both plot and justify the 

implied treatment effect when taking this approach. Whether modelling and 

extrapolating both arms separately, or  modelling the relative treatment effect directly, 

the long-term treatment effect should be considered, plotted for transparency, and 

justified. 

 

In taking a single trial-based approach, we are discussing the potential to estimate the 

mean survival differences in the trial population. Should this differ from the target 

population of interest, then this must be factored into the estimation approaches for 

estimating the absolute measures of mean survival (see TSD18)[12, 13]. 

 

Research into methods for incorporating external information (such as from registry 

data, previous trials with longer follow-up, or elicited prior beliefs) to inform 

extrapolations is ongoing, and so it is not possible to make strict recommendations on 

this within this document. However, further information on incorporating background 

mortality and registry data into the survival modelling process will be discussed in 

Section 3. This is important for all models, particularly with respect to extrapolation 

since a review of NICE appraisals from 2011 to 2017 found only a minority undertook 

this[14]. 

 

In Section 2 we describe a variety of survival modelling approaches that can be used 

when hazard functions are complex, with respect to fitting survival models to observed 

data. In Section 3 we discuss extrapolation of survival functions beyond the trial period. 

Each modelling approach makes specific assumptions which are important to consider 
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when using them to extrapolate survival functions - we provide detail on these and 

also discuss methods for incorporating external information within the survival 

modelling process. In Section 4 we present a simulation study to show the sensitivities 

of the different survival modelling approaches and to highlight the impact that they can 

have on survival estimates and population means.  In Section 5 we provide illustrative 

examples of some of the issues highlighted in the simulation study and discuss 

implications for practice. In Section 6 we provide discussion, recommendations, and 

suggestions for further research. 
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3. METHODS: FITTING TO OBSERVED DATA 

3.1. OVERVIEW  

In this section we describe a variety of survival modelling approaches that can be used 

when hazard functions are complex. We present the motivation behind each approach, 

their details with respect to formulae and assumptions, and their limitations. We do 

this with respect to fitting survival models to observed trial data. Given the typical 

sample sizes of RCTs and the corresponding number of events, consideration should 

be given to the number of parameters that can be reliably estimated from the available 

data for each of the described approaches. We compare the approaches in both a 

small and larger sample size in the simulation study conducted in Section 4. 

3.2. FLEXIBLE PARAMETRIC SURVIVAL MODELS 

3.2.1. Motivation  

 
Flexible parametric models (FPM) were developed because it was recognised that 

standard parametric models were often unable to capture adequately the underlying 

shape of hazard functions seen in applied studies[15]. Flexible parametric models use 

restricted cubic splines to enable hazard and survival functions with complex shapes 

to be accurately modelled. Restricted cubic splines are mathematical functions that 

can capture many complex shapes and thus enable more realistic hazard and survival 

functions to be estimated.  The complexity of the function depends on the number and 

location of joining points of the function, with these joining points known as “knots”. 

The function is forced to be smooth by imposing constraints such that the function has 

continuous 1st and 2nd derivatives at the knots, i.e. the gradient and the rate of change 

of the gradient of the function also agree at the knots. Restricted cubic splines can be 

incorporated into any statistical model within a linear predictor by calculating derived 

variables known as basis functions. Increasing the number of derived variables (i.e. 

increasing the number of knots) results in a model that can take increasingly complex 

shapes. 

 

3.2.2. Details 

 
For some standard parametric distributions (Weibull, log normal, log-logistic) it is 

possible to transform the survival function to a scale which is a linear function of log 

time. For example, transforming the Weibull survival function, 𝑆(𝑡) = exp(−𝜆𝑡𝛾), to the 
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log cumulative hazard scale gives, 

 

Equation 1 

log[𝐻(𝑡)] = log[−log[𝑆(𝑡)]] = log(𝜆) + 𝛾log(𝑡) 

 

This is a linear function of log time with intercept, log(𝜆), and gradient, 𝛾 where 𝜆 is 

the scale parameter and 𝛾 the shape parameter of the Weibull distribution. Assuming 

a Weibull distribution can be too restrictive when, for example, there is a turning point 

in the hazard function. The assumption of linearity can be relaxed by using a more 

complex function of time. Flexible parametric survival models replace the linear 

function, log(𝜆) + 𝛾log(𝑡) with a restricted cubic spline function of log time, 𝑠(log(𝑡)| 

γ,𝑘0), where 𝑘0 is a vector of knots and γ the associated parameters.  Thus, the model 

becomes, 

Equation 2 

𝑙𝑜𝑔[𝐻(𝑡)] = 𝑙𝑜𝑔[−𝑙𝑜𝑔[𝑆(𝑡)]] = 𝑠(𝑙𝑜𝑔(𝑡)|𝛾, 𝑘0) 

 

This allows a much more flexible hazard function, which is able to capture a wide range 

of shapes. Covariates, 𝑥, with associated parameters, 𝛽, can be added to the linear 

predictor in Equation 2. For instance, a covariate for treatment group could be added.  

 

Equation 3 

log[𝐻(𝑡)] = log[−log[𝑆(𝑡)]] = 𝑠(log(𝑡)|𝛾, 𝑘0) + 𝑥𝛽  

 

The model represented by Equation 3 is a proportional hazards model and covariate 

effects can be interpreted as log hazard ratios – exponentiating the coefficients yields 

hazard ratios. 

 

 
Alternative scales 

When using FPMs the most common transformation of the survival function is the log(-

log) transformation as described above. However, different transformations of the 

survival function can be used. For example, a logistic transformation of the survival 

function gives a linear function of log time for the log-logistic distribution and a probit 
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transformation of the survival function gives a linear function of log time for the log-

normal distribution. These extensions to relax the assumption of linearity are 

implemented in the same way as those described above. 

 

The number and location of the knots. 

A key issue when using FPMs is the number and location of the knots for the restricted 

cubic splines. The typical location in current software implementations is to place knots 

uniformly along the distribution of uncensored log event times with boundary knots 

placed at the minimum and maximum uncensored log event times. For example, with 

5 knots (2 boundary and 3 internal), knots are placed at the 0th, 25th, 50th, 75th and 

100th centiles of the uncensored log event times. Predicted survival functions within 

the range of the follow-up have been shown to be very insensitive to the number and 

location of the knots, provided that there are a sufficient number to capture the 

underlying shape[16-18]. However, consideration should be given to the typical 

sample size in RCT data, and, in particular, the number of events when trying to model 

complex hazard functions. Findings for large scale registry data have noted that having 

one or two more knots than necessary will have very little impact in terms of the 

predicted survival function within the range of follow-up, but it may be impractical to 

have many parameters for the spline function if there are few overall events. It should 

also be noted that when the aim is to extrapolate the survival function, then altering 

the number of knots may have an important effect on how the survival function is 

extrapolated beyond the data. Projection beyond the data is dictated by the hazard or 

survivor function estimated by the linear term (on a transformed scale) beyond the 

final knot, which may or may not be sensible when extrapolating (see Section 3). 

 

The AIC (Akaike information criterion) and BIC (Bayesian information criterion) are 

often used as an informal guide for selecting the number of knots, with the minimum 

value of the AIC or the minimum value of the BIC giving the “best” fitting model. 

However, this is only a guide and if one wants to understand the (lack of) impact of 

choosing a different number of knots, then sensitivity analysis is recommended. 

Similarly, it is worthwhile emphasizing that the AIC/BIC may help in selecting a model 

that fits the data within the length of follow-up, but they provide little information about 

how well the model extrapolates to longer time points. A “good fit” within the range of 

the data may nevertheless lead to implausible extrapolations (see Section 5.2); for 
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instance, a survival function that reaches a plateau that lasts for many years, resulting 

in a hazard function that would be below that of the general population. 

 

Time-dependent effects 

As stated in TSD14, parametric models can be fitted with the treatment indicator as a 

covariate (thereby assuming a proportional treatment effect), or can be fitted 

independently to each treatment arm (not assuming proportional treatment effects). 

Assuming proportional treatment effects is restrictive and may result in poorly fitting 

(and implausible) survival models and extrapolations. One of the advantages of FPMs 

is the ease with which the proportional hazards assumption can be relaxed. In general 

time-dependent effects are implemented by creating additional spline terms and 

creating interactions between these and the covariate of interest (such as the 

treatment indicator). For example, with just a single covariate x, a model relaxing 

proportional hazards is given in Equation 4, 

 

Equation 4 

log[𝐻(𝑡)] = log[−log[𝑆(𝑡)]] = 𝑠(log(𝑡)|𝛾, 𝑘0) + 𝑥𝛽 + 𝑥𝑠(log(𝑡)|𝛿, 𝑘1) 

 
In Equation 4 the first spline function is the baseline hazard function, but now the 

treatment effect is also a function of time given the second spline function. Note that 

there can be a different number of knots for the baseline and the time-dependent 

effect. This is often sensible as the shape of the underlying hazard function is usually 

more complex than the deviation between two hazard functions[19]. Alternatively, 

separate models could be fitted for each treatment group. This is effectively the same 

as fitting a complex interaction between the treatment covariate and follow-up time. 

When separate models are fitted for each treatment group, implausible effects of the 

treatment effect (hazard ratio) beyond the range of follow-up could be projected. 

Plotting the extrapolated hazard functions for both treatment groups together with the 

implied hazard ratio helps demonstrate what is inherently being assumed about the 

relative treatment effect. 

 

In summary, FPMs assume that the spline function is adequate to model the hazard 

function within the range of follow-up. This depends upon having sufficient knots. It is 

often assumed that the effect of any covariates act proportionally on the baseline 
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hazard rate, but this can be relaxed (allowing non-proportional hazards) through 

interaction effects with a function of time (or through fitting separate models).  

 

3.2.3. Limitations 

 

The use of FPMs is associated with a number of limitations: 

● The number of parameters used to model the hazard function is decided by the 

user. The AIC and BIC can be used as a guide, but on a single dataset it’s 

unclear whether the most sensible model has been chosen. The AIC/BIC 

should not be used as the sole basis for model selection when the aim is to 

extrapolate (this can be said for any parametric model). 

● FPMs will generally provide extremely good fits within the range of the observed 

data, given a sufficient number of knots have been used, but this does not mean 

that their extrapolations will be reliable. 

● If external data are not incorporated then extrapolation associated with an FPM 

is based completely on the linearity assumption (on a transformed scale of the 

survival function), which may result in implausible projections. With large 

numbers of knots the extrapolation may be based upon the trend towards the 

end of follow-up, which may be based on a limited number of events. 

● With multiple time-dependent effects the hazard ratios for one covariate is 

dependent on the value of another time-dependent covariate. This is a problem 

when trying to summarise many covariates with time-dependent effects using 

hazard ratios. This is because the hazard ratio for one time-dependent effect is 

dependent on the values of a second time-dependent effect, even when there 

is not an interaction between the covariates. However, when one is interested 

in prediction of survival functions (and estimating the mean survival or restricted 

mean survival time [RMST] for use in an economic decision model) then this is 

not an important limitation. 

 

3.2.4. Further Issues 

 
Flexible parametric models are usually fitted on the log cumulative hazard scale. One 

reason for this is that the hazard and survival functions are analytically tractable which 

enables very quick estimation. However, it is also possible to fit models on the log 
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hazard scale and again use restricted cubic splines to model the effect of time. These 

models require numerical integration to obtain the cumulative hazard during estimation 

of the model parameters.  If making assumptions about the effect of a covariate (such 

as treatment) after the end of follow-up, then it may be easier to think about the 

plausibility of assumptions on the log hazard scale rather than the log cumulative 

hazard scale. For example, if we want to assume that the hazard rates associated with 

two treatment groups are the same after a certain point in time, this is straightforward 

on the log-hazard scale, but would mean imposing that the gradient of the treatment 

groups was the same on the log cumulative hazard scale[20]. 

 

There has been some work using penalized spline functions[21]. In these models a 

larger number of knots are chosen and then a penalty function incorporated into the 

likelihood to force the function to be smooth. However, the user still needs to define 

the number of initial knots and the type of penalty function to incorporate. It is unclear 

what the impact on extrapolation would be using such an approach. 

 

3.2.5.  Other flexible parametric models 

 

A poly-hazard model[22] represents another type of flexible parametric model. These 

are distinct from mixture models, which are described in section 2.3. A poly-hazard 

model assumes an overall hazard function which is the sum of K hazards. This can be 

thought of as a cause-specific competing risks model (that is, each component can be 

thought of as contributing additively to the overall hazard). Specifying a sum of hazard 

functions allows the overall hazard to provide a far more flexible function compared to 

the standard parametric models often used in practice. Each component can have a 

different functional form, for example if we have three components, then we may 

assume one exponential, one Weibull and one Gompertz, and hence covariates can 

also be modelled differently for each hazard. As an example, Demiris et al[23], 

proposed a poly-hazard model defined as follows, 

 

Equation 5 

ℎ(𝑡) = ∑ ℎ𝑘(𝑡)
𝐾
𝑘=1 ,  
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where ℎ𝑘(𝑡) is the hazard function for the kth mixture. Demiris proposed the use of 

Weibull models for all hazard components, motivated by wanting to capture a bathtub 

hazard function, where, 

Equation 6 

ℎ𝑘(𝑡) = 𝜆𝑘𝛾𝑘𝑡
𝛾𝑘−1 

 

Each of the shape and scale parameters can have their own linear predictor (on the 

log scale in this case) which can include covariate effects. There is no restriction for 

each hazard component to be specified as a Weibull, indeed any of the standard 

parametric distributions could be used, including different distributional choices for 

different hazard components. 

 

A poly-hazard model might be appropriate if it is believed that there are multiple 

competing causes of death with different hazard trajectories, and if some information 

about these trajectories is available. This is similar in principle to the setting described 

in section 2.7, where known population mortality rates are used as a fixed hazard 

function, and a separate additive hazard function is modelled in excess of the 

background mortality.  

 

3.3. MIXTURE MODELS 

3.3.1. Motivation 

 
Mixture models may be appealing if it is believed that different clusters or sub-

populations of patients have different hazard and survival profiles. For example, 

people who achieve a response to treatment may have a different survival profile to 

those who do not respond. In this sense, a mixture model is sometimes interpreted as 

accounting for the fact that different sub-populations within a trial have different 

survival profiles, which are represented by the different survival distributions included 

in the mixture model. However, mixture models assign a probability to each patient of 

being in each distribution included in the mixture – patients are not definitively 

segregated into separate groups. In parallel to this, a mixture model may also be 

thought of as a way of specifying a flexible hazard trajectory (similar to the motivation 

behind flexible parametric models above), in other words it simply represents an 
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approach for modelling complex hazard functions, which involves using a mixture of 

parametric distributions [24]. 

 

3.3.2. Details 

 
A mixture model can be defined as follows, 

 

Equation 7 

𝑓(𝑡) = ∑ 𝑝𝑘𝑓𝑘(𝑡)
𝐾
𝑘=1 ,     where ∑ 𝑝𝑘 = 1𝐾

𝑘=1 , 

 

where 𝑓(𝑡) is the overall distribution function, made up of additive component 

distribution functions, 𝑓𝑘(𝑡), for the kth mixture, and 𝑝𝑘is the proportion that the kth 

mixture contributes to the overall distribution function. There is no restriction for all 

components to have the same distribution, indeed any of the standard parametric 

distributions could be used, including different distributional choices for different 

mixture components. Since each mixture component can be adjusted for covariate 

effects, in all parameters, including the mixture probabilities, they can be used to 

identify subpopulations which may respond differently to treatment. To ensure the 

constraint that  ∑ 𝑝𝑘 = 1𝐾
𝑘=1 , we may model the mixture probabilities with a multinomial 

distribution[25].  

 

Standard model selection criteria such as AIC and BIC can be used as a guide to 

select the number of mixtures, and the distributional form for each contributing 

distribution function. However, when extrapolating beyond the trial period it is 

important to note that these extrapolations will be driven by the combination of both 

the weights received by each mixture component and the relative magnitude of their 

respective hazard rates.  

 

Mixture models make the following assumptions: 

• The observed (and expected) hazard function can be appropriately modelled 

using a mixture of standard parametric models. 

• The data within each mixture component is sufficient for robust survival 

modelling, and the distributional choice for each mixture component is valid. 



   

 

28 

 

• If a mixture model is used to represent latent subgroups, we cannot assign 

patients to subgroups with certainty, we can only estimate the probability that 

each individual is in each group. 

● An extrapolation from a mixture model will be driven by the combination of both 

the weights received by each mixture component and the relative magnitude of 

their respective hazard rates, and as such, these should be assessed for their 

plausibility for long term extrapolations, using either prior knowledge or longer-

term survival information from other sources. 

 

3.3.3. Limitations 

 
Mixture models are subject to the following limitations: 

● Choosing the number of mixture components. 

● Choice of each mixture distribution. 

● If the goal is to capture a complex hazard function, then arguably this is much 

easier to do with a flexible parametric modeling framework using splines (as 

described and discussed in Section 2.2). 

● They are at risk of over-interpretation, such as, concluding that the sample of 

patients is made up from n-mixtures with different risk profiles. Despite the 

mixture components, we obtain an overall (potentially complex) hazard function 

which may be equally as well estimated with an alternative, more easily 

implemented and parameterised, approach - therefore mixture models may 

give misleading conclusions. 

● Challenge of model convergence (see Section 4). Mixture models are 

notoriously difficult to estimate, given the inherent problem of multiple 

maxima[24]. For example, in a two-component model where 𝑝1 + 𝑝2 = 1, there 

are two combinations of the same parameters which would give an identical 

function. In other words, if 𝑝1 = 0.2  and𝑝2 = 0.8, given the estimated 

component distribution parameters, we would get the same model when 𝑝1 =

0.8and 𝑝2 = 0.2, with the component distribution parameters swapped. In order 

to estimate each mixture component and hence an overall model, there must 

be sufficient number of events. 
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3.3.4. Further Issues 

 
Each parameter in a mixture model could be adjusted for treatment, including each 

component’s shape and scale, for example, and indeed the mixture parameters 

themselves. Alternatively, completely different mixture models could be fitted for each 

treatment group.  Alternatively, an overall shared treatment effect may be estimated, 

in which case the mixture components are used simply to model a more flexible 

baseline function. In any case, mixture models must be interpreted with care – any 

reference to the nature and presence of sub-populations should be considered 

carefully, with reference to the mixture probabilities assigned to each patient and 

covariate effects if they are included. In addition, the existence of sub-populations with 

different survival profiles should be based on biological plausibility. 

 

 

3.4. LANDMARK MODELS 

3.4.1. Motivation 

 
The motivation behind landmark models is to use a modelling approach that 

acknowledges that the survival experience of a patient might be substantially different 

depending upon whether or not an individual responds well to treatment. It is therefore 

assumed that response represents an important surrogate for survival. Landmark 

models use a defined “landmark” time point, at which point patients are split into 

groups according to their response category. Typically RECIST criteria are used, 

categorising individuals into “complete response”, “partial response”, “stable disease” 

and “progressive disease” groups, or these categories are merged into “response” and 

“non-response”[26]. Separate survival models are fitted to each response group, from 

the landmark time-point. Survival for the whole population beyond the landmark time-

point is then estimated by weighting the survival function for each response group by 

the proportion of patients within that group. Prior to the landmark time-point the Kaplan 

Meier survival function can be used to estimate survival, or a parametric model could 

be used. Theoretically, the survival models for each group can take any form, but 

standard parametric models tend to be used[27, 28]. 

 

Because landmark models allow different survival models to be fitted to each response 
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category, they are able to represent complex hazard functions with turning points. For 

instance, the model used for the non-response group may have a high or increasing 

hazard and the model for the response group may have a low and decreasing hazard. 

In this case, over time, as non-responders die, the hazard for the remaining population 

will decrease. With the right combination of models, turning points (possibly multiple 

turning points) could be represented. 

 

Landmark models have been used in NICE TAs. In TA421 (Everolimus with 

exemestane for treating advanced breast cancer after endocrine therapy)[29] the ERG 

used a landmark model, applying exponential models to each response group. 

 

3.4.2. Details 

 
The survivor function beyond the landmark time using the landmark approach can be 
described using  

 

Equation 8 

Survivor function: 𝑆(𝑡) = 𝑆(𝑙) × (∑ 𝑆𝑖(𝑡|𝑇 > 𝑙) ×
𝑛𝑖

∑ 𝑛𝑖
𝑘
𝑖

𝑘
𝑖=1 )     

 

Where 𝑆(𝑡) is the survival at time 𝑡, 𝑙 is the landmark time point, 𝑆𝑖(𝑡|𝑇 > 𝑙) is the 

survival at time 𝑡 given survival to time 𝑙 for patients in the 𝑖th response category, 𝑘 is 

the number of response categories, and 𝑛𝑖 is the number of patients in response 

category 𝑖. The 𝑆(𝑡|𝑇 > 𝑙) will be dictated by the survival model used for each 

response category, and are conditional on the landmark time point, 𝑙.  

 

A landmark model is illustrated in Figure 5. In the illustration, survival up until the 

landmark time point is based upon the Kaplan-Meier curve. After that it is estimated 

using a combination of models fitted to three response groups, which are combined 

based upon the proportion of patients in each group.  
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Figure 5: Illustrative example of a landmark survival model 

 
 

Landmark models make the following assumptions:  

• The “landmark” time point for assessing response is appropriate. It is not always 

straightforward to determine what the landmark time-point should be because 

response may be measured at multiple time-points during the study. 

• In combination with the landmark time-point, the response categories are 

clinically meaningful and represent a surrogate for survival. 

• There are a sufficient number of events in each group for robust survival 

modelling, and the survival model for each group appropriately capture the 

long-term survival functions. 

 

3.4.3. Limitations 

 
Landmark models are subject to the following limitations: 

● Landmark time-points may be arbitrary, and may importantly influence the 

results of the analysis. An early landmark time-point may miss delayed 

responses, whereas a late landmark time-point may result in less meaningful 

categorisation as a proportion of patients (likely to be non-responders) may die 

before the landmark point is reached. This will have important consequences 

in terms of the estimation of uncertainty around the estimates also. 
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● If, in combination with the landmark time-point, response categories are not 

considered to represent good surrogates for survival, it may not be justifiable to 

estimate survival separately for the categorised groups. 

● Splitting the sample into response categories means that the size of each group 

can be small (with a consequent small number of events for each category), 

leading to large standard errors and uncertainty when fitting survival models. If 

the landmark time-point is relatively late, this may be a particular problem in the 

“no response” group, as many of these patients may have died before the 

landmark time. In addition, there may be very few deaths in “good response” 

groups, which may make fitting robust survival models problematic. 

● Response may not be measured in all patients, or could be subject to error if it 

is measured.  

● If the survival models used for the response categories are not appropriate to 

capture the shape of the specific hazard function, then the overall projection 

may be inappropriate also. 

 

3.4.4. Further issues 

 
Landmark models allow complex hazard functions for the trial population to be 

represented even if standard parametric models are used to model survival for each 

category. Typically, standard parametric models are used to model survival for each 

category within a landmark model. However, this assumes that standard parametric 

models can appropriately represent the hazard functions within each category, which 

may not be the case. This is not a limitation of the modelling approach per se, because 

more flexible survival models could be used within a landmark approach. However, it 

is a limitation of the way the landmark modelling approach is generally applied and is 

particularly relevant when considering the extrapolated portion of the survival function, 

where additional changes in the hazard might be expected (see Section 3). 

 

3.5. PIECEWISE MODELS 

3.5.1. Motivation 

 
The motivation to use piecewise models may be under circumstances where standard 

parametric models have not appeared to provide a good fit to the data, or where 
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multiple sources of data exist for different time periods. When piecewise models are 

fitted to just one dataset, the time-points for the cuts are often explicitly chosen by the 

user, although approaches to allow random changepoints have also been 

developed[30, 31]. 

 

One approach to piecewise modelling would be to examine the hazard function over 

time and make a judgement as to whether, and if so where, sufficient changes in the 

hazard occurred that require a new survival model to be fitted. This decision-making 

could also be made a-priori by considering the biological mechanisms governing the 

complexity of the hazard function over time. For instance, in a given context there may 

be an important change in the hazard at 3 months and at 6 months, and so separate 

survival models are fitted to the 0-3 months, 3-6 months, and 6+ month time periods. 

Theoretically, the survival models for each time period can take any form, but standard 

parametric models tend to be used. By using different survival models for each time 

period, flexible hazard functions over time can be represented, even if standard 

parametric models are used for each segment of the survival function[32, 33]. For 

instance, the initial survival model may have an increasing hazard, the second survival 

model may have a decreasing hazard, and the third may allow hazards to increase 

again. 

 

Piecewise models have been used in several NICE TAs. For instance, in TA490 

(Nivolumab for treating squamous cell carcinoma of the head and neck after platinum-

based chemotherapy)[34] piecewise models were fitted to segmented overall survival, 

progression-free survival and time-to-treatment discontinuation data. Piecewise log 

normal models were fitted to overall survival data and piecewise generalised gamma 

models were fitted to segmented progression-free survival and time-to-treatment 

discontinuation data. Piecewise models have also been used in TA387 (Abiraterone 

for treating metastatic hormone-relapsed prostate cancer before chemotherapy is 

indicated)[35] and TA421 (Everolimus with exemestane for treating advanced breast 

cancer after endocrine therapy)[29].  

 

In some piecewise models, the Kaplan Meier survival function is used to represent the 

initial section of the survival function and an exponential function is adjoined to a pre-

determined point of the Kaplan Meier. This approach has been popularised by the 
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Liverpool Reviews and Implementation Group (LRiG), and as such has become known 

as the “Liverpool approach”[36, 37].  Due to the limitations associated with 

extrapolating using an exponential model (i.e. with a constant hazard rate), other 

researchers have adjoined different survival distributions to pre-determined points of 

the Kaplan Meier survival function. For instance, in TA391 (Cabazitaxel for hormone-

relapsed metastatic prostate cancer treated with docetaxel)[38] a Weibull model was 

adjoined to a pre-determined point of the Kaplan Meier survival function, and in TA519 

(Pembrolizumab for treating locally advanced or metastatic urothelial carcinoma after 

platinum-containing chemotherapy)[39] a log normal model was attached to a pre-

determined point of the Kaplan Meier survival function. 

3.5.2. Details 

 
The overall survivor function of the piecewise modelling approach can be described 

as follows. Consider partitioning time into 𝐽 intervals, with cutpoints 0 = 𝑡0 < t1 < ⋯ <

tJ = max(t). The hazard component for the 𝑗𝑡ℎ interval: 𝜆𝑗(𝑡)for𝑡in [𝑡𝑗−1, 𝑡𝑗), can be 

defined by an exponential (constant), or other parametric form. The overall baseline 

hazard function, λ0(𝑡), then is defined separately depending on the intervals, taking 

the value of 𝜆𝑗(𝑡) for times in the 𝑗𝑡ℎ interval. The overall survival function then relates 

to the summed cumulative hazard function over time,Λ0(𝑡): 

 

Equation 9 

Survivor function: 𝑆(𝑡) = exp(−Λ0(𝑡)) 

 

This could also be equivalently described in terms of the multiplication of conditional 

survival functions defined by the various parametric forms for each of the𝐽 intervals, 

as in the illustration below. 

 

A piecewise survival model is illustrated in Figure 6. In this illustration the initial part of 

the survival function is based on the Kaplan-Meier survival function. Different survival 

models are then fitted to sections 2 and 3 of the curve and are then adjoined to create 

a complete survival function. 
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Figure 6: Illustrative example of a piecewise survival model 

 
 

Piecewise models make the following assumptions: 

● The point(s) at which new models are fitted is/are appropriate 

● The survival model used for each section is appropriate 

● The data within each section are sufficient for robust survival modelling 

 

3.5.3. Limitations 

 
Piecewise models are subject to the following limitations: 

● If the cutpoints are selected through visual inspection of the hazard or survival 

function then assessing a sufficient change for a new cutpoint may be difficult. 

Therefore, the cut-points for the various intervals may be arbitrary and may 

importantly influence the results of an analysis[40]. 

● Piecewise models may appear clinically unjustifiable and implausible, if sudden 

changes in hazards are modelled (i.e. with a discontinuity in the hazard 

function). For instance, if the hazard function for the survival model illustrated 

in Figure 6 was plotted it would show substantial “jumps” in the hazard at the 

join points for the different survival models. Methods could also be applied to 

allow continuity of the piecewise hazard function at the changepoints; these are 

similar in principle to otherwise methods for flexible smoothing the hazard 

function such as the use of splines (see Section 2.2). 

● Where a piecewise model is fitted to a single dataset, splitting the data into 

sections according to time means that sample sizes are reduced in later 
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segments of the curve. This is a particular issue in later sections of the curve, 

where patient numbers at risk may be very small and the number of observed 

events may be low, leading to large standard errors and uncertainty when fitting 

survival models. A key point is that it is the model fitted to the latest section of 

the curve that is used for extrapolation. 

● If the survival models used for each section are not appropriate, the overall 

projection will be adversely impacted. This is particularly important for the final 

section. 

 

3.5.4. Further issues 

 
Piecewise models are usually implemented using standard parametric models applied 

to segments of the survival data. Whilst this allows complex observed hazard functions 

to be accurately represented it is not necessarily sufficient if additional changes to the 

hazard are expected beyond the period for which data are available (see Section 3). 

This is not a limitation of the piecewise modelling approach because a more flexible 

model could be used within a piecewise approach, or external data could be used 

within a piecewise model. In fact, this has been seen in NICE TAs - for example in 

TA268 (Ipilimumab for previously treated advanced (unresectable or metastatic) 

melanoma)[41] the company used a piecewise model for overall survival that adjoined 

a Gompertz model to the Kaplan-Meier curve at the 18 month time-point, and then 

used hazard rates from a registry study from year 6 onwards. However, thought must 

be given to the covariate profile of individuals still at risk at each timepoint when 

defining the appropriate hazard function from the external data, which we discuss 

further in Section 3. 

 

3.6. CURE MODELS 

3.6.1. Motivation 

 
Traditionally, cure models have been used in situations where a proportion of 

individuals will never experience the event of interest (often used with disease-specific 

deaths as events). In such a situation, after a certain point in time, there will no longer 

be individuals having the specific events. This means that the hazard rate will be zero 

and the survival function will have a plateau at a non-zero value of the cause-specific 
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survival function (see Figure 7).  

 

Figure 7: Illustrative example of a cure model 

 

Clearly, when using a cure model in the context of human survival, the event cannot 

be all-cause mortality as the survival function must reach zero. Thus, cure models are 

often fitted using cause-specific survival as the event of interest (with other cause 

mortality also modelled), or in an excess mortality/relative survival framework (see 

Section 2.7). Cure models may be attractive in the context of treatments for cancer, if 

it is believed that a proportion of patients will not die from their disease. In this scenario, 

a cure model may be used to estimate the cure fraction, and to estimate survival for 

uncured patients. It is important to note that cure is not defined at an individual patient 

level, but at a population level i.e. that the overall cause-specific hazard diminishes to 

zero). By combining the hazard function of the uncured fraction with the hazard 

function of the cured fraction cure models are able to estimate overall hazard functions 

that have a complex shape. 

 

3.6.2. Details 

 
The mixture cure model 

The most common type of cure model is the mixture cure model[42, 43]. This model 
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considers there to be two groups of individuals, those cured of their disease and those 

who are uncured. 

Equation 10 

𝑆(𝑡) = 𝜋 + (1 − 𝜋)𝑆𝑢(𝑡) 

 

where  𝜋 is the proportion of cured patients, (1 − 𝜋) is the proportion of uncured 

patients and 𝑆𝑢(𝑡) is the survival function of the uncured patients. It is important to 

remember that if this is used in a cause-specific setting, neither 𝑆(𝑡) or 𝑆𝑢(𝑡) would 

give a real world probability and to obtain these other cause mortality would need to 

be taken into account. That is, careful consideration of the competing risks and the 

cause-specific hazard from causes due to the disease of interest and causes other 

than the disease of interest are required to obtain the marginal all-cause survival, with 

careful accounting of factors that influence both mortality rates. 

 

An alternative to the cause-specific mortality setting is to incorporate expected survival 

directly into the model and thus fit a relative survival model. In order to do so, 

information on the general mortality rate (stratified by characteristics such as age and 

sex) is needed for the event time for each patient to offset the all-cause mortality 

model. The event now becomes death from any cause and our definition of cure 

changes to when the mortality rate amongst the diseased patients returns to the same 

level as that expected in the general population. We incorporate expected survival as 

follows: 

Equation 11 

𝑆(𝑡) = 𝑆∗(𝑡)(𝜋 + (1 − 𝜋)𝑆𝑢(𝑡))       
 
 

where 𝑆∗(𝑡) represents the expected survival function.  These models have been 

applied in a population-based cancer setting and thus tend to be fitted to much larger 

datasets than generally seen in randomised clinical trials[44, 45]. In small datasets 

there may be issues around the practicality and plausibility of being able to reliably 

estimate the cure fraction. 

 

 
The non-mixture cure model 
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An alternative type of cure model that uses an alternative mathematical function to 

define an asymptote for the survival function (a point that is approached as time tends 

to infinity – see example of the cure fraction in Figure 7) is the so called non-mixture 

model which is defined as: 

Equation 12 

𝑆(𝑡) = 𝜋𝐹𝑧(𝑡) 

 
where 𝐹𝑧(𝑡) is a cumulative distribution function. As with the mixture model, this usually 

takes a parametric form, usually using simple parametric distributions such as the 

Weibull or log-normal distribution. The non-mixture model can be extended to the 

relative survival setting in a similar way to the mixture model by incorporating expected 

survival information. In addition, the non-mixture model can be made even more 

flexible through defining the cumulative distribution function using restricted cubic 

splines, through extension of the flexible parametric survival models[44] described in 

Section 2.2. When using a flexible parametric cure modelling approach, the time at 

which cure is assumed (i.e. the point at which the disease-specific survival is assumed 

to reach zero) can be fixed by the user through the placement of the final boundary 

knot – in this setting the splines are calculated in reverse order and extra constraints 

are placed on the final parameters. This allows a flexible approach by which one can 

assume the effect on disease-specific mortality is effectively diminished to 0, and allow 

from that point onwards the all-cause hazard to be defined completely by other-cause 

mortality (potentially using an external data resource, such as registry data or general 

population mortality rates). We cover this concept with an example in Section 5.7. 

 

Cure models make the following assumptions: 

• Data available are sufficient to reliably estimate a cure fraction. 

• A cure fraction exists, and cure is a reasonable assumption at a given time point 

(this depends on timescales, and to some extent the method taken). 

Remembering that this is a population cure level i.e when the disease-specific 

hazard diminishes to 0. 

• The distribution chosen to model the non-cured fraction is appropriate. 
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3.6.3. Limitations 

 

Cure models have the following limitations: 

• In order to reliably estimate the cure fraction we need sufficient numbers at risk 

in the tail of the distribution. After a certain point in follow-up, we would expect 

there to be no further (cause-specific) events. If the number at risk towards the 

end of follow-up is low, which is common in randomised trials, then it is highly 

questionable as to whether it is sensible to impose such a strong assumption 

as cure. Assuming cure when it is not a realistic assumption could lead to very 

poor extrapolations. 

• Although it is common to use measures such as the AIC and BIC to select the 

distribution to model for the uncured patients, one should be particularly 

cautious when fitting cure models. This is because when fitting cure models 

there is particular interest in the tail of the distribution where there are not many 

individuals at risk and not many events. The AIC and BIC will give more weight 

to how the model fits at the start of follow-up (as this is typically where the 

density of events will be) with very little weight towards the end. Due to their 

different shapes it is possible that different standard parametric models used to 

model the uncured fraction will result in very different cure fractions being 

estimated, therefore it is very important to attempt to select an appropriate 

model for the uncured fraction, based on biological plausibility. 

• If the cause-specific survival function does reach close to a plateau then any 

reasonable approach to capture the shape of the hazard should estimate a 

cause-specific hazard function close to zero and thus estimated survival 

functions should be similar whether cure is assumed or not. However, cure 

models can be useful to fix the point at which disease-specific mortality based 

on the trial is assumed to no longer impact - although this time point must be 

clearly justified (see Section 5.7 for examples of this). Many standard cure 

models do not fix this timepoint, and the cure fraction is assumed to be reached 

at infinity. 
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3.6.4. Further issues 

 

Cure models are a tool to force a plateau in a survival function. This plateau cannot 

be long-term for all-cause survival, so thought should be given to the outcome being 

modelled when considering cure. Within the range of follow-up, cure may appear 

reasonable because of limited sample sizes, and a low, but non-zero mortality rate - 

this should be considered particularly in the RCT setting. Cure models can seem 

attractive in some clinical settings - but care then needs to be given to incorporating 

background or other cause mortality when estimating longer-term survival. 

  

3.7. EXCESS MORTALITY / RELATIVE SURVIVAL MODELS 

3.7.1. Motivation 

 
Excess mortality models are typically applied in population-based cancer registry data 

when information on cause of death is either missing or considered unreliable[46]. To 

our knowledge, this approach has not been used in health technology assessment. 

The concept behind these models is to isolate the cause-specific mortality by 

partitioning the all-cause mortality into that due to other causes and the excess 

mortality caused by the disease of interest. A similar approach could be taken in a 

clinical trial setting or else a cause-specific model could be fitted instead using cause 

of death information that may more reliably be recorded in a more controlled setting. 

In either case, a parametric model can then be applied to the isolated excess/cause-

specific mortality. This approach is typically used to obtain covariate effects relating to 

the cause of interest, but can also be used to conduct a competing risks analysis. This 

may be particularly useful when making long-term extrapolations as the patterns of the 

disease-specific mortality and the other cause mortality are likely to be very different 

over time. Hence, modelling these separately and combining them to give estimates 

of long-term all-cause survival may be appealing. By separately modelling disease-

specific mortality and with the potential to re-introduce estimates of long-term other-

cause mortality, relative survival approaches are able to estimate overall hazard 

functions with complex shapes. This is synonymous to the poly-hazard setting 

introduced in Section 2.2.5, but here a fixed population mortality rate is used, with no 

uncertainty to reflect the mortality rate for other causes. The excess mortality approach 

was also introduced and motivated in the previous section (Section 2.6) when 
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introducing the concept of population cure in Equation 10. In the cure setting, we place 

a constraint on the long-term relative survival function to reach a plateau. 

 

3.7.2. Details 

 
The all-cause mortality rate can be broken into two constituent parts: 

Equation 13 

ℎ𝑖(𝑡) = ℎ𝑖
∗(𝑡) + 𝜆𝑖(𝑡) 

 
where ℎ𝑖(𝑡) is the all-cause mortality, ℎ𝑖

∗(𝑡) is the background mortality typically 

obtained from population mortality rates stratified by age, sex and calendar year (and 

other general determinants of population mortality rates) and 𝜆𝑖(𝑡) is the excess 

mortality rate. Equation 13 can be transferred to the survival scale and rearranged to 

give the following relation: 

Equation 14 

𝑅𝑖(𝑡) =
𝑆𝑖(𝑡)

𝑆𝑖
∗(𝑡)

 

 
Meaning that the relative survival is the ratio of the all-cause survival and the expected 

survival in the background population. 

 

It is possible to adapt parametric models to this setting and fit for instance a flexible 

parametric excess mortality model; or in the case of cause of death information any 

standard parametric model could be fitted to the cause-specific data, but this requires 

accurate cause of death information in order to partition the all-cause hazard function 

appropriately. The long-term extrapolations would then rely upon extrapolated excess 

mortality, and a re-introduction of the background mortality rates to capture other-

cause mortality. In the short timeframe of a typical RCT, the excess mortality rate is 

often similar to the all-cause mortality rate, as many of the deaths in the short-term will 

be associated with the disease under study, and the mortality rate will be higher than 

in the general population. In isolating and modelling excess or cause-specific mortality, 

fixed assumptions about the two competing hazards can be made - those due to the 

disease and those due to other causes. This will lead to more explicit assumptions 

about the long-term all-cause marginal hazard function. 
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Relative survival models make the following assumptions: 

• The hazard of death from other causes can be approximated for the population 

of interest through a population lifetable, which are typically assumed to be fixed 

and known rates with no associated uncertainty. 

• That by isolating the excess mortality, the shape of the short-term hazard can 

be better captured, then other-cause mortality can be re-introduced through an 

external data source. 

• That both disease-specific and other-cause mortality can be extrapolated 

separately, and successfully. 

 

3.7.3. Limitations 

 

Excess mortality models are subject to the following limitations: 

• There is a need to specify a relevant external population in order to isolate the 

disease-specific mortality. That is, a population that is exchangeable in other-

cause rates for the cohort of individuals with the disease of interest; it may be 

necessary to match on more factors, such as smoking and other lifestyle 

characteristics depending on the disease.  

• The approaches are often used in large population-based studies and require 

the effect of age and other important determinants of each competing cause-

specific hazard rate to be accounted for; this may be more challenging with a 

limited sample size in a trial setting. 

• A choice of modelling approach with the relevant complexity to capture the 

shape of the excess mortality in the period of the trial is still necessary. 

• Further, assumptions are still necessary about the long-term extrapolations of 

the disease-specific and other-cause mortality; that is, the long-term hazard 

functions for each cause of interest must still be defined to extrapolate 

appropriately. 

 

3.7.4. Further issues 

 

Consideration should be given as to whether a cause-specific modelling approach may 
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be more applicable in a trial setting where closer attention is perhaps given to correctly 

assigning the cause of death with relation to the disease of interest. Excess mortality 

approaches are preferred in settings of population-based data, where information on 

cause of death is less reliable for the purpose of ascertaining if the death was due or 

not to the disease of interest, particularly for elderly patients, who may well be 

excluded from the trial setting at the outset. Whether or not cause-specific death 

information is collected in clinical trials, the concept of modelling disease-specific 

mortality and other-cause mortality separately for the purpose of extrapolation to 

inform economic modelling may be worthy of further consideration. It should be noted 

that taking a cause-specific approach rather than an all-cause approach will decrease 

the number of events, impacting on uncertainty. Given that in most trials the disease 

of interest will likely dominate the short-term mortality, this is unlikely to have a large 

impact for the short-term fit. 

 

3.8. ADOPTING A BAYESIAN APPROACH 

 
The potential advantages of adopting a Bayesian approach to modelling survival data 

(and other aspects of a HTA) include the ability to flexibly model evidence from a 

variety of data sources, to formally incorporate expert/clinical subjective prior beliefs, 

and to capture all forms of uncertainty (both parameter and model/structural) and 

which can be propagated through to eventual outcomes of interest, for example mean 

survival or net (monetary) benefit [36]. The formal inclusion of subjective prior beliefs 

has been greatly facilitated by the development of elicitation software[47]. Whilst the 

use of Bayesian methods applied to survival data (including extrapolation) in HTA have 

been advocated (Spigelhalter et al, 2003)[48] and user-friendly software developed 

(Baio, 2020)[49], in practice there have been relatively few fully Bayesian (using 

subjective informative prior distributions) applications either in the published literature 

or NICE TAs[50-52]. However, a number of HTAs have considered the use of 

subjective beliefs and/or external information regarding relative treatment effects, 

including the “borrowing of strength” using “class effects”[50-52]. A number of 

approaches to extrapolating survival data using Bayesian methods which include 

external information have been proposed (Abrams et al, 2016[13]; Guyot et al, 

2017[53]; Soikkeli et al, 2019[54]). These generally fall into two broad approaches; 

firstly using the flexibility of a Bayesian approach to model (through the likelihood 
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function) the different sources of information (including data from the trial under 

consideration) and adopting vague prior distributions for resulting model 

parameters[53], secondly by using a power prior approach for the external data with 

hyper-parameters possibly based on subjective beliefs about the plausibility of the 

external data relative to the trial and/or target population[55], or thirdly by using 

external information and/or subjective beliefs to specify prior distributions for either 

model parameters[54, 56] or prior model probabilities within a Bayesian model 

averaging framework[13]. In the case of using subjective beliefs this could be achieved 

by eliciting information on quantities experts/clinicians can readily express beliefs 

about, for example the proportion surviving at specific time points, and using this 

information to derive an implied prior distribution for model parameters[57]. In terms 

of survival mechanisms (and thus data generation mechanisms), though in an ecology 

and not a HTA setting, the inclusion of subjective beliefs regarding the plausibility of 

competing causes of death has also been considered[58].   

 

In HTA, economic evaluation is undertaken to inform resource allocation decisions for 

disease populations, but survival analysis typically focuses on models fit to trial 

(sample) data. Fitting models under a Bayesian framework represents one option for 

moving away from trial-oriented analyses. Given the potential advantages, but limited 

practical application and evaluation to-date, further research in this area would be 

useful. 
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4. METHODS: EXTRAPOLATION OF SURVIVAL FUNCTIONS 

AND INCORPORATING EXTERNAL INFORMATION 

4.1. BACKGROUND 

Given that many clinical trials have restricted follow-up, and many diseases will result 

in a substantial proportion of individuals estimated to still be alive at that point, some 

form of extrapolation is often required in order to assess the lifetime impact of an 

intervention. This is used to populate economic models. In the previous section, we 

have discussed various approaches to fitting more complex survival models to capture 

the hazard functions seen within the range of the trial data; but many of the approaches 

we have introduced only make sense when coupled with external data (excess 

mortality and cure models, for instance), and a number of the approaches are tailored 

towards extrapolation rather than simply fitting within the range of the data. 

 

In the process of extrapolation when using a statistical model two key considerations 

need to be made around capturing the shape of the hazard/survival function. Firstly, a 

sufficiently complex modelling approach should be used to capture the shape of the 

hazard within the range of the follow-up data; this ensures accurate prediction of the 

absolute risks within the range of the data and allows the extrapolation to “start from 

the right place”. Secondly, thought needs to be given to the likely shape of the long-

term hazard; this is unlikely to follow a consistent shape extrapolated from the model 

fitted during the period of the trial – which tends to capture mortality due to the disease 

in the short term. Those who have survived until the end of the trial are continually 

ageing and are likely to be impacted by competing risks from other cause mortality, 

but may also have a reduced risk of dying from the disease under investigation - 

though this may not be the case if a treatment simply delays disease-specific mortality 

rather than prevents it. These considerations should be taken into account when 

extrapolating survival functions. The methods described in Section 2 can allow 

complex hazard shapes to be captured within the range of the follow-up data. 

However, a simple extrapolation from these more complex methods will not 

necessarily lead to a good long-term extrapolation for the survival function. Some of 

the complex approaches will apply even more restrictive and unrealistic shapes on the 

long-term hazard than a standard, simple parametric approach. Therefore, thought 

should be given separately to the likely long-term hazard shape; which may require 
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the utilisation of external data and the likely consideration of the fact that individuals 

will age as follow-up is extended. 

 

In health technology assessment it is common for survival models fitted to clinical trial 

data to be used to extrapolate far into the future, with no external information taken 

into account. Sometimes extrapolations are compared to external evidence to provide 

a form of validation. It is relatively rare for external information to actually be 

incorporated in the model fitting process, although there are examples of this in the 

literature[53]. It is not the purpose of this document to make detailed recommendations 

on incorporating external information into survival models, but it is impossible to ignore 

this topic when discussing survival models that are used to extrapolate into the long-

term. In this section, we consider the survival models introduced in Section 2 in the 

context of extrapolation and external evidence.  

 

4.2. INCORPORATING EXTERNAL DATA 

A number of methods have been suggested for the incorporation of external 

information to guide the extrapolation survival functions[59]. One assumption that is 

possible is to allow the long-term survival experience to be fully governed by 

population mortality rates or mortality rates for comparable patients in a relevant 

disease register. This could be achieved by applying the constraints discussed in 

Section 2.6 for the time-to-cure. The general population rates may be inappropriate if 

the trial population remain at an excess risk of death due to the disease of interest at, 

and beyond, the point of extrapolation. Alternatively, a relative or additive comparison 

to external rates can be made in order to extrapolate an effect that may not be 

appropriately defined by the external data. Further assumptions could be that the 

external data is not fully reflective of the trial data and a relative or additive difference 

between the trial data and external data is required in order to correct for this 

difference. 

 

Many would argue that using a relevant disease register to identify the external data 

would be preferable, as these represent patients diagnosed with a similar condition 

and are likely to be more representative of the trial population. However, registries will 

not include patients being treated with new treatments, and therefore whilst they may 
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be useful for modelling long-term survival for trial control groups, their usefulness for 

modelling long-term survival for people in the experimental group of clinical trials 

needs careful consideration. How long will the effect of a treatment be sustained? And 

will this act in a proportional manner on the hazard function for the control arm up until 

that point? 

 

General population mortality rates are readily accessible, even if they are only 

stratified by broad factors, such as age, sex and calendar time. Whilst it is highly 

unlikely to be appropriate that all patients that remain alive at the end of a clinical trial 

have mortality rates equal to those observed in the general population, such data can 

at least be used to ensure that extrapolations do not result in long-term hazards that 

are below those observed in the general population. This involves the extrapolation 

issue being set into the context of a competing risk problem; there is the mortality 

associated with the disease of interest and mortality associated with other causes, 

with the former likely to dominate in the short-term (within the range of the trial), and 

the latter likely to dominate in the long-term for those that survive. Isolating the cause-

specific mortality from an all-cause survival model can be achieved by partitioning the 

all-cause mortality into component parts, using general population mortality rates as 

the mortality experience due to other causes and relating any excess mortality above 

this to the disease of interest (see Section 2.7 on excess mortality/relative survival 

models). This relies on the assumption that the background general population 

mortality rates are a suitable match for the mortality experience of patients who do not 

die from their disease; this may not be the case for certain conditions where the 

likelihood of comorbidities will mean that general population mortality rates may be too 

low. Should instead cause of death information be available then obtaining the cause-

specific mortality using standard parametric modelling is also a viable alternative. In 

both settings, careful consideration should be given to also modelling covariate effects 

to arrive at an appropriate marginal estimate of all-cause survival. 

 

This approach of treating the cause-specific hazard separately makes sense when the 

other cause mortality is likely to dominate in the long-term; in these instances, 

extrapolating using external data is the logical approach. However, matching to 

registry or population mortality data to obtain the other cause mortality estimates 

relevant for patients relies on having access to the patient-level trial data; it is 
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necessary to, at a minimum, match on age, sex and calendar time to appropriately 

reflect the risk in mortality, which will vary considerably. 

 

In the following paragraphs, each of the approaches outlined in Section 2 are 

considered in the context of extrapolation. Consideration is given as to whether it 

would be appropriate to extrapolate from the fitted model to the trial data, and also 

how external data could be incorporated to guide the extrapolation in the long-term. In 

practice, the incorporation of external data for extrapolation has perhaps been 

constrained to the final section of a piecewise approach, or to couple with a cure model 

approach to estimate the other-cause hazard. However, external data can be coupled 

with other standard survival modelling approaches as outlined in the following 

subsections. The hazard function for other-cause mortality should always be 

considered when justifying the marginal hazard and survival functions used for 

extrapolation even if external data are not used in their estimation. 

4.3. EXTRAPOLATION FOR COMPLEX SURVIVAL APPROACHES 

Any model-based extrapolation from the methods that do not routinely include 

external data (Sections 3.3.1-3.3.4) are unlikely to appropriately account for changes 

in the hazard beyond the range of the observed data that are likely due to ageing 

effects increasing the long-term other cause mortality.  

4.3.1. Flexible parametric models  

FPMs can be used as an approach to capture complex hazard shapes within the range 

of the data. Beyond the final knots, the log(-log) transformation FPM described in 

Section 2.2 is similar to a Weibull model in that the log cumulative hazard is a linear 

function of log time. In principle, this can be used to extrapolate to a life-time horizon. 

This approach shares some of the limitations associated with using any standard 

parametric model applied to the range of the data and then used to extrapolate, 

although the approach differs slightly in that the long-term hazard is dictated by the 

latest mortality. Effectively, there is little to guide where the extrapolation should go 

and there is no option to prevent an unrealistic extrapolation; particularly for long-term 

estimates where the effect of age will likely begin to have a strong impact on increasing 

the hazard function. 

 

It is possible to couple the excess mortality modelling approach (utilising external data) 
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using a flexible parametric modelling framework (see Section 2.7). Furthermore, as for 

a standard parametric model, it is possible to make assumptions about a continuing 

relative or additive effect when comparing the clinical trial data to external data 

sources. 

 

4.3.2. Mixture models 

Again, within the observed range of the data, a mixture modelling approach may very 

well be suited to capturing more complex hazard functions, allowing a closer 

approximation to the observed hazard shape. However, extrapolations from these 

models may end up being unrealistic without the consideration of some external data 

to govern how the mortality rates should look in the longer term. If there is information 

on different clinically meaningful subgroups of patients, then this might be used to 

better inform the long-term extrapolations.  Typically, extrapolation from a complex 

fitted model is considered to be high risk in that extrapolated functions may be 

unstable. The mixture components are defined in order to provide the best fit to the 

observed data, but no constraints are in place to ensure that when extrapolating for 

higher values of follow-up time that the estimates will be in any way reasonable. 

External data should be used to at least govern whether reasonable extrapolations are 

obtained if one chooses to use the fitted model to estimate the lifetime horizon 

estimates. 

 

4.3.3. Landmark 

Landmark models seek to stratify the patients still alive at the landmark times into 

groups that are likely to be more similar in survival experience. Typically, standard 

parametric models are then fitted beyond the landmark point in order to provide the 

extrapolation. Therefore, the same limitations associated with extrapolating with 

standard survival models apply. In fact, selecting a group with good prognosis as in 

this case, may exacerbate the issues in certain circumstances, as very long-term 

survival may be predicted for this group, with very low hazards potentially still being 

predicted as the remaining patients age. External data should be used to at least 

govern whether reasonable extrapolations are obtained when extrapolating far into the 

future. As for any other survival model, external information could be incorporated into 

the survival modelling process to avoid clearly implausible extrapolations.  
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4.3.4. Piecewise 

Partitioning the survival experience into sections and fitting separate models to each 

still relies on a final extrapolation from a parametric model. Again, these are unlikely 

to appropriately account for changes in the hazard beyond the range of the observed 

data, which are likely in the long-term because of the effect of ageing. A further 

consideration is the increasing influence of random variation when fitting survival 

models relying on fewer events in the interval.  A standard extrapolation of the 

parametric models fitted to the final period coupled with the data for the previous 

periods will give an extrapolated experience for the entire treatment arm. Again, 

external information could be incorporated into the survival modelling process to avoid 

clearly implausible extrapolations. 

 

4.3.5. Cure  

External information is crucial for cure models – other cause mortality must be 

incorporated, otherwise a proportion of patients will be predicted to never die. A cure 

model could be fitted to cause-specific data, but again extrapolation without other 

cause mortality information would be nonsensical, as it is essential to include 

information on other cause mortality to provide estimates of all-cause mortality. The 

cure model in the setting of excess mortality or cause-specific mortality is a useful 

approach for setting a timepoint at which the external data completely governs the 

long-term mortality experience. Within a flexible parametric modelling environment, it 

is possible to set the point at which cure is dictated to happen by the placement of the 

last knot of the spline function (in the context of flexible parametric cure models; extra 

constraints are placed to force cure beyond the final boundary knot). This could be a 

point beyond the time range of the trial, forcing the cause-specific mortality to plateau 

at that future point, and then letting other cause mortality take over, perhaps based 

upon population mortality rates. This offers a contrasting approach to extrapolating the 

excess mortality (see below). 

 

4.3.6. Excess mortality / cause-specific mortality (relative survival) 

In a competing risks setting, it is possible and of interest to consider cause-specific 

survival endpoints within the range of the trial. However, to extrapolate one must then 
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first consider the all-cause survival function by re-incorporating other cause mortality; 

this could be from population mortality rates. This approach of extrapolating isolated 

functions and combining has been applied to extrapolate all-cause survival functions 

in a population-based cancer setting[10]; for the cause-specific model, one can either 

assume cure, or model the long-term cause-specific survival which will have typically 

plateaued and be dominated by the other cause hazard in the long-term. This 

approach to extrapolation allows a hazard function with a complex shape in the sense 

that the long-term external data can capture the increases associated with population 

ageing (see Figure 8). 

 

In this approach, external data is already built into the initial modelling process and is 

therefore available for use in the extrapolation. Assumptions are typically needed 

about the long-term background mortality – this can be modelled taking into account 

the effect of calendar year, or it could be assumed that recent rates are reflective of 

what will happen in future. 

 

Figure 8: Illustrative example of isolated competing hazard functions over time 

 

4.4. CONSIDERATIONS FOR ALL EXTERNAL DATA APPROACHES 

Are our external data appropriate? 

In all approaches we need to assume that we have fully captured the long-term 

mortality experience for the disease population using external data; or a function of an 

external data resource. Relevant considerations when using external data sources 
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are: 

• How well the external data source would truly reflect the survival experience 

should we have had full long-term data on all patients. 

• The profile of the patients remaining at the end of follow-up. 

• The length of time needed to reach the point at which all patients would have 

died. 

• The proportion of patients for which we need to extrapolate. 

 

Small sample size 

One factor to consider in a clinical trial setting is the relatively small sample size, 

particularly towards the end of follow-up when fewer patients are still at risk. This may 

be particularly important when considering joining different survival models together, 

for example by appending a long-term survival function onto a curve fitted to survival 

data (such as in a piecewise approach). This is illustrated in Figure 9. We simulated a 

trial arm with 100 observations from a Weibull distribution, where survival data were 

available for 3 years. Beyond 3 years, extrapolations were based solely on background 

population mortality rates. Figure 9 illustrates post-3 year survival predictions for 10 

runs of the simulated trial, illustrating that, due to random variation, the start-point of 

the extrapolation varies considerably, leading to considerably different long-term 

survival functions even when the survival data are from the same underlying model 

and the same external data are used to extrapolate. In this example, mean life years 

varied from 9.3 to 11.3 years across the 10 simulations. The variation stems from the 

fact that the sample size is 100 and also the variation in the age distribution at the end 

point of 3 years, which has an impact on the shape of the extrapolated curve. 

 

Figure 9: Illustration of varying survival extrapolations from 10 simulated trial arms with the 
same underlying disease-specific hazard and using the same external data 
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Does our trial data (in terms of patient characteristics) reflect the population target? 

A consideration for all clinical trial data, but also of particular focus when extrapolating 

the survival function, is whether the study population reflects the population for which 

the intervention will be potentially used. The relative effect may possibly remain 

unchanged across different populations, but the absolute survival functions and mean 

survival will vary if a different population is considered in its place. This influences both 

how we may wish to use clinical trial data to inform survival models, and also which 

external information to use when extrapolating. 

 

Are patient-level data for the trial available for the extrapolation? 

Patient-level data from relevant clinical trials are highly desirable when incorporating 

external data as this typically requires matching on characteristics such as age and 

sex, at least. 

 

Are patient-level data for the external data available for the extrapolation? 

Should the patient-level data be unavailable for relevant external data, then 1:1 

matching between trial patients and patients in external data is not possible. An 

alternative may be to obtain the marginal hazard data for patients in the external 

dataset who have similar characteristics (such as age and sex) to patients included in 

the clinical trial. This could then be used beyond the end of the trial as the mortality 

experience for the extrapolation, or at the very least be used as a check to examine 

the plausibility of the extrapolation from another approach.  
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5. SIMULATION STUDIES 

 

5.1. INTRODUCTION 

A simulation study was conducted to assess the performance of various survival 

models to estimate the restricted mean survival time at the end of a trial follow-up and 

the overall mean survival based on extrapolation, in a range of biologically plausible 

scenarios based on a number of previous TAs (TA268[41], TA391[38], TA421[29], 

TA463[10], TA478[9], TA483[34], TA498[7], TA517[8] & TA519[39]). The aim was to 

evaluate extrapolation in a single treatment arm rather than treatment effects because, 

fundamentally, it is crucial to extrapolate survival as accurately as possible when 

undertaking economic evaluation of treatments that affect survival. If survival models 

are unable to extrapolate accurately, they are inappropriate for economic modelling 

irrespective of what they predict with respect to the treatment effect. The simulation 

study is reported in line with recommendations made by Morris et al[60]. However, it 

should be noted, that the assumptions surrounding the treatment effect in the short, 

and long-term are a crucial driver of any metric for the difference in mean survival. We 

make further recommendations about the treatment effect in Section 6. 

 

5.2. METHODS 

5.2.1. Data generating mechanisms 

The simulation study considered both small (𝑛 = 100) and medium (𝑛 = 500) sized 

trials, and trials with low and medium survival rates with a follow-up of 3-years. In 

addition, four scenarios were considered based on the true distribution of the disease-

specific survival function; and each scenario further incorporated small and large 

amounts of unmeasured heterogeneity in individual survival functions[61]. This gave 

32 data-generating scenarios in total. All scenarios incorporated background mortality 

rates to represent age-related other causes of death. 

 

Other-cause mortality was simulated from a Gompertz distribution to represent 

background mortality unrelated to the disease of interest. The ages of trial participants 

were simulated from a Normal distribution with a mean age of 60 and standard 

deviation 6. Then conditional on survival to current age 𝑎, the survival function for 

other-causes was: 
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Equation 15 

𝑆𝑜𝑡ℎ𝑒𝑟(𝑡|𝑎) = 𝑃(𝑇 ≥ 𝑡 + 𝑎|𝑇 ≥ 𝑎) = 𝑆𝑜𝑡ℎ𝑒𝑟 (𝑡 + 𝑎) 𝑆𝑜𝑡ℎ𝑒𝑟⁄ (𝑎) 

 

 

Where, 

 

Equation 16 

𝑆𝑜𝑡ℎ𝑒𝑟(𝑡) = exp(𝜆𝛾−1(𝑒𝛾𝑡 − 1)) 

 

and 𝜆 = 0.000028, 𝛾 = 0.0936 are the shape and scale parameters, respectively. 

These shape and scale parameters were obtained from fitting a Gompertz distribution 

to English mortality rates in 2009 in females. 

 

Disease-specific mortality was simulated from a two-component Weibull mixture 

distribution with disease-specific survival 𝑆𝑑(𝑡) = 𝑆𝑑0(𝑡)
exp(𝑍𝛽) where 

 

Equation 17 

𝑆𝑑0(𝑡) = 𝑝exp(−𝜆1𝑡
𝛾1) + (1 − 𝑝)exp(−𝜆2𝑡

𝛾2) 

 

and where 𝑍 ∼ 𝑁(0,1) is an unknown heterogeneity (frailty) term. This distribution 

allowed consideration of scenarios where the disease-specific survival function was 

Weibull (𝑝 = 1), a two-component Weibull mixture (0 < 𝑝 < 1) or where the survival 

function corresponded to a cure model (𝑝 ≠ 0and 𝜆1 = 0) with cure fraction 𝑝. The 

disease-specific survival scenarios considered were as follows. 

 

Scenario 1: Survival times simulated from a Weibull distribution with decreasing 

hazard 

 Low survival Medium survival 

Low 
heterogeneit
y 

𝜆1 = 0.55, 𝛾1 = 0.9, 𝛽 = 0.5, 
𝑝 = 1 

𝜆1 = 0.25, 𝛾1 = 0.9, 𝛽 = 0.5, 
𝑝 = 1 

High 
heterogeneit
y 

𝜆1 = 0.55, 𝛾1 = 0.9, 𝛽 = 2.0, 
𝑝 = 1 

𝜆1 = 0.25, 𝛾1 = 0.9, 𝛽 = 2.0, 
𝑝 = 1 
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Scenario 2: Survival times simulated from a Weibull distribution with increasing hazard 

 Low survival Medium survival 

Low 
heterogeneit
y 

𝜆1 = 0.10, 𝛾1 = 2.5, 𝛽 = 0.5, 
𝑝 = 1 

𝜆1 = 0.04, 𝛾1 = 2.5, 𝛽 = 0.5, 
𝑝 = 1 

High 
heterogeneit
y 

𝜆1 = 0.10, 𝛾1 = 2.5, 𝛽 = 2.0, 
𝑝 = 1 

𝜆1 = 0.04, 𝛾1 = 2.5, 𝛽 = 2.0, 
𝑝 = 1 

 

Scenario 3: Survival times simulated from a Weibull mixture distribution with a high 

initial hazard that decreases and stabilises 

 Low survival Medium survival 

Low 
heterogeneit
y 

𝜆1 = 0.60, 𝛾1 = 1.8, 𝛽 = 0.5, 
𝑝 = 0.3 
𝜆2 = 0.70, 𝛾2 = 0.5 

𝜆1 = 0.30, 𝛾1 = 1.8, 𝛽 = 0.5, 
𝑝 = 0.3 
𝜆2 = 0.20, 𝛾2 = 0.5 

High 
heterogeneit
y 

𝜆1 = 0.60, 𝛾1 = 1.8, 𝛽 = 2.0, 
𝑝 = 0.3 
𝜆2 = 0.70, 𝛾2 = 0.5 

𝜆1 = 0.30, 𝛾1 = 1.8, 𝛽 = 2.0, 
𝑝 = 0.3 
𝜆2 = 0.20, 𝛾2 = 0.5 

 

Scenario 4: Survival times simulated from a cure model with a Weibull distribution for 

the uncured 

 Low survival Medium survival 

Low 
heterogeneit
y 

𝜆2 = 2.5, 𝛾2 = 0.9, 𝛽 = 0.5, 
𝑝 = 0.2 

𝜆2 = 2.5, 𝛾2 = 0.9, 𝛽 = 0.5, 
𝑝 = 0.5 

High 
heterogeneit
y 

𝜆2 = 2.5, 𝛾2 = 0.9, 𝛽 = 2.0, 
𝑝 = 0.2 

𝜆2 = 2.5, 𝛾2 = 0.9, 𝛽 = 2.0, 
𝑝 = 0.5 

 

The disease-specific survival and hazard functions for Scenarios 1-4 are shown in 

Figure 10 for individuals with frailty 𝑍 = 0 for the 3-year follow-up period. 
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Figure 10: Disease specific survival and hazard functions, Scenarios 1-4 

 

 

From the disease-specific and other-cause survival functions, cause-specific survival 

times were generated using the survsim function in Stata[62]. Overall survival was 

calculated as 𝑇 = min(𝑇𝑑, 𝑇𝑜𝑡ℎ𝑒𝑟) and both random censoring and administrative 

censoring were applied. Random censoring was generated from an exponential 

distribution with rate 0.1 with administrative censoring applied to all survivors at 3-

years. In total, 1000 datasets were simulated for each of the 32 data-generating 

scenarios. 

 

5.2.2. Estimands 

The estimands of interest were the restricted mean survival time (RMST) at 3-years 

(corresponding to the end of trial follow-up) and overall mean survival. From the data-

generating mechanism these quantities cannot be evaluated using a closed form 

solution. Instead, for each data-generating scenario, one very large dataset was 

generated (𝑁 = 107) and numerical methods were used to evaluate the area under 

the survival function up to 3-years (giving the true value of the RMST at 3-years) and 

up to 80 years (giving the true mean survival time). 

 

The true all-cause survival functions and hazard functions are shown in Figure 11-14. 
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Figure 11A: True survival functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 1 
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Figure 11B: True hazard functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 1 
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Figure 12A: True survival functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 2 
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Figure 12B: True hazard functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 2 

 
 

 



   

 

63 

 

Figure 13A: True survival functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 3 
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Figure 13B: True hazard functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 3 
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Figure 14A: True survival functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 4 
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Figure 14B: True hazard functions at 3 years (left hand side) and lifetime (right hand side) for 
Scenario 4 

 
 

 

5.2.3. Survival models 

The models investigated were fitted to all-cause mortality from the simulated datasets. 

Simple models fitted directly to the data (without inclusion of background mortality) 

included a suite of parametric survival models (Exponential, Weibull, Log-Normal, Log 
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Logistic, Gompertz, Generalised Gamma) and Flexible Parametric Models (FPMs) 

with degrees of freedom for the baseline hazard spline function ranging from 1 to 5. In 

addition, a strategy of selecting the best fitting of these 5 FPMs using the AIC was also 

assessed. More complex models that included background mortality rates were also 

investigated and included relative survival FPMs (degrees of freedom ranging from 1 

to 5) and a cure model (with either a Weibull baseline hazard or a FPM with 3 degrees 

of freedom). A mixture model was also considered but was found to have poor 

convergence (in some scenarios over 50% of the models failed to converge). It was 

therefore decided to exclude this model in the main simulation result comparisons. 

Landmark models were not included because we did not simulate response categories 

and would have had to also add consideration of the timepoint for response, which 

would have added an extra layer of complexity to the simulation process and increased 

the number of data generating mechanisms required to specifically evaluate this one 

method. Piecewise models were not included for practical reasons, due to the 

requirement for selection of piecewise time-points – to an extent, these are explored 

in Section 5. 

 

All models were fitted in Stata using the functions streg (for parametric models), stpm2 

(for FPMs, including cure and relative survival FPMs), strsmix (for a Weibull cure 

model) and stmix (for the mixture models). For all models, estimates of the RMST at 

3-years and mean survival based on extrapolations from each of the models were 

obtained. For the FPMs this was performed using the stpm2 post-estimation predict 

command. For the standard parametric models, the cure models and the mixture 

models, estimates of the RMST at 3-years and the mean survival were obtained using 

the integ function on a fine grid of (500-1000) predicted survival probabilities. 

5.2.4. Performance measures 

Bias of the estimates is of primary interest. Biases are shown in the form of forest plots 

with Monte Carlo standard errors. More detailed scatter plots of the biases are given 

in the appendices along with empirical standard errors in Appendix A4. 

 

5.3. RESULTS 

The appendix shows detailed results for all scenarios. These are summarised in 

Figures 15-19. We then interpret the results for each modelling approach. 
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Figure 15: Convergence – percentage of simulations that failed to converge 
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Figure 16: Bias in restricted mean survival time at 3-years, Scenarios 1 and 2  

 
 

Figure 17: Bias in restricted mean survival time at 3-years, Scenarios 3 and 4  
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Figure 18: Bias in mean overall survival times (axis restricted to a maximum of +/- 5 years, 
Scenarios 1 and 2  

 
 

Figure 19: Bias in mean overall survival times (axis restricted to a maximum of +/- 5 years, 
Scenarios 3 and 4  
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5.3.1. Standard Models  

 
Standard parametric models consistently produced low bias when estimating RMST 

(limited to the end of the simulated trial follow-up), except for the exponential 

distribution and, in some scenarios, the Gompertz distribution. Hence, models that do 

not well represent the underlying survival distribution are likely to result in only small 

bias for RMST. However, bias can become substantial when extrapolating to a life-

time time horizon. Bias was greater with larger unobserved heterogeneity and when 

survival was relatively long (i.e. medium survival rather than low). This was true across 

Scenarios 1-4, irrespective of the distribution used to generate survival times, although 

bias was particularly high in Scenarios 1, 3 and 4, where survival followed a Weibull 

distribution with a decreasing hazard, a mixture Weibull and a Weibull distribution with 

a cure fraction respectively. Bias was lower in Scenario 2, where survival followed a 

Weibull distribution with an increasing hazard, whereby mean survival times were 

generally low. Across Scenarios 1, 3 and 4, the log-logistic and log normal models 

frequently over-estimated mean survival, except in Scenario 4 when there was small 

unobserved heterogeneity. Hence, even in scenarios with a cure fraction, these 

models – which are known to produce survival functions with long tails – often over-

estimated mean survival. The Weibull model generally produced lower bias in its 

estimates of mean survival than the other standard parametric models – although often 

bias was still appreciable. This may be due to the way we generated our data using 

Weibull-based data generating mechanisms. However, although we simulated from a 

Weibull distribution for the disease-specific hazard, none of the standard models fitted 

are the correct model because we included unobserved heterogeneity and other cause 

mortality. 

 

5.3.2. Flexible Parametric Models 

 
FPMs were associated with very low bias for RMST across all scenarios, provided the 

FPMs had at least 3 degrees of freedom. Bias remained relatively low for estimates of 

mean overall survival in Scenario 2 (where survival followed a Weibull distribution with 

an increasing hazard). However, in Scenario 1 FPMs only produced low bias when 

survival was short and unobserved heterogeneity was small – when survival was long 

or heterogeneity was large FPMs produced high levels of bias. It is important to note 
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that care should be taken in interpreting Figures 18 and 19 – biases that appear small 

are sometimes associated with mean survival estimate biases of 0.5 to 1 year; these 

are often not negligible. In Scenario 3 bias for mean overall survival was relatively low 

when survival was relatively short and heterogeneity was small (though, again, these 

biases were often not negligible) – bias increased appreciably when survival was long. 

Across Scenario 4, where there was a cure fraction, FPMs did not generally estimate 

mean overall survival with any less bias than standard parametric models and bias 

was often very large.  

 
 

5.3.3. Flexible Parametric Models (incorporating background mortality) 

 
FPMs that were fit using a relative survival framework, thereby incorporating 

background mortality, performed similarly to FPMs fit without incorporating 

background mortality in Scenario 2 – in which all FPMs produced relatively low bias in 

estimating mean overall survival. In Scenario 1 (where survival followed a Weibull 

distribution with a decreasing hazard) FPMs that included background mortality 

performed appreciably better than FPMs that did not incorporate background mortality. 

In Scenario 3, where survival followed a mixture Weibull distribution, including 

background mortality in FPMs did not result in an appreciable reduction in bias – 

models were prone to negative bias, under-estimating mean survival substantially, 

especially when survival was long. However, results appeared more consistent in 

Scenario 3 when background mortality was included, in that each FPM led to negative 

bias, whereas when FPMs without background mortality were fit some produced 

negative bias and some produced positive bias in this Scenario. The issues driving 

these differences are further explored in Section 5.6. In Scenario 4, where a cure 

fraction was simulated, including background mortality within FPMs led to an 

appreciable reduction in bias compared to standard parametric models (which did not 

include background mortality) and compared to FPMs that did not include background 

mortality. Mean overall survival was consistently under-estimated by FPMs that 

included background mortality in these scenarios, but bias was consistently lower than 

that associated with any other model tested, with the exception of cure models. 

However, note that bias remained approximately 1-2 years, which is appreciable given 

the true mean survival time varied between 5 and 13 years in Scenario 4.  
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It should be noted that in this simulation study we assumed that we had access to 

appropriate expected mortality rates from background mortality data. Incorporating 

this data results in improved extrapolation when there are some long-term survivors, 

but appreciable bias remains. This is likely to be because we assumed we only had 

data on 3 years of follow up, during which time disease-specific mortality rates may 

not stabilise. In Section 5 we demonstrate how increased follow-up can lead to better 

extrapolation.  

 
 

5.3.4. Cure Models (incorporates background mortality) 

 
Cure models (that incorporated background mortality) resulted in slight bias in RMST 

in scenarios where cure was not a reasonable assumption. However, these models 

still fit reasonably well to the observed data and produced low bias. Cure models led 

to substantial bias in estimates of mean overall survival in scenarios where a cure was 

not reasonable – in Scenarios 1 and 2, where other methods estimated mean survival 

with relatively low bias, cure models often resulted in appreciable bias. In Scenario 4, 

where a cure fraction was simulated, bias associated with cure models was lower than 

other methods, particularly when heterogeneity was low. When heterogeneity was 

high, cure models produced similar bias to FPMs that included background mortality, 

though bias was in the opposite direction – that is, mean overall survival was usually 

over-estimated. In Section 5 we demonstrate how varying the point of cure can alter 

survival estimates associated with cure models.  

 

5.4. SUMMARY & DISCUSSION  

 
Any simulation study is limited to the scenarios it investigates. We have selected 32 

different data generating mechanisms and simulated both disease-specific and other 

cause mortality and incorporated unobserved heterogeneity. We specifically targeted 

these data generating mechanisms to cover a broad range of biologically plausible 

scenarios. Unobserved heterogeneity is often ignored in simulation studies. We view 

this as unrealistic as in any applied setting one would always expect the underlying 

rates of death to vary between individuals. 
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We also generate data from specific distributions. For example, Scenario 1 is 

generated from a Weibull distribution (with frailty). However, it is the marginal survival 

function which is of interest. The shape of the marginal hazard function can be very 

different to the conditional hazard functions. None of the models fitted represented 

“true” models given the data generating process. However, we acknowledge that it 

would be possible to simulate from alternative distributions, which might result in 

different methods performing “best”. Hence, our simulation study should not be used 

to conclude that one method is superior to another. Instead, we seek to highlight that 

certain methods will exhibit bias in some situations. 

 

The simulation clearly indicates that there will be no one method that can be 

universally applied in all circumstances to obtain unbiased estimates. Sometimes, 

what appears to be a reasonable method can result in severe bias. In general, 

standard parametric models that do not incorporate external information extrapolate 

poorly. FPMs can improve upon this, particularly when relevant external information is 

incorporated. However, serious bias can remain, particularly when disease-specific 

mortality rates have not stabilised during the follow-up period. Cure models can result 

in reasonable estimates of mean overall survival, but only when a cure assumption is 

reasonable – otherwise these models can result in high levels of bias in scenarios 

where other methods perform relatively well.  

 

In appendix A.1 we provide details of where to download the simulation code, such 

that others can repeat and adapt our simulations. 
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6. EXAMPLES OF MODEL EXTRAPOLATION FOR CHOSEN 

SIMULATION SCENARIOS 

 

6.1. INTRODUCTION 

In this section we demonstrate a number of key issues using some examples using 

the simulated data. In a real analysis setting there is no way of knowing whether the 

extrapolations are correct. The previous chapter highlighted that certain methods 

could result in bias and the magnitude of the bias varies between different scenarios. 

As we are using simulated data we can investigate different types of analysis and try 

to understand why certain methods are likely to result in bias through a more in depth 

analysis of single simulated datasets. 

 

6.2. CALCULATING MARGINAL EXPECTED SURVIVAL AND HAZARD  

In this section, to aid interpretation in the Figures, we have added marginal expected 

survival using background mortality rates:  

Equation 18 

 

 

where  is the expected survival for the  subject. This will give the expected 

survival in a disease free population. If population expected rates are used it will give 

the expected survival in a similar group to the study participants in the general 

population. 

 

In addition, the marginal expected hazard can be estimated as a weighted average of 

expected hazard rates. 

Equation 19 

 

  

where  is the expected hazard rate for the  subject. This can serve as a useful 

reference as it is unlikely that the mortality rate in patients with the disease of interest 

will be lower than that in the general population. This is particularly useful as one can 
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compare the extrapolated hazard rate for the study population with that seen in the 

general population. In nearly all cases one would not expect the mortality rates of 

diseased individuals to be lower than that seen in the general population. 

 

When incorporating background mortality the marginal all-cause survival function is 

Equation 20 

 

 

where  is the model based estimate of the relative survival function for the  

subject. 

 

The marginal extrapolated hazard for the study population is 

Equation 21 

ℎ(𝑡) =

1
𝑁
∑  𝑁
𝑖=1 𝑅𝑖(𝑡)𝑆𝑖

∗(𝑡)(𝜆𝑖(𝑡) + ℎ𝑖
∗(𝑡))

1
𝑁
∑  𝑁
𝑖=1 𝑆𝑖

∗(𝑡)𝑅𝑖(𝑡)
 

 

where  is the model based estimate of the excess mortality rate  for the  subject. 

 

6.3. ASSESSING MODEL FIT WITHIN THE RANGE OF THE DATA DOES NOT GUARANTEE GOOD 

EXTRAPOLATION 

Within the range of the data there may be a number of possible survival models that 

give a good fit to the data. However, care should be taken when using model fit criteria 

to choose an appropriate model for extrapolation. This is illustrated in Figures 20 and 

21, which show a number of survival models fitted to a single simulated dataset from 

Scenario 1 (where the true disease-specific hazard is Weibull with unobserved frailty 

and other-cause mortality increases with age). 

 

Figure 20 plots (a) the fitted survival functions and (b) hazard functions up to the end 

of trial follow-up at 3-years. Within the range of the data there is good agreement 

between most of the fitted models, the non-parametric Kaplan-Meier curve and the 

true survival function. The model with the lowest AIC is the Log-Normal model and the 
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model with the highest is the Weibull model. 

 

All hazard functions are decreasing at the end of follow-up. This should cause alarm 

as these fitted functions will continue to decrease beyond the range of follow-up and 

given that those still alive will be ageing, the true hazard would be expected to start 

increasing at some point. This is exactly what is seen in Figure 21, where the survival 

and hazard functions are extrapolated up to 40-years. The expected mortality (an age-

sex matched rate based on population mortality rates) is seen to increase over the 

follow-up and therefore in the trial population the all-cause true hazard has a turning 

point at around 12 years of follow-up. 

In this example, the two models with the lowest AIC have the poorest extrapolation, 

when compared to the true function. The model that performs best, but a long way 

from perfect, is the Weibull model, which had the highest AIC. The AIC or BIC criteria 

only uses the available data and in fact greater weight is given to earlier survival time 

data typically, as this is where the events are most dense. Thus a good fit within the 

range of the data may not lead to good extrapolation. 

Plotting both the extrapolated survival and hazard functions together with the expected 

mortality rate is useful and recommended for any extrapolation. In this example, it 

clearly shows that the extrapolated functions are predicting a lower mortality rate in 

the later years than if the study population were disease free. From such plots it 

becomes obvious that none of the fitted models are suitable to assess overall mean 

survival and hence all should be rejected for this purpose. 
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Figure 20: Plot of (a) survival and (b) hazard functions for various parametric and flexible 
parametric models up to the end of trial follow-up (3-years) for one realisation of Scenario 1 

 

Figure 21: Plot of (a) survival and (b) hazard functions for various parametric and flexible 
parametric models extrapolated up to 40-years for one realisation of Scenario 1 
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6.4. INCORPORATING BACKGROUND MORTALITY INTO MODELLING MAY HELP WITH 

EXTRAPOLATION 

This example uses the same dataset as the previous section (Section 5.2), but now 

compares FPMs with and without incorporating background mortality. The background 

mortality used are general English mortality rates for 2009. Since these are the rates 

that were used to generate mortality due to other causes in the simulation study, one 

would expect the simulation to perform well. As a sensitivity analysis, in Section 5.5 

we show an example of using the “wrong” background mortality rates. 

 

Figure 22 plots (a) the estimated marginal survival functions and (b) the marginal 

hazard functions up to the end of trial follow-up at 3-years. Within the range of the data 

there is good agreement between the two FPMs, the non-parametric Kaplan-Meier 

curve and the true survival function. There is also good agreement between the 

methods in terms of the hazard function; in fact the fitted functions cannot be 

distinguished on the plots. 

 

Figure 23 plots (a) the estimated marginal survival functions and (b) the marginal 

hazard functions extrapolated to 40 years. The standard FPM model overestimates 

survival. The reason for this is clear through inspection of the hazard function, which 

continues to decrease. Comparing with the expected hazard in the general population 

shows that extrapolation of the standard FPM leads to a mortality rate that is lower 

than expected in the general population, so is clearly not sensible. Again, this shows 

the value of plotting the hazard together with a relevant expected mortality rate. In 

contrast to the standard FPM, the FPM that incorporates background mortality closely 

predicts the long-term survival and hazard functions. 
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Figure 22: Plot of (a) survival and (b) hazard functions for a flexible parametric model with and 
without incorporation of background mortality up to the end of trial follow-up (3-years) for one 
realisation of Scenario 1 
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Figure 23: Plot of (a) survival and (b) hazard functions for a flexible parametric model with and 
without incorporation of background mortality extrapolated up to 40 years for one realisation of 
Scenario 1 

 

6.5. WHAT MIGHT HAPPEN IF INCORRECT BACKGROUND MORTALITY RATES ARE USED?  

Here we repeat the analysis from Section 5.4, but use incorrect background mortality 

rates. We use the rates for Females in Finland in 2000. 

 

Figure 24 shows (a) the estimated marginal survival functions and (b) the marginal 

hazard functions up to the end of trial follow-up at 3-years. Within the range of follow-

up using the incorrect expected survival rates has had little impact. 

 

Figure 25 plots (a) the estimated marginal survival functions and (b) the marginal 

hazard functions extrapolated to 40 years. The expected mortality rates in Finland in 

2000 were higher than in England in 2009 and this has led to the FPM that includes 

background mortality rates extrapolating less well than the version that included the 

correct background mortality rates. There is a slight underestimation of expected 

survival with this model, but it is still clearly better than the FPM that does not 

incorporating any background mortality rates. 
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Figure 24: Plot of (a) survival and (b) hazard functions for a flexible parametric model with and 

without incorporation of background mortality up to the end of trial follow-up (3-years) for one 

realisation of Scenario 1. Background mortality is misspecified 
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Figure 25: Plot of (a) survival and (b) hazard functions for a flexible parametric model with and 
without incorporation of background mortality extrapolated up to 40 years for one realisation of 
Scenario 1. Background mortality is misspecified 

 

6.6. HAVING LONGER-TERM FOLLOW-UP INFORMATION IS LIKELY TO BE BENEFICIAL, BUT 

NOT ALWAYS FOR ALL-CAUSE APPROACH 

From the simulation results in Section 4, it is clear that many of the methods perform 

poorly for Scenario 3 (Figure 19). Given that the data are simulated, we can investigate 

applying the approaches in the case where follow-up was extended to 5 years, rather 

than 3 to see if the extrapolation is then improved. 

 

Figure 26 shows the extrapolated survival functions using the simulated trial data with 

administrative censoring times of 3 and 5 years. True marginal survival is compared 

to two FPM predictions, one from an all-cause model, and the other from an excess 

mortality model with background mortality incorporated into the survival extrapolation. 

In the left-hand panel, both the FPM approaches with and without background 

mortality underestimate the true survival with 3 years of follow-up. Extending to 5 years 

in the right-hand panel improves the estimate for the FPM incorporating background 

mortality. This is because the true disease-specific hazard has a turning point after 3 

years that can now be better captured in the excess mortality model. The FPM with no 

background mortality information to define the long-term hazard now overestimates 

the true survival in the long-term. Extending the follow-up to 5 years allows the cause-



   

 

84 

 

specific hazard to plateau appropriately meaning that the model using background 

mortality in the long-term now performs well – we are well capturing the shapes of both 

hazards. However, the extension to 5 years of follow-up has made the all-cause model 

worse in terms of the estimated mean survival time. Not incorporating the known long-

term increase in hazards due to death from other causes can lead to an 

underestimation of the long-term hazard. Even with longer-term follow-up and lower 

levels of censoring it is important to ensure that hazard projections are credible. 

 

The corresponding plots for the marginal hazard functions are shown in Figure 27. 

These plots allow a clearer understanding of the assumptions that are being made at 

varying points in follow-up, but must be interpreted in correspondence with the 

number/proportion of individuals still at risk. Models that are based on the fit within the 

range of the data alone are very unlikely to capture the true upturn in hazard due to 

population ageing, and the competing hazard of death due to other causes, which can 

be seen for the true hazard function. 

 
Figure 26: Plot of marginal survival for one realisation of Scenario 3, with varying follow-up 

lengths across the sub-panels. The grey shaded area shows the period where the survival 

functions is extrapolated (i.e. beyond the range of the trial follow-up). 
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Figure 27: Plot of marginal hazard function for one realisation of Scenario 3, with varying follow-
up lengths across the sub-panels.   

 

 

6.7. ALTERING THE TIME TO CURE IN ORDER TO USE THE POPULATION HAZARD ONLY IN THE 

LONG-TERM 

In the context of extrapolation, cure models are often used to allow the long-term 

mortality to be dominated by the population hazard. Flexible parametric cure models 

implement a time to cure directly, rather than having an asymptote at an infinite event 

time, and therefore, are very well suited to this context. In selecting a cure time exactly, 

one can allow the long-term hazard to be exactly that of the mortality of the general 

population or that of an appropriate disease register. 

 

In Figure 28, true marginal survival is compared to various FPM predictions – one from 

an excess mortality model with background mortality incorporated into the survival 

extrapolation, and the others from FPM cure models with specified cure time-points. 

As can be seen, in this case, assuming that disease-specific mortality reaches 0 at a 

fixed point in follow-up time, performs better than allowing the standard FPM excess 

mortality model that incorporates background mortality. However, there is no fixed way 

to select the time to cure point, and in this particular simulation we know that the 

standard FPM which incorporates background mortality performs poorly because 
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there is a turning point in the disease specific hazard after 3 years – this will usually 

not be known unless there is clinical knowledge to understand that this will likely be 

the case.  

 

Despite this, this approach shows in principle how constraints on the disease-specific 

model, coupled with external data for other-cause mortality, can be used to capture 

complex hazard functions, but allow the longer-term hazard to be fully based on the 

external data hazard. Cure models in this context are useful for ensuring the long-term 

hazard is more fully defined by the external data used to arrive at the all-cause 

marginal survival. 

 

Figure 28: Plot of marginal hazard function for one realisation of Scenario 3, with varying 
assumed cure points   

 

6.8. PIECEWISE MODELS; REDUCTION OF SAMPLE SIZE AT LATER CUT-POINTS 

As mentioned in Sections 2 and 3, a piecewise modelling approach allows flexibility in 

terms of the hazard shapes that can be characterised, but there is likely to be an even 

more stark issue of sample size for the final piecewise section from which the 
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extrapolation is made. Piecewise models could not be sensibly included in our 

simulation study, but here we demonstrate their application to one simulation from 

Scenario 1. 

 

Figure 29 plots true survival and hazard functions and compares these to predictions 

from a piecewise model that fits 3 separate Weibull models to the 3 years of simulated 

data. The fit to the observed data is reasonable, but there is a great deal of uncertainty 

around the final piece of the model (demonstrated by the confidence intervals around 

the hazard function shown in panel (b) of Figure 29). The fitted model does not 

extrapolate well, and results in substantial bias. Care should be taken when using a 

piecewise approach - through studying the estimated hazard function, but also through 

illustrating the associated confidence intervals in tandem with being explicit about 

sample sizes. 

Figure 29: Plot of (a) survival and (b) hazard functions for one realisation of Scenario 1. 
Piecewise models 
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7. DISCUSSION AND RECOMMENDATIONS 

 

It is not the objective of this document to make recommendations on which types of 

survival model should or should not be used. Indeed, we have shown that there is no 

one type of survival model that will always produce the best survival extrapolations. In 

general, the more of the survival function left to predict (depending of course on 

prognosis and length of follow-up in the trial), the more scope there is to go wrong by 

applying a model with an inappropriate extrapolation. Because we can never know 

which model predicts most accurately, it is important to present models that 

incorporate a range of plausible assumptions about the long-term hazard, or to select 

models that appropriately allow for the differing mechanisms impacting on survival. 

 

Often in oncology appraisals the trial data requiring extrapolation will be subject to 

treatment switching, i.e. patients in the control group will switch to the treatment under 

investigation at some point during the trial, e.g. on disease progression. Thus, 

adjustment for this must be made prior to undertaking extrapolation (see TSD16)[63]. 

In addition, an indirect comparison may also be required, for example using a 

population-adjusted approach (see TSD18)[12]. Thus, the impact of both of these 

factors on ultimate decisions and cost-effectiveness estimates may also have to be 

explored in combination with sensitivity to the methods described in this document.   

 

In this document we have attempted to describe the characteristics of different types 

of complex survival model, and to demonstrate their potential performance in a range 

of plausible and realistic scenarios. In addition, we have sought to demonstrate the 

kinds of analyses and plots that may be helpful in showing which models might be 

appropriate, and what the alternative models actually project. To this end, we make 

the following general and model-specific recommendations together with 

recommendations for further research. 

 

7.1. GENERAL RECOMMENDATIONS:  

 

I. Plotting predicted survival and hazard functions. Fitted and extrapolated 

hazard and survival functions should always be presented. Exploring model 
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assumptions and implications on the hazard scale is particularly important 

because this is the scale which models are estimated on, and often the scale 

upon which treatment effects are assumed to act. This also clearly 

demonstrates what is being assumed about the hazard function over time, 

which is an easier scale on which to visualise and conceptualise risk changing 

through time as opposed to a change in gradient for a cumulative measure. A 

justification should also be given to explain why the projected hazard and 

survival functions are credible. 

II. Plotting expected (general population) survival and hazard functions. This 

can aid understanding of whether the assumed hazard and survival functions 

are credible. 

III. Incorporation of background mortality. Incorporating background mortality 

into survival models is recommended because it helps avoid extremely 

implausible projections. This is true for standard parametric models, FPMs, 

mixture models, landmark models and piecewise models and is essential for 

cure models. Background mortality rates should either be incorporated when 

making the extrapolation, or used as a sense-check when plotting the marginal 

survival, and particularly the marginal hazard functions that have been 

extrapolated. National mortality rates stratified by age, sex and calendar year 

may be used. However, if study subjects have more comorbidities than the 

general population, expected rates will be underestimated. Attempts could be 

made to account for this, but even if the background mortality rates used are 

inappropriate, the extrapolation is likely to be better than that associated with a 

model that does not take into account background mortality. If the excess 

mortality rates are assumed to be zero (when predicted hazard rates are the 

same as background mortality rates) then the time point this occurs should be 

stated. 

IV. Incorporation of other external information. Other external information, such 

as registry data, may be useful to incorporate within survival models. However, 

research is ongoing in this area and we cannot make firm recommendations. If 

relevant registry data are identified, relative comparisons between the trial 

population, the disease population of interest, and the registry population 

should be made and, if possible, registry data from the most relevant patients 

should be used. Consideration of available external data sources should be 
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done at an early stage, and analyses incorporating this information should be 

pre-specified in analysis plans.   

V. Treatment effects. In this document we have concentrated on extrapolation 

for a single group of patients. When extrapolating for two groups of patients, 

hazard functions for both groups should be plotted together with the implied 

treatment effect (whether a proportional treatment effect is assumed, or 

whether survival models are fitted separately to treatment groups). External 

information (e.g. registry data) is likely to be of most use for control group 

extrapolations. Extrapolation for the experimental group should follow the same 

principles described above (including background mortality information) but 

should also incorporate sensitivity analyses around long-term treatment effects.  

 

7.2. MODEL-SPECIFIC RECOMMENDATIONS:  

 

VI. Standard parametric models. Standard parametric models can provide 

reasonable extrapolations if long-term hazards are expected to follow simple 

shapes. However this is frequently likely not to be the case. When standard 

parametric models are used background mortality rates and/or other relevant 

external information should always be considered for incorporation.  

VII. Flexible parametric models. FPMs are very likely to fit the observed survival 

data well, but may not extrapolate appropriately. When FPMs are used, 

background mortality rates and/or other relevant external information should 

always be considered for incorporation.  

VIII. Mixture models. Mixture models may be intuitively appealing, but frequently 

suffer from lack of convergence and can be mis-interpreted. Mixture models 

should be used with extreme caution – FPMs are likely to represent a more 

reliable option for modelling complex hazard functions. 

IX. Landmark models. If landmark models are used care should be taken to justify 

group categorisations, and consideration should be given to the sensitivity to 

the landmark time-point chosen. Uncertainty around models fitted to different 

categories should be clearly demonstrated through the use of plots of modelled 

hazards and survival, with confidence intervals shown. Background mortality 

rates and/or other relevant external information should be included within 
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whichever models are fitted to the different categories.  

X. Piecewise models. If piecewise models are used care should be taken to 

justify the time-points used. As for all models, observed and predicted hazard 

and survival plots should be presented. Sensitivity to time-points chosen should 

be explored. Uncertainty around the models fitted to the different time-points 

should be clearly demonstrated through the use of plots of modelled hazards 

and survival, with confidence intervals shown. Background mortality rates 

and/or other relevant external information should be included within each of the 

models fitted, but particularly importantly for the model fitted to the final 

segment of survival.  

XI. Cure models. Cure models may be useful when an assumption of cure is 

reasonable – however, it is the incorporation of background mortality that is 

important rather than the fact that the model is a “cure model”. Hence, cure 

models hold few advantages compared to FPMs that are fitted incorporating 

background mortality using a relative survival or excess mortality framework. 

Cure models perform poorly if they are applied and an assumption of “cure” is 

not reasonable. Hence, it is likely to be more appropriate to use FPMs 

incorporating background mortality instead of cure models if the existence of a 

“cure” is uncertain. Estimating the cure fraction is prone to high levels of 

uncertainty, particularly when sample sizes are small. If a cure model is used, 

evidence should be provided to justify the credibility of the cure fraction 

estimated (e.g. by comparing to response rates, as well as by exploring earlier 

phase trials with longer follow-up, and using biological information on the 

mechanism of action of the treatment and the nature of the disease). When 

using a cure model, the hazard and survival functions predicted (and expected) 

for cured and uncured populations should both be presented.  

 

7.3. RECOMMENDATIONS FOR RESEARCH:  

 

I. We have presented a simulation study investigating the performance of 

different survival models in different realistic circumstances. However, 

simulation studies cannot be exhaustive. It would be useful to explore other 

scenarios.   
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II. There are many ways in which external data sources could be incorporated into 

survival analyses and extrapolation. Further research is required exploring the 

most appropriate for specific situations. Bayesian methods would appear to 

offer a means by which both expert opinion and external data sources, together 

with model uncertainty, could be explored and integrated into health technology 

assessment.  

III. The approaches that we have outlined have largely tried to capture and 

extrapolate the marginal hazard and survival functions without trying to 

compartmentalise the mechanisms driving changes in these functions. Some 

of the approaches – such as utlising external data start to elucidate the 

competing mechanisms that drive the overall marginal functions. Methods that 

directly model the competing components and are tailored to the mechanisms 

and covariate effects governing the all-cause survival function could be 

explored in future research, and would allow sensitivity analysis to the 

assumptions made.  

IV. A strong determinant of the lifetime benefits of a treatment will be the assumed 

long-term treatment effect. Approaches that directly attempt to model the long-

term relative treatment effect, and also assess deviations from the assumptions 

surrounding this would offer an alternative approach to extrapolation. 

Extrapolating relative treatment effects could involve borrowing information 

from similar drug classes and other longer-term clinical trial follow-up, and/or 

eliciting expert opinion. Further research, and evaluation, is required in order to 

explore the viability of this approach. 

V. Trial populations may not fully reflect the target population of interest for which 

we wish to make our decision. We have taken a largely trial-based perspective 

for estimation of the mean survival, but methods to reweight to a target 

population appropriately when performing extrapolations deserve further 

attention, research and evaluation. 
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APPENDIX 

 

A.1 STATA CODE TO GENERATE SIMULATION STUDY DATA 

 

See the Simulation folder in the TSD_Stata_Files download available at: [to be 

filled in once on DSU website] 

 

A.2 STATA CODE USED TO UNDERTAKE ANALYSES 

 

See the Example folder in the TSD_Stata_Files download available at: [to be 

filled in once on DSU website] 

 

 

A.3 STATA CODE TO CALCULATE MARGINAL EXPECTED SURVIVAL AND 

HAZARD 

 

 See the stexpect3 folder in the TSD_Stata_Files download, and the 

corresponding  worked through code in the Example folder. 

 

A.4 SIMULATION STUDY RESULTS 

 See the separate Simulation_results.pdf file for the tables and figures relating 

to the full  simulation results. 

 

 



   

 

94 

 

REFERENCES 

 

1. Latimer, N., NICE DSU Technical Support Document 14:  Survival analysis for 
economic evaluations alongside clinical trials - extrapolation with patient-level 
data, in Report by the Decision Support Unit, A. Wailoo, Editor. 2011: Available 
from http://www.nicedsu.org.uk  

2. Latimer, N.R., Survival Analysis for Economic Evaluations Alongside Clinical 
Trials—Extrapolation with Patient-Level Data:Inconsistencies, Limitations, and 
a Practical Guide. Medical Decision Making, 2013. 33(6): p. 743-754. 

3. Bullement, A., N.R. Latimer, and H. Bell Gorrod, Survival Extrapolation in 
Cancer Immunotherapy: A Validation-Based Case Study. Value Health, 2019. 
22(3): p. 276-283. 

4. Ouwens, M.J.N.M., et al., Estimating Lifetime Benefits Associated with 
Immuno-Oncology Therapies: Challenges and Approaches for Overall Survival 
Extrapolations. PharmacoEconomics, 2019. 37(9): p. 1129-1138. 

5. Othus, M., et al., Accounting for Cured Patients in Cost-Effectiveness Analysis. 
Value Health, 2017. 20(4): p. 705-709. 

6. Tan, S.H., K.R. Abrams, and S. Bujkiewicz, Bayesian Multiparameter Evidence 
Synthesis to Inform Decision Making: A Case Study in Metastatic Hormone-
Refractory Prostate Cancer. Medical decision making : an international journal 
of the Society for Medical Decision Making, 2018. 38(7): p. 834-848. 

7. National Institute for Health and Care Excellence (NICE). Lenvatinib with 
everolimus for previously treated advanced renal cell carcinoma. NICE 
Guidance TA498 2018  Available at 
https://www.nice.org.uk/guidance/ta498/documents/html-content-2]. 

8. National Institute for Health and Care Excellence (NICE). Avelumab for treating 
metastatic Merkel cell carcinoma NICE Guidance TA517 2018  Available at: 
https://www.nice.org.uk/guidance/ta517/documents/html-content-2]. 

9. National Institute for Health and Care Excellence (NICE). Brentuximab vedotin 
for treating relapsed or refractory systemic anaplastic large cell lymphoma. 
NICE Guidance TA478 2017  Available at: 
https://www.nice.org.uk/guidance/ta478/documents/html-content-2]. 

10. National Institute for Health and Care Excellence (NICE). Cabozantinib for 
previously treated advanced renal cell carcinoma NICE Guideance TA463 2017  
Available at: https://www.nice.org.uk/guidance/ta463/documents/html-content-
3]. 

11. National Institute for Health and Care Excellence (NICE). Nivolumab for 
previously treated locally advanced or metastatic squamous nonsmall-cell lung 
cancer. NICE Guidance TA483 2016  Available at: 
https://www.nice.org.uk/guidance/ta483/documents/appraisal-consultation-
document-2]. 

12. Phillippo, D.M., et al., NICE DSU Technical Support Document 18: Methods for 
population-adjusted indirect comparisons in submission to NICE, in Report by 
the Decision Support Unit, A. Wailoo, Editor. 2016: Available from 
http://www.nicedsu.org.uk  

13. Abrams, K., et al., Propensity Weighting and Extrapolation in Non Small Cell 
Lung Cancer. Work Package 1, IMI GetReal  

http://www.nicedsu.org.uk/
https://www.nice.org.uk/guidance/ta498/documents/html-content-2
https://www.nice.org.uk/guidance/ta517/documents/html-content-2
https://www.nice.org.uk/guidance/ta478/documents/html-content-2
https://www.nice.org.uk/guidance/ta463/documents/html-content-3
https://www.nice.org.uk/guidance/ta463/documents/html-content-3
https://www.nice.org.uk/guidance/ta483/documents/appraisal-consultation-document-2
https://www.nice.org.uk/guidance/ta483/documents/appraisal-consultation-document-2
http://www.nicedsu.org.uk/


   

 

95 

 

2016: https://www.imi-
getreal.eu/Portals/1/Documents/01%20deliverables/Deliverable%201.5%20an
d%201.6%20Combined%20Report%20-%20NSCLC_webversion.pdf. 

14. Bell Gorrod, H., et al., A Review of Survival Analysis Methods Used in NICE 
Technology Appraisals of Cancer Treatments: Consistency, Limitations, and 
Areas for Improvement. Medical Decision Making, 2019. 39(8): p. 899-909. 

15. Royston, P. and M.K. Parmar, Flexible parametric proportional-hazards and 
proportional-odds models for censored survival data, with application to 
prognostic modelling and estimation of treatment effects. Stat Med, 2002. 
21(15): p. 2175-97. 

16. Rutherford, M.J., M.J. Crowther, and P.C. Lambert, The use of restricted cubic 
splines to approximate complex hazard functions in the analysis of time-to-
event data: a simulation study. Journal of Statistical Computation and 
Simulation, 2015. 85(4): p. 777-793. 

17. Bower, H., et al., Capturing simple and complex time-dependent effects using 
flexible parametric survival models: A simulation study. Communications in 
Statistics - Simulation and Computation, 2019: p. 1-17. 

18. Syriopoulou, E., Mozumder, S.I., Rutherford, M.J., Lambert, P.C., Robustness 
of individual and marginal model-based estimates: A sensitivity analysis of 
flexible parametric models. Cancer Epidemiology, 2019. 58: p. 17-24. 

19. Royston, P., Lambert, P.C., Flexible parametric survival analysis in Stata: 
Beyond the Cox model Stata Press, 2011. 

20. Andersson, T.M.-L., et al., Estimating the loss in expectation of life due to 
cancer using flexible parametric survival models. Statistics in Medicine, 2013. 
32(30): p. 5286-5300. 

21. Liu, X.R., Pawitan, Y., Clements, M., Parametric and penalized generalized 
survival models 

Statistical Methods in Medical Research, 2018. 27(5): p. 1531-1546. 
22. Demiris, N., D. Lunn, and L.D. Sharples, Survival extrapolation using the poly-

Weibull model. Statistical Methods in Medical Research, 2011. 24(2): p. 287-
301. 

23. Demiris, N., D. Lunn, and L.D. Sharples, Survival extrapolation using the poly-
Weibull model. Statistical methods in medical research, 2015. 24(2): p. 287-
301. 

24. Farewell, V.T., Mixture Models in Survival Analysis: Are They Worth the Risk? 
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 
1986. 14(3): p. 257-262. 

25. McLachlan, G.J., S.X. Lee, and S.I. Rathnayake, Finite Mixture Models. Annual 
Review of Statistics and Its Application, 2019. 6(1): p. 355-378. 

26. Eisenhauer, E.A., Therasse, P., Bogaerts, J., Schwartz, L.H., Sargent, D., Ford, 
R., Dancey, J., Arbuck, S., Gwyther, S., Mooneym M., Rubinstein, L., Shankar, 
L., Dodd, L., Kaplan, R., Lacombe, D., Verweij, J., New response evaluation 
criteria in solid tumours: revised RECIST guideline (version 1.1). European 
Journal of Cancer, 2009. 45(2): p. 228-247. 

27. Anderson, J.R., K.C. Cain, and R.D. Gelber, Analysis of survival by tumor 
response. Journal of Clinical Oncology, 1983. 1(11): p. 710-719. 

28. Dafni, U., Landmark analysis at the 25-year landmark point. Circ Cardiovasc 
Qual Outcomes, 2011. 4(3): p. 363-71. 

29. National Institute for Health and Care Excellence (NICE). Everolimus with 
exemestane for treating advanced breast cancer after endocrine therapy. NICE 

https://www.imi-getreal.eu/Portals/1/Documents/01%20deliverables/Deliverable%201.5%20and%201.6%20Combined%20Report%20-%20NSCLC_webversion.pdf
https://www.imi-getreal.eu/Portals/1/Documents/01%20deliverables/Deliverable%201.5%20and%201.6%20Combined%20Report%20-%20NSCLC_webversion.pdf
https://www.imi-getreal.eu/Portals/1/Documents/01%20deliverables/Deliverable%201.5%20and%201.6%20Combined%20Report%20-%20NSCLC_webversion.pdf


   

 

96 

 

Guidance TA421 2016  Available at: 
https://www.nice.org.uk/guidance/ta421/documents/html-content-3]. 

30. Casellas, J., Bayesian inference in a piecewise Weibull proportional hazards 
model with unknown change points. Journal of Animal Breeding and Genetics, 
2007. 124(4): p. 176-184. 

31. Coelho-Barros, E.A., et al., Bayesian Inference For The Segmented Weibull 
Distribution. 2019, 2019. 42(2): p. 19. 

32. Friedman, M., Piecewise Exponential Models for Survival Data with Covariates. 
Ann. Statist., 1982. 10(1): p. 101-113. 

33. Gelber, R.D., A. Goldhirsch, and B.F. Cole, Parametric extrapolation of survival 
estimates with applications to quality of life evaluation of treatments. Controlled 
Clinical Trials, 1993. 14(6): p. 485-499. 

34. National Institute for Health and Care Excellence (NICE). Nivolumab for treating 
squamous cell carcinoma of the head and neck after platinum-based 
chemotherapy. NICE Guidance TA490 2017  Available at: 
https://www.nice.org.uk/guidance/ta490/documents/html-content-2]. 

35. National Institute for Health and Care Excellence (NICE). Abiraterone for 
treating metastatic hormone-relapsed prostate cancer before chemotherapy is 
indicated. NICE Guidance TA387 2016  Available at: 
https://www.nice.org.uk/guidance/ta387/documents/html-content-2]. 

36. Gong, Q. and L. Fang, Asymptotic properties of mean survival estimate based 
on the Kaplan–Meier curve with an extrapolated tail. Pharmaceutical Statistics, 
2012. 11(2): p. 135-140. 

37. Bagust, A., Beale, S., Survival analysis and extrapolation modeling of time-to-
event clinical trial data for economic evaluation: an alternative approach. 
Medical Decision Making, 2014. 34(3): p. 343-51. 

38. National Institute for Health and Care Excellence (NICE). Cabazitaxel for 
hormone-relapsed metastatic prostate cancer treated with docetaxel. NICE 
Guideline TA391 2016  Available at: 
https://www.nice.org.uk/guidance/ta391/documents/html-content-2]. 

39. National Institute for Health and Care Excellence (NICE). Pembrolizumab for 
treating locally advanced or metastatic urothelial carcinoma after platinum-
containing chemotherapy. NICE Guidance TA519 2018  Available at: 
https://www.nice.org.uk/guidance/ta519/documents/html-content-2]. 

40. Davies, A., Briggs, A., Schneider, J. , The ends justify the mean: outcome 
measures for estimating the value of new cancer therapies. Health Outcomes 
Research in Medicine, 2012. 3: p. e25–236. 

41. National Institute for Health and Care Excellence (NICE). Ipilimumab for 
previously treated advanced (unresectable or metastatic) melanoma. NICE 
Guidance TA268 2012  Available at: 
https://www.nice.org.uk/guidance/ta268/documents/melanoma-stage-iii-or-iv-
ipilimumab-final-appraisal-determination]. 

42. Boag, J.W., Maximum Likelihood Estimates of the Proportion of Patients Cured 
by Cancer Therapy. Journal of the Royal Statistical Society: Series B 
(Methodological), 1949. 11(1): p. 15-44. 

43. Sposto, R., Cure model analysis in cancer: an application to data from the 
Children's Cancer Group. Stat Med, 2002. 21(2): p. 293-312. 

44. Andersson, T.M.L., et al., Estimating and modelling cure in population-based 
cancer studies within the framework of flexible parametric survival models. 
BMC Medical Research Methodology, 2011. 11(1): p. 96. 

https://www.nice.org.uk/guidance/ta421/documents/html-content-3
https://www.nice.org.uk/guidance/ta490/documents/html-content-2
https://www.nice.org.uk/guidance/ta387/documents/html-content-2
https://www.nice.org.uk/guidance/ta391/documents/html-content-2
https://www.nice.org.uk/guidance/ta519/documents/html-content-2
https://www.nice.org.uk/guidance/ta268/documents/melanoma-stage-iii-or-iv-ipilimumab-final-appraisal-determination
https://www.nice.org.uk/guidance/ta268/documents/melanoma-stage-iii-or-iv-ipilimumab-final-appraisal-determination


   

 

97 

 

45. Yu, X.Q., De Angelis, R., Andersson, T.M., Lambert, P.C., O'Connell, D.L., 
Dickman, P.W., Estimating the proportion cured of cancer: Some practical 
advice for users. Cancer Epidemiology, 2013. 37(6): p. 836-842. 

46. Dickman, P.W., and Adami, H‐O., Interpreting trends in cancer patient survival. 
Journal of International Medicine, 2006. 260(2): p. 103-117. 

47. Morris, D.E., J.E. Oakley, and J.A. Crowe, A web-based tool for eliciting 
probability distributions from experts. Environmental Modelling & Software, 
2014. 52: p. 1-4. 

48. Spiegelhalter, D.J., K.R. Abrams, and J.P. Myles, Bayesian Approaches to 
Clinical Trials and Health‐Care Evaluation. Vol. DOI:10.1002/0470092602 
2004: Wiley. 

49. Baio, G., survHE: Survival analysis for health economic evaluation and cost-
effectiveness modelling. . Journal of Statistical Software, 2020(In Press). 

50. Soares, M.O., et al., Experiences of Structured Elicitation for Model-Based 
Cost-Effectiveness Analyses. Value in Health, 2018. 21(6): p. 715-723. 

51. Brard, C., et al., Bayesian survival analysis in clinical trials: What methods are 
used in practice? Clinical Trials, 2016. 14(1): p. 78-87. 

52. Grigore, B., et al., Methods to Elicit Probability Distributions from Experts: A 
Systematic Review of Reported Practice in Health Technology Assessment. 
PharmacoEconomics, 2013. 31(11): p. 991-1003. 

53. Guyot, P., et al., Extrapolation of Survival Curves from Cancer Trials Using 
External Information. Med Decis Making, 2017. 37(4): p. 353-366. 

54. Soikkeli, F., et al., Extrapolating Survival Data Using Historical Trial-Based a 
Priori Distributions. Value Health, 2019. 22(9): p. 1012-1017. 

55. Ibrahim, J., Chen, M., Sinha, D.,, Bayesian Survival Analysis. 2001, 
https://doi.org/10.1007/978-1-4757-3447-8: Springer, New York, NY. 

56. Singpurwalla, N.D., Song, M.S.,, The Analysis of Weibull Lifetime Data 
Incorporating Expert Opinion. In:, in Probability and Bayesian Statistics. , V. R., 
Editor. 1987, Springer, Boston, MA  

57. Cope, S., et al., Integrating expert opinion with clinical trial data to extrapolate 
long-term survival: a case study of CAR-T therapy for children and young adults 
with relapsed or refractory acute lymphoblastic leukemia. BMC Medical 
Research Methodology, 2019. 19(1): p. 182. 

58. Walsh, D.P., et al., Using expert knowledge to incorporate uncertainty in cause-
of-death assignments for modeling of cause-specific mortality. Ecology and 
Evolution, 2018. 8(1): p. 509-520. 

59. Jackson, C., Stevens J., Ren, S., Latime,r N., Bojke, L., Manca, A., Sharples, 
L., Extrapolating survival from randomized trials using external data: A review 
of methods. Medical Decision Making 2017. 37(4): p. 377-390. . 

60. Morris, T.P., I.R. White, and M.J. Crowther, Using simulation studies to evaluate 
statistical methods. Stat Med, 2019. 38(11): p. 2074-2102. 

61. Hougaard, P., Frailty models for survival data. Lifetime Data Analysis, 1995. 
1(3): p. 255-273. 

62. Crowther, M.J. and P.C. Lambert, Simulating complex survival data. Stata 
Journal, 2012. 12(4): p. 674-687. 

63. Latimer, N. and K. Abrams, NICE DSU Technical Support Document 16: 
Adjusting survival time estimates in the presence of treatment switching, in 
Report by the Decision Support Unit, A. Wailoo, Editor. 2014: Available from 
http://www.nicedsu.org.uk  

 

https://doi.org/10.1007/978-1-4757-3447-8
http://www.nicedsu.org.uk/

