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Executive summary

Health technology assessment (HTA) agencies such as the National Institute for Health and
Care Excellence (NICE) require evidence synthesis of existing studies to inform their decisions, for
example about the best available treatments with respect to multiple efficacy and safety outcomes.
However, relevant studies may not provide direct evidence about all the treatments or outcomes
of interest. Studies that do not provide direct evidence about a particular outcome or treatment
of interest are often excluded from a meta-analysis evaluating that outcome or treatment. This is
unwelcome, especially if their participants are otherwise representative of the population, clinical
settings and condition of interest. Research studies require considerable costs and time, and involve
precious patient participation, and simply discarding them could be viewed as research waste. Sta-
tistical models for multivariate and network meta-analysis address this by simultaneously analysing
multiple outcomes and multiple treatments, respectively. This allows more studies to contribute
toward each outcome and treatment comparison.

This Technical Support Document (TSD) describes the key methods of multivariate meta-
analysis and their extensions to network meta-analysis of multiple outcomes. We focus on the
use of multivariate meta-analytic methods for combining data from multiple correlated outcomes
with the aim of including all relevant evidence and borrowing of information across outcomes,
in particular when not all of the relevant studies report an outcome of interest. We also devote
considerable attention to the use of multivariate meta-analysis for the purpose of surrogate endpoint
evaluation.

Surrogate endpoints (such as, for example, progression free survival as an early marker of overall
survival in cancer) play an increasingly important role in the drug development process as new
health technologies are increasingly being licensed by the regulatory agencies, such as European
Medicines Agency (EMA) in Europe or Food and Drug Administration (FDA) in the US, based
on evidence obtained by measuring effectiveness on a surrogate marker. When data on the final
clinical outcome are not available or limited at the licensing stage, and therefore also for the HTA
decision-making process, a modelling framework is required to establish the strength of the surrogate
relationship between the treatment effects on the surrogate and the final outcome and to predict
the likely treatment effect on the final outcome for the new health technology. Multivariate meta-
analytic methods provide such a framework as they, by definition, take into account the correlation
between the treatment effects on the surrogate and final outcomes as well as the uncertainty related
to all parameters describing the surrogate relationship.

We describe and apply the methods in the Bayesian framework of estimation and provide
WinBUGS code for a Bayesian analysis using Markov chain Monte Carlo (MCMC) simulation.
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1 Introduction

Evidence-based decision making requires careful synthesis of available evidence. When assessing
new health technologies to, for example, make reimbursement decisions, the health technology
assessment (HTA) process relies heavily on meta-analysis of effectiveness of new interventions. The
evidence base is typically obtained from a systematic literature review of randomised controlled
trials (RCTs) and sometimes real world evidence (RWE) such as from observational studies. There
is often a lot of heterogeneity in reporting of clinical outcomes due to, for example, variety of scales
on which effectiveness can be measured, different time points at which different studies report
their outcomes, different outcome definitions, selective outcome reporting or disagreement about
core outcomes. In addition to this, for some endpoints long follow up time is required before
measurement of the treatment effect can be made and surrogate endpoints are reported by RCTs
instead. These issues lead to obvious challenges in HTA decision making by limiting the evidence
base when estimating parameters required in a decision modelling framework.

Bayesian statistics provides a flexible framework for modelling complex data structures by
allowing multiple parameters to be modelled simultaneously. Network meta-analysis (NMA) facil-
itates simultaneous comparison of multiple treatment options whereas multivariate meta-analysis
(MVMA) allows to jointly model treatment effects on multiple correlated outcomes. Whilst NMA
has already become a standard tool for synthesising evidence in HTA, MVMA of multiple out-
comes is gradually being introduced due to substantial methodological developments in this area
in recent years [1, 2, 3, 4, 5, 6]. The uptake of this methodology has also increased due to many
advantages and applications of this approach to evidence synthesis which includes evaluation of
surrogate endpoints [7, 8, 9, 10, 11, 12, 13].

As discussed by Riley et al. [14], many clinical outcomes are correlated with each other, such as
a hypertensive patient’s systolic and diastolic blood pressure, level of pain and nausea in patients
experiencing migraine, and a cancer patient’s disease-free and overall survival times. Such correla-
tion at the individual level will lead to correlation between effects at the population (study) level.
For example, in a randomised trial of anti-hypertensive treatment, the estimated treatment effects
for systolic and diastolic blood pressure are likely to be highly correlated. Similarly, in a cancer
cohort study the estimated prognostic effects of a biomarker are likely to be highly correlated for
disease-free survival and overall survival. Correlated effects also arise in many other situations,
for example when there are multiple time-points (longitudinal data) [15]; multiple biomarkers and
genetic factors that are interrelated [16]; multiple effect obtained from analyses using overlapping
sets of covariates [17]; multiple measures of accuracy or performance (e.g. in regard to a diagnostic
test or prediction model) [18], and multiple measures of the same construct (e.g. scores from dif-
ferent pain scoring scales, or biomarker values from different laboratory measurement techniques
[19]). We broadly refer to these as multiple correlated outcomes.

Multivariate meta-analytic methods have a number of advantages [1]. They provide a natural
framework for extending the evidence base to a larger number of studies (compared to the scenario
where only a single outcome is analysed at a time). This can potentially lead to increased precision
of the estimate of pooled effect on the outcome of interest [1, 5], in particular when the number
of studies in the meta-analysis is small or there are missing data on an outcome of interest in a
proportion of studies identified through a systematic review of literature. We discuss these issues
in more detail in Section 4.4. Whether or not use of multivariate meta-analysis will result in more
precise estimates, inclusion of evidence on other outcomes has other benefits.

In practice, when multiple outcomes are reported, they often are synthesised separately; that
is, researchers conduct a standard univariate meta-analysis for each outcome separately. A conse-
quence is that studies that do not provide direct evidence about a particular outcome are excluded
from the meta-analysis of that outcome. This may be unwelcome, especially if their participants
are otherwise representative of the population, clinical settings and condition of interest. Research
studies require considerable costs and time, and entail precious participant involvement, and simply
discarding them could be viewed as research waste if they still contain other outcomes that are
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correlated with (and thus contain indirect information about) the outcome of interest. Statistical
models for multivariate meta-analysis address this by simultaneously analysing multiple outcomes
and accounting for their within-study and between-studies correlations. This allows more studies
to contribute toward the meta-analysis for each outcome, which may improve efficiency and even
decrease bias (e.g. due to selective outcome reporting [20]) in the summary estimates compared to
separate univariate meta-analyses. Specifically, in addition to using direct evidence, the summary
result for each outcome now depends on correlated results from related outcomes. The rationale is
that by observing the related outcomes we learn something about the missing outcomes of interest,
and thus gain some information that is otherwise lost.

One of the applications of multivariate meta-analysis, beyond synthesising evidence for purpose
of obtaining pooled effects, is to model relationships between treatment effects on surrogate end-
points. Where lack of data on an outcome of interest presents an issue with populating a decision
model, this problem may be ameliorated by predicting the treatment effect on this endpoint from
another outcome (treated as a surrogate endpoint to the final outcome of interest). In a similar
spirit, disease-specific measures of treatment effect on health related quality of life (HRQoL) may
be synthesized jointly with treatment effects reported on a common scale of HRQoL, to make pre-
dictions if such outcome is unreported for an intervention under consideration but is desirable in
a decision-making context. In the context of HRQoL, multivariate meta-analysis has been used,
for example, to synthesize jointly multiple instrument-specific preference-based values in coronary
heart disease and the underlying disease-subgroups, stable angina and post-acute coronary syn-
drome [21].

When multiple clinical endpoints are included in an economic model, the multivariate meta-
analysis accounting for the correlation between these endpoints will be important for two reasons:
(1) it will change the point estimate of the inceremental cost-effectiveness ratio (ICER) if the model
includes a non-linear function of the two endpoints (these ICERs will in fact be biased unless the
correlation is reflected); and (2) it will change the estimates of decision uncertainty generated by the
the models i.e. probabilities that interventions are cost-effective or value of information estimates.
Taking account of the correlation between multiple endpoints could, therefore, have important
implications for decision making, as many models utilise two or more decision endpoints (e.g. PFS
and OS in cancer models).

In the remainder of this introduction, we discuss in more detail a number of scenarios where
the methodology proofs to be useful. Before we do so, we also highlight some advantages of the
Bayesian framework of implementing these methods, which this TSD is focussed on.

1.1 Bayesian approaches to multivariate meta-analysis

As mentioned above, one of the advantages of integrating data on multiple outcomes through a
multivariate approach is that of borrowing of strength across outcomes, which can potentially lead
to reduced uncertainty around the resulting effectiveness estimates. In a Bayesian framework, a
wide range of sources of evidence can be integrated, which is an important factor in evidence-based
medicine [22, 23, 24]. For example, additional data (external data from observational studies,
clinical trials or systematic reviews) or experts’ opinions can be incorporated in the form of prior
distributions, which can further inform a multivariate meta-analysis model. The use of external
data can potentially lead to a further reduction of uncertainty around the estimates. A Bayesian
approach to the analysis also allows for making direct probabilistic statements about the parameters
of interest, such as, for example, the probability of a hazard ratio being less than 1 (probability that
a new treatment reduces risk of death or progression compared to a control treatment arm). Such
direct probability statements are conditional on the model and on the chosen prior distributions.
Multivariate meta-analytic methods in the Bayesian framework are particularly useful in the HTA
context due to their flexibility in modelling uncertainty around all relevant parameters. Such
methods have been well developed [3, 5, 6] in a number of application areas, including surrogate
endpoints [8, 11, 12, 13].
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1.2 Examples of multivariate meta-analysis used in the context of NICE

MRMA is often used to obtain pooled treatment effects on two or more correlated outcomes when
the number of studies reporting an outcome of interest is limited but additional data are available
from studies reporting alternative, correlated endpoints. For example, bivariate meta-analysis has
been used in a technology appraisal of continuous positive airway pressure devices for the treatment
of obstructive sleep apnoea—hypopnoea syndrome [25, 26] conducted by the National Institute for
Health and Care Excellence (NICE). In this appraisal, a range of endpoints were considered when
evaluating the clinical effectiveness. The endpoints included Epworth Sleepiness Scale (ESS) and
ambulatory blood pressure monitoring (ABPM). However, only a subset of studies, identified by a
systematic literature review, reported ABPM. Modelling the two endpoints jointly in a bivariate
meta-analysis allowed the analysts to include all of the studies in the meta-analysis. In this case
results were not dramatically different from those obtained using conventional univariate meta-
analysis, however such analysis is still valuable as it provides a sensitivity analysis for potential
impact of outcome reporting bias. That is, by borrowing information from correlated outcomes
that are reported, the meta-analyst can reduce the impact of unreported outcomes, and see if
conclusions are robust.

Bivariate approach to meta-analysis was also used in another NICE technology appraisal of
tumour necrosis factor-α inhibitors for ankylosing spondylitis and non-radiographic axial spondy-
loarthritis [27, 28]. A decision model was developed with a generalised framework for evidence
synthesis that pooled change in disease activity, measured by Bath Ankylosing Spondylitis Dis-
ease Activity Index (BASDAI), and simultaneously synthesised information on function, measured
by Bath Ankylosing Spondylitis Functional Index (BASFI) to determine the long-term quality-
adjusted life-year and cost burden of the disease in the economic model. In this work, BASFI and
BASDAI were synthesised jointly (using the bivariate meta-analytic approach) in order to generate
appropriate effect-size estimates and their associated uncertainty to inform the main input param-
eters of the economic model. In the decision model, prognosis, costs and QALYs were determined
by absolute BASDAI and BASFI scores. Correlation between treatment effects on these two end-
points was important for the cost-effectiveness model that relied heavily on these two measures.
Extending the synthesis modelling to consider BASFI scores not only allowed all relevant evidence
to contribute to the synthesis but also ensured that all measures were synthesised together to re-
flect the expected correlations between the effects on the two outcomes. Uncertainty was also more
appropriately quantified compared to synthesising each outcome separately.

When not all relevant estimates are available from the relevant clinical studies, not only may
data from some studies have to be discarded but also the health economic model may have to be
simplified. Multi-parameter evidence synthesis can be used to combine data from diverse sources
of evidence, which results in obtaining estimates, required in HTA decision making, that otherwise
may not be available. For example, Tan et al. [29] demonstrated how bivariate meta-analysis
can be used to predict an unreported estimate of a treatment effect enabling implementation of a
multi-state Markov model, which otherwise needed to be simplified. To illustrate this, the authors
used an example of cost-effectiveness analysis for docetaxel in combination with prednisolone in
metastatic hormone-refractory prostate cancer. Bivariate meta-analysis was used to model jointly
available data on treatment effects on overall survival and PFS to predict the unreported effect on
PFS in a study evaluating docetaxel with prednisolone. The predicted treatment effect on PFS
enabled implementation of a three-state Markov model comprising of stable disease, progressive
disease and dead states, whilst lack of the estimate restricted the model to a two-state model (with
alive and dead states). The two-state and three-state models were compared by calculating the
incremental cost-effectiveness ratio (which was much lower in the three-state model: £22,148 per
QALY gained compared to £30,026 obtained from the two-state model) and the expected value of
perfect information (which increased with the three-state model). The three-state model has the
advantage of distinguishing surviving patients who progressed from those who did not progress.
Hence, the use of advanced meta-analytic techniques allowed obtaining relevant parameter estimates
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to populate a model describing disease pathway more appropriately, whilst helping to prevent
valuable clinical data from being discarded.

1.3 Use of multivariate meta-analysis for surrogate endpoint evaluation

One of the most useful applications of bivariate and multivariate meta-analysis include the evalua-
tion of surrogate endpoints [7, 8, 9, 10, 11, 12, 13]. Surrogate endpoints have become an important
part of HTA and regulatory decision making [30, 31]. Bivariate meta-analysis can be used to
model treatment effects on surrogate and final outcomes jointly, with the advantage of obtaining
the estimates of clinical effectiveness early. When the treatment effect of a new intervention under
consideration is not yet reported on the final clinical outcome, licensing of the treatment can be
agreed conditional on a surrogate endpoint. When making such conditional licensing decisions,
a bivariate meta-analysis can be used to predict a likely treatment effect on the final outcome
from the treatment effect measured on the surrogate endpoint. Such yet unmeasured (or for other
reasons unreported) effect predicted from the effect measured on the surrogate endpoint (or from
other highly correlated effect) can inform a health economic model, which otherwise may have to
be simplified in a way that compromises its usefulness and external validity [29].

1.3.1 Surrogate endpoints in regulatory decision making and HTA

Regulatory agencies such as the European Medicines Agency (EMA) and the Food and Drug Ad-
ministration (FDA) in the US have introduced flexible licensing pathways, for example by allowing
conditional licensing based on treatment effect measured on a surrogate endpoint [32, 33]. The
effectiveness measured on the final outcome is obtained when data become more mature and the
drug is then re-evaluated. For example, between Jan 2008 and Dec 2012, FDA made 36 of 54
cancer drug approvals (67%) on the basis of a surrogate endpoint: 19 based on response rate and
17 based on PFS or disease free survival [34]. Conditional licensing often takes place, for exam-
ple, for orphan medicines (used against rare, life-threatening or chronically debilitating conditions)
where the number of patients in trials is likely to be small leading to uncertainty around early
measurement of treatment effect. For example olaratumab (Lartruvo), used in patients with ad-
vanced soft tissue sarcoma, was granted a conditional marketing authorisation by the EMA, based
on early evidence of benefits of the treatment measured on progression-free survival (PSF) and
some evidence of increased overall survival (OS) time. Due to small number of patients in the
study, this licensing decision was conditional on data collected from an ongoing study confirming
the efficacy and safety of the medicine [35]. There are many other examples of accelerated approval
made by regulatory bodies based on a surrogate or early measurement. FDA, for example, granted
accelerated approval of bevacizumab (Avastin) for use in combination with paclitaxel as the first
line treatment of patients with metastatic HER2-negative breast cancer. The decision was based
on early measurement of the treatment effect on PFS, conditional on verification of the treatment
effect on PFS and additional information on the effects on OS. This decision was subsequently
withdrawn as the clinical trials failed to show sufficient benefit and there were substantial adverse
reactions observed in patients [36].

Although the use of surrogate endpoints in the regulatory processes speeds up the licensing of
new health technologies, the new therapies then go through another scrutiny at the HTA stage. The
reimbursement decisions conducted by the HTA agencies, such as NICE and the Scottish Medicines
Consortium (SMC) in the UK, are typically made based on estimates of cost-effectiveness of new
health technologies. To obtain such estimates, the long term estimates of effectiveness are required,
amongst many parameters including costs and utilities, to populate a health economic decision
model. When new therapies are licensed based on surrogate endpoints, the long term estimates
are not available until more mature data are available for reassessment. To expedite access of new
therapies to patients, technology appraisals need to be based on an estimate of the effect of the
therapy measured on the surrogate endpoint. For example, a NICE technology appraisal committee
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has approved venetoclax in combination with rituximab for treating relapsed or refractory chronic
lymphocytic leukaemia using an estimate of the treatment effects on PFS [37]. This was made on
the basis that treatment effect on PFS was deemed a surrogate for the effects on OS.

HTA agencies, however, are cautious about the use of surrogate outcome data and highlight
the importance of an appropriate use of such endpoints in their guidelines. This is particularly
reflected in the guidelines published by the European Network for Health Technology Assessment
(EUnetHTA) [38] as well as NICE’s current guidance on methods for manufacturers [39]. The
guidelines recommend that HTA analysts and decision-makers should be cautious about using
surrogate endpoints and use them only if they have been appropriately validated. The additional
uncertainty associated with using surrogate endpoints to predict cost-effectiveness should also be
fully explored.

NICE guidelines (section 4.4.3) highlight the importance of identifying appropriate outcome and
surrogate outcome measures. Modelling methods (as discussed in section 5.7 of the NICE guide-
lines) provide “an important framework for synthesising available evidence and generating estimates
of clinical and cost effectiveness in a format relevant to the Appraisal Committee’s decision-making
process. Models are required for most technology appraisals”. The guidelines list a number of sit-
uations when modelling is likely to be required. With regards to endpoints, the guidelines state
that “When the use of “final” clinical end points is not possible and “surrogate” data on other
outcomes are used to infer the effect of treatment on mortality and health-related quality of life, ev-
idence in support of the surrogate-to-final end point outcome relationship must be provided together
with an explanation of how the relationship is quantified for use in modelling. The usefulness of
the surrogate end point for estimating QALYs will be greatest when there is strong evidence that it
predicts health-related quality of life and/or survival. In all cases, the uncertainty associated with
the relationship between the end point and health-related quality of life or survival should be explored
and quantified”.

Bivariate meta-analytic methods are needed to evaluate the surrogate-to-final relationships
because these methods by nature take into account not only the correlation between these outcomes
(or between the treatment effects measured on these outcomes) but also all related uncertainty
required in decision modelling as stated by the guidelines. Without taking the correlation into
account (either directly or through some functional relationship between the correlated effects),
it is not possible to quantify the surrogate relationship. Other methods, such as linear or meta
regression do not take into account all relevant uncertainty (for example ignore the uncertainty
associated with the treatment effect on the surrogate endpoint) whilst the bivariate meta-analysis
appropriately accounts for all relevant uncertainty, both within and between studies [12].

1.4 Implementation

In this TSD, we present a number of examples to demonstrate how to fit the models and interpret the
results. All models were implemented in WinBUGS [40], where the estimates were obtained using
Markov chain Monte Carlo (MCMC) simulation. Convergence was checked by visually assessing the
history, chains and autocorrelation using graphical tools in WinBUGS. All posterior estimates are
presented as means with standard deviations and 95% credible intervals (CrIs). Issues related to
MCMC and use of WinBUGS are discussed in a TSD by Dias et al. [41]. Some methods presented
in this TSD also make use of R, in particular where multiple runs of a model is recommended
(when, for example, validating surrogate endpoints). We then also use R2WinBUGS.

1.5 Structure of the TSD and the level of required expertise

In the remainder of this TSD, we discuss the methods of multivariate meta-analysis in the order
of increased complexity. We begin with the use of bivariate meta-analysis in Section 2 where we
discuss methodological aspects of the method including those specific to the Bayesian approach
and present application of the method to an example in rheumatoid arthritis. We then expand

15



on the use of bivariate meta-analysis in Section 3, where we discuss its application to modelling
surrogate endpoints. We provide guidance on how to evaluate surrogate endpoints as predictors
of clinical benefit. The methods we include are for modelling surrogate relationships between
the treatment effects on two outcomes (a surrogate endpoint and a final clinical outcome) at the
study level using aggregate data. We give an example of use of the methods in multiple sclerosis. In
Section 4, we extend the methods to the multivariate meta-analysis of treatment effects on multiple
outcomes beyond bivariate case and demonstrate the use of the methods on the extended example
in rheumatoid arthritis. We also include a discussion on use of this methodology for evaluating
multiple surrogate endpoints as joint predictors of clinical benefit. Finally, in Section 5 we show
how the multivariate meta-analytic methods extend to multivariate network meta-analysis and
demonstrate the use of the method in an example in multiple sclerosis.

All methods are demonstrated by applying them to the illustrative examples. The purpose of
the examples is three-fold (i) to show how to implement the methods, (ii) to show how to interpret
the results, and (iii) to show how the results of using multivariate approach differ from simpler
univariate methods. We provide the code for the methods in the appendices which also contain
data to allow the reader to reproduce the results included in the TSD. The only exception is for a
method of analysis of individual level data described in Section 2.4.4 where, due to lack of sharing
permission (as well as space in the manuscript), we only show the structure of the data (but this
should be sufficient for the reader to be able to apply the method to their own data).

The complexity of the methods is relatively high, in particular in the later chapters. We are
aware that many analysts, both in academia and industry have high level technical competence to
understand the technical details and they may appreciate this level of detail. Having said that,
analysts of less expertise in terms of mathematical description of methods will still be able to use
the TSD. In particular analyst who are comfortable using the previous TSDs in evidence synthesis
(in particular TSD 2 [41]) and running WinBUGS programmes included in them should have no
difficulty reproducing analyses presented in this TSD and adapting the methods to their own data.
For those readers with less background knowledge in statistics, we recommend skimming through
the formulae (but still reading through the sections to understand the differences between the
alternative models and corresponding assumptions) and focusing their attention on the examples.
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2 Bivariate random-effects meta-analysis (BRMA)

In this Section, we introduce the bivariate random-effect meta-analysis (BRMA) model beginning
with the technical description of the model, a discussion of the components of the model and the
availability of data required to populate the model. We discuss in detail two alternative para-
meterisations of the method and apply them to an example in rheumatoid arthritis. In the final
part of this section we demonstrate extended analysis based on this example, this time including
additional external data in the form of a prior distribution, illustrating advantages of the Bayesian
framework.

2.1 BRMA in a Bayesian framework with considerations of appropriate prior
distributions

The BRMA model for correlated and normally distributed treatment effects on two outcomes Y1i

and Y2i is usually presented in the form described by van Houwelingen et al. [2] and Riley et al.
[4]: (
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In this model, the treatment effects on the two endpoints Y1i and Y2i are assumed to estimate
the correlated true effects δ1i and δ2i with corresponding within-study variances σ2

1i and σ2
2i of the

estimates and the within-study correlation ρwi between them in each study i. In this hierarchical
framework, these true study-level effects are assumed exchangeable. This means that all δ1i and
δ2i are “similar” in a way which assumes that the trial labels, i, attached to these treatment effects
are irrelevant [41]. Since they are exchangeable and correlated, they follow a common bivariate
normal distribution with means (d1, d2) corresponding to the treatment effects on the two outcomes,
between-studies variances τ2

1 and τ2
2 and a between-studies correlation ρ. Equation (1) represents

the within-study model and (2) is the between-studies model. The true effects δ1i and δ2i are
Bayesian “shrunken” estimates, in which inference for the treatment effect in each particular study
is performed by borrowing strength from the other studies [42]. In the multivariate meta-analysis
this inference is performed by also borrowing strength from the other outcomes.

2.1.1 Within-study covariance

Within-study correlation between treatment effects on two (or multiple) outcomes occurs be-
cause these effects are measured on the same patients. When modelling correlated effects in
the multivariate-meta-analysis, the correlation needs to be properly accounted for. Ignoring the
within-study correlation may lead to increased uncertainty around the estimated pooled effects and
potentially biased results [43].

In the above model, the elements of the within-study covariance matrix Σi are assumed to be
known. Whilst the estimates of the within-study variances are usually obtainable from published
studies as the squares of the standard errors of the treatment effects for each outcome, the estimates
of the within-study correlations between the treatment effects on the two outcomes are more difficult
to obtain as they would not be reported in the original articles. When individual participant data
(IPD) are available, the correlation can be obtained by bootstrapping [8] or alternatively by fitting
a regression model for the two outcomes with correlated errors [44]. For continuous outcomes,
the latter approach is relatively straightforward (we include an example of modelling IPD for two
outcomes with correlated errors in Section 2.4). However, when dealing with other types of data,
such as binary or time to event data, such analysis becomes more complex and bootstrapping
technique may be preferable. Bootstrapping involves generating multiple data sets by sampling
with replacement from the data the same number of observations as in the data set. Note that
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we sample pairs of data for the bivariate case or triplets for the meta-analysis of treatment effects
on three outcomes and so on, to preserve the correlation structure. Having simulated a number of
data sets (perhaps a 1000 data sets), in each data set we calculate treatment effect on each outcome
on the same scale as is used in the meta-analysis (the scale of Yij), for example log odds ratios for
binary outcomes. This way we will obtain 1000 pairs (for the bivariate case, or triplets for trivariate
analysis) of log odds ratios from each bootstrap sample. Having obtained 1000 log odds ratios on
one outcome and 1000 log odds ratios on the second outcome, we can now calculate the correlation
between them. This is an estimate of the within-study correlation between the treatment effects
on the two outcomes. This is not possible to achieve simply by analysing the data as only a single
pair of log odds ratios can be obtained from a single data set, making it impossible to calculate the
correlation. Similarly, bootstrapping can be used to obtain the within-study correlation between
treatment effects on other types of outcomes. For time to event data, a survival model, such as
Cox or Weibull regression can be used to estimate log hazard ratio on each outcome within each
bootstrap sample. These multiple pairs of log hazard ratios are then used to obtain the correlation
between them. It is also possible to carry out this procedure for mixed outcomes, for example to
obtain a correlation between log odds ratio on a binary outcome and log hazard ratio on a time to
event outcome.

Often IPD are available only from a small subset of studies or not available at all. When, for
example, IPD are available for a single study, an assumption can be made that the correlation
is the same across the studies. In the Bayesian framework, prior distributions can be placed on
the within-study correlations to account for uncertainty around the estimate. This can be useful
when the within-study correlations either are missing from all studies or are available only from
a subset of studies and prior distributions are placed on the correlations for studies that do not
provide them. Informative prior distributions for the correlations can be constructed, for example,
by double bootstrap of IPD (either from studies included in the meta-analysis, or from an external
study in a similar population). Double bootstrapping involves bootstrapping first from the data
(sampling with replacement) and then another level of bootstrapping from each bootstrap sample.
This results in a number of correlations rater than a single correlation as it is the case in a single
bootstrap. This set of correlations forms a distribution of correlation values (correlations with
uncertainty) as implemented by Bujkiewicz et al [5].

In the absence of IPD, a range of approaches can be explored to obtain missing within-study
correlation. A straightforward method is to investigate a range of values (between -1 and 1) in
a sensitivity analysis. Another approach to estimating the within-study correlation was proposed
by Wei and Higgins who derived formulae expressing the within-study correlations between the
treatment effects (such as log odds ratios) on the two outcomes in terms of, perhaps more likely
reported, correlations between other measures (such as probabilities of events on the two outcomes
for binomial data) [45]. Moreover, an alternative formulation of bivariate meta-analysis for studies
with unknown within-study correlation, proposed by Riley et al [46], can be used. It combines
covariances from both the within-study and between-studies models in a single term, which avoids
the need to specify the within-study correlations. A limitation of this later method is that this
single term cannot be interpreted as either within-study or between-studies correlation and as such
has a limited use, for example in surrogate endpoint evaluation.

2.1.2 Between-studies model parameters

To implement the model in the Bayesian framework, prior distributions are placed on the mean
effects, for example vague prior distributions with large variances d1 ∼ N(0, 104), d2 ∼ N(0, 104)
and on the between-studies variances and correlation. In the general case, for any number of
outcomes, a prior distribution has to be placed on the whole variance-covariance matrix to ensure
that it is properly defined. We discuss this in more detail in Section 4. In the bivariate case, such
as considered in this section, a proper definition can be achieved by placing prior distributions on
the variances ensuring that the variances are restricted to plausible positive values, for example
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by placing uniform prior distributions on the corresponding standard deviations τj ∼ Unif(0, 2),
and by choosing a prior distribution for the correlation which restricts it to values between −1
and +1, for example ρ ∼ Unif(−1, 1). Alternatively, a prior distribution with less weight on
the edges of the plausible range (values ±1) can be constructed, for example by using a beta
distribution: ρ+1

2 ∼ Beta(1.5, 1.5) [47, 48], which may help with estimation. When additional
information (possibly based on expert knowledge) about the between-studies correlation exists, a
weakly informative prior distribution, for example limited to positive or negative values can be used
as recommended by Burke et al [47]. Fully informative prior distribution based on, for example,
external data, as implemented by Bujkiewicz et al [5], can be constructed. This can potentially
result in additional borrowing of information both across studies (when the correlation is known
to be high) and from the external data.

2.1.3 Accounting for missing data

When summarising evidence across multiple endpoints, it is common to encounter instances where
some studies do not report information for all outcomes of interest leading to incomplete vectors
with missing study-specific effects for the outcomes not reported [5,10]. Such studies can be included
in a meta-analytic model under the assumption that the effects for outcomes not reported are
missing at random (i.e. there might be systematic differences between the missing and observed
values, but these can be entirely explained by other observed variables [49]). When implemented
using MCMC, for example in the WinBUGS software, the missing study effects and standard errors
are coded as NA in the data, a strategy previously outlined in Bujkiewicz et al. [5] and Dakin et
al. [50]. Missing values require distributions to be placed on them, which enables MCMC to
automatically “impute” values for the missing information under missing at random assumption
with predicted distributions.

Following the strategy by Bujkiewicz et all [5], defining the bivariate model, as in (1), already
provides distributions for missing values of treatment effect Yji on outcome j in study i. However,
corresponding missing standard errors σji still need to be estimated. Independent prior distributions
can be placed on the missing standard errors (or corresponding population variances). A WinBUGS
code for this approach can be found in Appendix B.4 for cross-validation procedure when using
bivariate meta-analytic methods for evaluating surrogate endpoints, described in the next chapter.

Additional borrowing of information can be achieved by assuming exchangeability of the popu-
lation variances varji = σ2

jiNi (note that the assumption of exchangeability of the variances of the

mean, σ2
ji, won’t hold as these variances depend on the study size Ni). The population variances

are assumed to come from the same distribution, for example:

varji ∼ N(0, hj)I(0, ),
hj ∼ Γ(1.0, 0.01).

(3)

By borrowing of information from the studies reporting the Yji for outcome j and the corresponding
standard errors, the variances (and hence standard errors) for studies with missing Yji are predicted
by the MCMC simulation, conditional upon both the data and the posterior estimates of the model
parameters. WinBUGS code corresponding to this model (with data for the example introduced
in section 2.3) is included in Appendix A.1.

Note that we used the total sample size Ni when calculating the population variances varji in
(3). This approach is suitable for single arm studies or comparative studies with equal allocation in
the arms. For studies with unbalanced treatment allocation, we can instead calculate population
variances in the arms, which (assuming, as in a t-test, that they are the same in both arms A and

B) are equal varji = σ2
ji/
(

1
NAi

+ 1
NBi

)
, where NAi and NBi are the numbers of individuals in arms

A and B respectively and σji is, as in the above model, the SE of the treatment difference. We
then assume that these population variances in the arms are exchangeable using the formulae (3).
This approach is illustrated in Section 3.7.4 discussing prediction of the treatment effect on the
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final outcome from the treatment effect on a surrogate endpoint in a new study, with an example
code in Appendix B.5.

An alternative is to enter an arbitrary treatment effect estimate for the missing outcome, and
give a very large variance (e.g. 1000000) and associated covariances as zero.

2.2 BRMA in the product normal formulation (PNF)

As proposed by Bujkiewicz et al. [5] and extended to the context of surrogate endpoints by
Bujkiewicz et al. [13], the BRMA model (1)–(2) can be parameterised in an alternative form.
Specifically, the between-studies model (2) is represented in the product normal formulation (PNF)
[51, 5] (a product of univariate conditional normal distributions), whereas the within-study model
remains the same:(
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η2i = λ0 + λ1δ1i.
(5)

As for the BRMA model, Y1i and Y2i are the estimates of the correlated treatment effects measured
by two outcomes, and the δ1i and δ2i are the true effects in the population which are correlated
and are assumed exchangeable, and therefore are modelled here as random effects with a linear
relationship.

Instead of placing independent non-informative prior distributions on all the parameters of
model (5), relationships between these parameters and the elements of the between-studies co-
variance matrix T in the between-studies model (2) are derived to allow to take into account the
inter-relationship between the parameters. These relationships have the following forms

ψ2
1 = τ2

1 , ψ2
2 = τ2

2 − λ2
1τ

2
1 , λ1 =

τ2

τ1
ρ, (6)

Having established these relationships allows us to place prior distributions on the between-
studies standard deviations and correlations. This is an easier task (compared with placing prior
distributions on all the parameters of model (5)) as the plausible range of values for these parameters
are known or can be obtained from external sources of information (see for example Higgins and
Whitehead [52] or Turner et al [53, 54] for the heterogeneity parameter or Bujkiewicz et al. [5] for
the correlations). By placing prior distributions on these parameters, for example for the between-
studies correlation ρ ∼ Unif(−1, 1), and the between-studies standard deviations for each outcome
j = 1, 2; τj ∼ Unif(0, 2), the above derived relationships give the implied prior distribution on the
parameters λ1, ψ1 and ψ2 [5, 13]. The remaining parameters are given “vague” prior distributions,
η1 ∼ N(0, 1000), λ0 ∼ N(0, 1000).

The pooled effects dj on the two outcomes in model (2) are directly linked to the parameters of
model (5); d1 = η1, d2 = λ0 +λ1d1. It is possible to center the true effects on the first outcome (by
replacing δ1i with (δ1i− δ1i) in the third line of formulae (5)) in which case the pooled effect on the
second outcome will be equal to the intercept; d2 = λ0. This can be useful if there are problems
with autocorrelation.

This model is equivalent to the BRMA model described in the previous section when all prior
distributions are the same and the data are available on both outcomes. In the presence of missing
data, the results from these two methods will differ. Moreover, in the presence of missing data
results from BRMA PNF may depend on the order of outcomes.

The BRMA PNF model is particularly useful when applied to surrogate endpoint evaluation as
discussed in Sections 3.3 and 4.5. This parameterisation also becomes very useful in higher dimen-
sions where many parameters need to be estimated, potentially requiring data from many studies.

20



The parameterisation in a simplified form may be used, by assuming conditional independence
between treatment effects on some pairs of outcomes, reducing the number of parameters. Models
for multiple outcomes are discussed in Section 4.

WinBUGS code corresponding to this model (with data for the example introduced in section
2.3) is included in Appendix A.2.

2.3 Example: rheumatoid arthritis

2.3.1 Data

A systematic review and meta-analysis was carried out to investigate the effectiveness of anti-TNF-α
inhibitors such as etanercept, infliximab and adalimumab used as second line treatments in patients
with rheumatoid arthritis (RA) [55]. Standard instruments for measuring response to treatment in
RA were considered: the Health Assessment Questionaire (HAQ) and Disease Activity Score (DAS-
28) measures, and the American College of Rheumatology (ACR) response criteria. The results
of the meta-analyses of all three outcomes individually showed that the biologic interventions are
effective when used sequentially. Data collected in this systematic review are used to investigate
how multivariate meta-analysis can be applied to incorporate multiple outcomes, such as ACR20
(20% response according to the ACR criteria; a binary outcome modelled on log odds scale) and
changes from baseline of DAS-28 and HAQ scores (continuous outcomes), in evidence synthesis
which aims to estimate the change from baseline of the HAQ score. The estimate of the HAQ is
of particular interest to clinicians and decision-makers in health care as it is often used to estimate
quality of life of patients following treatments of RA.

Table 1: Studies in RA data reporting outcomes: ACR20, DAS-28 and HAQ.
Study ACR20 DAS-28 HAQ

n r mean∗ (se) mean∗ (se)

Bennet 2005 26 – -1.7 (0.25)‡ -0.31 (0.13)
Bingham 2009 188 85 -1.6 (0.1) -0.35 (0.05)
Bombardieri 2007 810 486 -1.9 (0.05) -0.48 (0.02)
Buch 2005 25 18 – –
Buch 2007 72 55 -1.47 (0.18) –
Cohen 2005 30 – -1.87 (0.24) –
Di Poi 2007 18 – -2.1 (0.29) –
Finckh 2007 66 – -0.98 (0.18) –
Haroui 2004 22 14 – -0.45 (0.14)
Hjardem 2007 123 – -1 (0.11) –
Hyrich 2008 331 – – -0.12 (0.03)
Iannone 2009 37 – – 0.15 (0.13)
Karlsson 2008 337 172 – –
Laas (InTol) 2008 6 – -1.17 (0.66) –
Laas (InEff) 2008 20 – -1.26 (0.35) –
Navarro-Sarabia 2009 83 – -1.1 (0.18) -0.21 (0.07)
Nikas 2006 24 18 -2.4 (0.16) –
Van der Bijl 2008 41 19 -1.5 (0.25) -0.21 (0.08)
Van Vollenhoven 2003 18 12 – –
Wick (EA) 2005 9 7 -1.9 (0.22) –
Wick (IA) 2005 27 19 -1.3 (0.28) –

∗ mean change from baseline; se – standard error, r – number of responders
n – total number of participants in the study.

Table 1 gives details of the three outcomes which were reported in each of the studies within
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the systematic review. Some of the listed outcomes or treatment effects (and in particular the
standard error) were obtained from other measures or imputed. The details of how these values
were obtained can be found in Appendix 2 of the original meta-analysis of this data [55]. We will
refer to these data as the “RA data” throughout this document. In this section, for illustration of
BRMA, we use data on DAS-28 and HAQ. Data on all three outcomes will be used in Section 4.

Note that all studies in this example were single arm (with the treatment effect measured as
change from baseline). This example is used for convenience and the same method can be applied
for data on the relative treatment effects (for example data containing treatment effects on the log
odds ratio scale with the corresponding standard errors). For clarity, we emphasise that the TSD is
not advocating use of single trial arm change from baseline data as an ideal approach for inferring
treatment effects.

2.3.2 Results

The results of applying the univariate and bivariate meta-analyses of HAQ and DAS-28 are included
in Table 2. The BRMA model allowed us to include 10 cohorts (from 8 studies reporting DAS-28
but not HAQ in Table 1) in addition to those 8 that could be used in the univariate random-effect
meta-analysis (URMA) of HAQ (studies reporting HAQ in Table 1). The within-study correlation
between the mean change from baseline in DAS-28 and HAQ, obtained by bootstrapping of IPD
from a study external to the meta-analysis, was relatively weak; ρdas,haqwi = 0.24. It was assumed
the same across all studies in the meta-analysis.

Table 2: Results of the univariate meta-analyses of treatment effects on HAQ and DAS-28 sepa-
rately and bivariate meta-analysis of the treatment effects on HAQ and DAS-28. Negative values
(reduction from baseline for HAQ or DAS-28) represent positive effect of the treatment.

posterior mean treatment effect (SD)
[95% CrI]

univariate analyses bivariate analyses
HAQ DAS-28 HAQ & DAS-28

BRMA BRMA (PNF)

HAQ -0.25 (0.09) -0.27 (0.08) -0.27 (0.07)
[-0.43,-0.07] [-0.42,-0.11] [-0.39,-0.13]

DAS -1.57 (0.13) -1.53 (0.13) -1.53 (0.13)
[-1.84,-1.31] [-1.78,-1.26] [-1.78,-1.26]

τH 0.21 (0.09) 0.21 (0.08) 0.22 (0.08)
[0.10,0.44] [0.11,0.41] [0.11,0.41]

τD 0.44 (0.11) 0.44 (0.11) 0.44 (0.11)
[0.25,0.67] [0.27,0.71] [0.27,0.71]

ρDH 0.58 (0.42) 0.59 (0.43)
[-0.51,0.99] [-0.51,0.99]

When using BRMA, the estimate of the mean effect on HAQ shifted towards a more extreme
value (change in HAQ from baseline shifts from -0.25 in URMA to -0.27 in BRMA) with uncertainty
reduced by 14% of the width of the 95% CrI when using BRMA and 28% when using BRMA PNF
compared to the interval from URMA. The estimate of DAS-28, however, moved to a less extreme
value when using BRMA (from -1.57 to -1.53), with only marginally reduced uncertainty. Adding
more data to the meta-analysis by using BRMA reduced uncertainty but not heterogeneity; the
between-studies standard deviations τH and τD, corresponding to the change from baseline in HAQ
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and DAS-28 respectively, remain almost the same, with only reduced uncertainty for τH . The
between-studies correlation was estimated with a large credible interval, 0.59 (-0.51, 0.99) form
BRMA PNF and a similar results was obtained from BRMA in the standard form. The large
interval is likely to result from a small number of studies in the data, thus being dominated by
the non-informative prior distribution. Example of using external data to construct an informative
prior distribution is discussed in Section 2.4, where much narrower interval was obtained when
using such informative prior compared to non-informative prior distribution. The results are based
on 50,000 iterations after a burn-in of 50,000.

Figure 1 shows three forest plots representing pooled effects estimates on HAQ from URMA
(left) and BRMA (middle), and DAS-28 from BRMA (right). Black solid lines correspond to the
“shrunken” estimates δji and pooled estimates dj , the grey solid lines show the estimates obtained
from the systematic review (data used in this meta-analysis) and the grey dashed lines (estimates
also marked with a ∗ on their right) correspond to the predicted estimates for the studies that
did not report the HAQ but reported the DAS-28 (or reverse in plots for the DAS-28). Dashed
black lines below the estimates obtained from BRMA represent the pooled estimates obtained from
URMA for comparison.

In the forest plot of the estimates from URMA, the estimates are shrunken towards the mean,
which is especially noticeable for those studies with higher uncertainty around the known estimates
(i.e. Bennet, Haroui and Iannone). For example, in the case of the Haroui study, the HAQ estimate
of -0.45 (95% confidence interval (CI): -0.73, -0.17) is now shifted towards the overall mean (which
for URMA is -0.25) with shrunken estimate equal -0.38 (95% CrI: -0.6, -0.15). Borrowing of strength
across studies led to both the shift towards the mean and decrease in uncertainty reducing the width
of the credible interval by 16% for the Haroui estimate.

In the middle forest plot in Figure 1 (representing estimates of HAQ from BRMA) the predicted
estimates (including those for studies not reporting HAQ) contribute to the pooled estimate even
though there is considerable uncertainty associated with them. This borrowing of information
across outcomes leads to the aforementioned reduction in uncertainty around the pooled estimate
of the HAQ.

As can be seen in Figure 1 (middle and right-hand-side forest plots of estimates from BRMA),
the predicted effects for the HAQ (DAS-28) follow the heterogeneity pattern of the corresponding
known estimates from the DAS-28 (HAQ) due to the accounting for the correlation between the
effects on the two outcomes. Studies that reported the DAS-28, but not the HAQ, had on average
relatively high positive effects (negative values of the estimates represent positive effects) which led
to the high positive predicted estimates for the HAQ. Especially extreme values predicted for the
HAQ were those for studies by Cohen, Di-Poi, Nikas and one cohort of the Wick study which had
extreme values for the DAS-28. Also, two studies out of those three reporting the HAQ, but not
the DAS-28, had more extreme estimates, showing little or no effect (only small improvement in
HAQ in the Hyrich study and no improvement in Iannone) which led to the more extreme predicted
estimates for the DAS-28 and in consequence reduced the pooled effect measured by the change
from baseline of the DAS-28.
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2.4 Illustration of the use of informative prior distributions for combining di-
verse sources if evidence

We will now illustrate how external evidence can be incorporated into the meta-analytic framework
in the form of informative prior distributions. To do so, we will use external IPD and external
summary data (ESD) in RA to inform the within-study and between-studies correlations.

2.4.1 Using external IPD to inform within-study correlations

None of the studies included in the “RA data” reported correlations between the treatment effects
on the two outcomes. These correlations cannot be obtained directly from summary data and none
of the studies listed the IPD, thus external data were required to estimate the correlations.

External individual patient data (EIPD) were obtained from the British Rheumatoid Out-
come Study Group (BROSG) trial which was designed to assess the benefit of aggressive disease-
modifying anti-rheumatic drug treatments in patients with established RA [56]. It was a randomised
trial, which recruited 466 patients with stable RA. The trial assessed clinical outcomes (i.e. HAQ,
DAS-28 and ACR20) in two cohorts of patients managed using either a regime focused on (1) symp-
tomatic control of pain and stiffness in the shared care setting, or (2) a more aggressive regime
focusing on control of symptoms and joint inflammation in the hospital setting. Bujkiewicz et
al. used data from 293 patients in the BROSG trial (subset of the individuals reporting all three
outcomes) to obtain the within-study correlations between the treatment effects on the multiple
outcomes to populate the multivariate meta-analytic models [5, 57]. They assumed that in this
external study the correlation between the treatment effects on the three outcomes is expected to
be of similar magnitude to the correlations within the studies included in the meta-analysis. In
this data example with single-arm studies, the within-study correlations are between the estimates
of change from baseline on the continuous outcomes (HAQ and DAS-28) or log odds of response
for ACR20. In general case these are the correlations between the treatment effects as described
in Section 2.1.1. We will use data on DAS-28 and HAQ to obtain the correlation for the bivariate
case. In the previous section, we used the mean correlation obtained for these data as a fixed value
and assumed that it was the same across all studies in the meta-analysis. Here we will use the
parameters of the posterior correlation to construct a prior distribution for the analysis of RA data.

2.4.2 Using external summary data to inform between-studies correlation

In contrast to the within-study correlations, the between-studies correlations can be estimated from
the study level summary data. In a Bayesian framework this could entail placing non-informative
prior distributions on these correlations. However, one of the advantages of Bayesian approach we
want to exploit here is the possibility of incorporating external information in the analysis. This
can be achieved by using external information to construct an informative prior distribution. To
illustrate this, we conducted a bivariate meta-analysis of ESD to obtain an estimate of the between-
studies correlation which can be used as a prior distribution in a BRMA model. The ESD included
studies of the same type of treatment as in the “RA data”, but used as the first line treatment.
Therefore it was acceptable to assume that the between-studies correlation estimated from this
external data should be reasonably similar to inform the prior distribution for the between-studies
correlation in the main analysis. Further details with the full list of studies included in the ESD
are reported by Bujkiewicz et al. [5, 57].

2.4.3 Logic of the meta-analysis model and notation

In our motivating example, we aim to model the summary data of the correlated outcomes from
the “RA data” using a multivariate meta-analysis in a Bayesian framework. To do so, we need to
place prior distributions on the within-study correlations (which are not known in the “RA data”)
and on the between-studies correlations. We use the EIPD, described in Section 2.4.1, to construct
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prior distributions for the within-study correlations and the ESD, described in Section 2.4.2, to
construct the prior distributions for the between-studies correlations. Figure 2 illustrates this data
structure and the role of each element within it. The external data are used to construct prior
distributions for the within-study and between-studies correlations. The remaining parameters of
the model, such as the pooled effects and the between-studies standard deviations, are given non-
informative prior distributions [22]. Note that the external data set used in this example was not
very large. However, in more general circumstances the relevance and rigour of the external evidence
can be taken into account. For example, the variance of the prior distribution can be adjusted
to construct a less informative distribution. In addition, when there are multiple external data
sources, a random effects meta-analysis can be carried out. A number of authors have advocated
using posterior predictive distribution from such external meta-analysis as a source of external
evidence incorporated in the analysis in the form of a prior distribution [22, 58].

External
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Figure 2: Sources of evidence and the role of the data sets in the BRMA model.

2.4.4 Statistical methods

EIPD on treatment effects HAQ and DAS-28 (measured as change from baseline) are analysed
jointly to obtain the within-study correlation. If we have data on change from baseline in HAQj
and DASj from each patient j, then we can model them jointly by assuming that they are correlated
and normally distributed either using a bivariate normal distribution or in the product normal
formulation:

HAQj ∼ N(θH , ξ
2
H)

DASj ∼ N(θDj , ξ
2
D)

θDj = α0 + α1

(
HAQj −HAQj

)
with prior distributions on the parameters, for example θH ∼ N(0, 103), α0 ∼ N(0, 103), α1 ∼
N(0, 103), ξD ∼ Unif(0, 10) and ξH ∼ Unif(0, 10). Then the correlation is ρIPD = α1varH/varD,
where varH = ξ2

H and varD = α2
1ξ

2
H + ξ2

D. The correlation can be transformed using Fisher
transformation to construct a prior distribution on the normal scale [59, 5]. This is achieved by

calculating the Fisher transformation FT = 1
2 log

(
1+ρIPD
1−ρIPD

)
. The Fisher transformed correlation

is then assumed to be normally distributed; ρFT ∼ N(FT, FT 2
SD) and then the prior distribution

for the between-studies correlation is obtained by back-transforming ρFT into ρw = [exp(2ρFT ) −
1]/[exp(2ρFT ) + 1]. WinBUGS code corresponding to this analysis is included in the first section
of Appendix A.3.
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External summary data are analysed using BRMA (for this example we used BRMA PNF)
with non-informative prior distributions. The resulting between studies correlation is transformed
using Fisher transformation. The posterior mean and standard deviation of the Fisher transformed
correlation are then used in the main BRMA model of RA data to construct prior distribution on the
Fisher transformed correlation, which is then back-transformed to give implied prior distribution
for the between-studies correlation.

WinBUGS coding for these analyses is included in Appendix A.3.

2.4.5 Results

The posterior correlation between the treatment effects on DAS-28 and HAQ obtained from the
EIPD (used as a prior distribution for the within-study correlation in each study, as discussed in

Section 2.4.1) was relatively weak, with mean ρdas,haqw = 0.24 (95% CrI: 0.13, 0.35) and the Fisher
transformed posterior mean (SD), used to construct the prior distribution, was 0.245 (0.06). The
posterior between-studies correlation between treatment effects on DAS-28 and HAQ obtained from
BRMA of the ESD (used here as a prior distribution for the between-studies correlation) had a
higher mean; ρDH = 0.91 (95% CrI: 0.50, 1.00).

Results of applying BRMA PNF with informative prior distributions constructed based on
these posterior estimates for the within-study and between-studies correlations are shown in Table
3. They are presented along with the results obtained in the previous section, using non-informative
prior distribution for the between-studies correlation for comparison.

Table 3: Results of the univariate meta-analyses of treatment effects on HAQ and DAS-28 sepa-
rately and bivariate meta-analysis of the treatment effects on HAQ and DAS-28. Negative values
(reduction from baseline for HAQ or DAS-28) represent positive effect of the treatment.

posterior mean treatment effect (SD)
[95% CrI]

univariate analyses bivariate analyses
HAQ DAS-28 HAQ & DAS-28

BRMA BRMA (PNF) BRMA (PNF/IP)

HAQ -0.25 (0.09) -0.27 (0.08) -0.27 (0.07) -0.29 (0.04)
[-0.43,-0.07] [-0.42,-0.11] [-0.39,-0.13] [-0.36,-0.20]

DAS -1.57 (0.13) -1.53 (0.13) -1.53 (0.13) -1.50 (0.13)
[-1.84,-1.31] [-1.78,-1.26] [-1.78,-1.26] [-1.75,-1.23]

τH 0.21 (0.09) 0.21 (0.08) 0.22 (0.08) 0.22 (0.07)
[0.10,0.44] [0.11,0.41] [0.11,0.41] [0.12,0.39]

τD 0.44 (0.11) 0.44 (0.11) 0.44 (0.11) 0.47 (0.12)
[0.25,0.67] [0.27,0.71] [0.27,0.71] [0.28,0.74]

ρDH 0.58 (0.42) 0.59 (0.43) 0.97 (0.05)
[-0.51,0.99] [-0.51,0.99] [0.84,1.00]

PNF/IP – product normal formulation with informative prior distributions

Use of an informative prior distribution on the between-studies correlation resulted in estimation
of this correlation with much higher precision; 0.97 (95% CrI: 0.84, 1.0). This also led to the estimate
for HAQ obtained with uncertainty reduced by 56%, in terms of the width of the credible interval,
compared to the estimate obtained from the univariate analysis of HAQ alone. This gave an
additional increase in precision of 38% reduction in the width of the CrI compared to the estimate
from BRMA PNF with non-informative prior distribution for the between-studies correlation.
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3 Surrogate endpoint evaluation with bivariate meta-analysis

3.1 Surrogate endpoints, their importance and validity

3.1.1 Importance

Surrogate endpoints are very important in the drug development process, at both the trial design
and the evaluation stage. They are particularly useful when they can provide early or more accurate
measurement of the treatment effect, in settings where a long follow up time is required before an
accurate measurement of the final clinical outcome can be made [7]. This is often the case in cancer
where overall survival (OS) is of primary interest whilst other outcomes such as progression-free
survival (PFS) potentially can be used to measure the effect of a treatment earlier. In particular for
highly successful new generation of targeted therapies, the number of events on the final outcome
(deaths in the case of OS) may be small resulting in large uncertainty around the treatment effect
on this outcome, whilst the number of progressions may be sufficiently high to estimate the effect
of the treatment on PFS with reasonable precision. Alternatively, PFS may be of primary interest
and tumour response (TR) is then investigated as a short term surrogate endpoint to PFS. In
other disease areas, other outcomes have been investigated as potential surrogate endpoints to
a final clinical outcome, for example relapse rate as a surrogate endpoint to disease progression
in relapsing remitting multiple sclerosis (RRMS) [60]. As discussed in the introduction Section
1.3.1, surrogate endpoints play an increasingly important role in regulatory approval of new health
technologies at the licensing stage and therefore are of interest in HTA decision-making.

3.1.2 Validity

Before they can be used in evaluation of new health technologies, candidate surrogate endpoints
have to be assessed for their predictive value of the treatment effect on the final clinical outcome.
The International Conference on Harmonisation guidelines for the conduct of clinical trials for
the registration of drugs (ICH-9) [61] stated that “in practice, the strength of the evidence for
surrogacy depends upon (i) the biological plausibility of the relationship, (ii) the demonstration in
epidemiological studies of the prognostic value of the surrogate for the clinical outcome and (iii)
evidence from clinical trials that treatment effects on the surrogate correspond to effects on the
clinical outcome”. These and other similar criteria for surrogate endpoint validation, by Bucher
et al in JAMA Users’ Guides to the Medical Literature [62] and Lassere et al for the Outcomes
Measures in Rheumatology Clinical Trials (OMERACT) Working Group [63], are summarised by
Taylor and Elston [30] and more recently Ciani et al [31].

Based on these guidelines, Taylor and Elston proposed a three-step framework for evaluation
of a surrogate endpoint, designed for health care policy makers, each depending on availability of
evidence supporting the validity of a surrogate endpoint [30]:

• level 3: evidence based on biological plausibility alone

• level 2: evidence of a strong association between the surrogate and the final endpoint at the
individual patient level

• level 1: evidence showing that health technologies improving the surrogate also improve the
final clinical outcome across many randomized controlled trials.

There has been a substantial degree of criticism of relying solely on level 2 of evidence when
evaluating surrogate endpoints, in particular when individual level association is evaluated based
on data from a single trial. Fleming and DeMets famously said that “A correlate does not a
surrogate make” [64]. The authors discuss surrogacy criteria developed by Prentice [65], which
require that the surrogate must be correlated with the true clinical outcome and (in the fourth
criterion sometimes referred to as the surrogacy criteria) fully mediate the treatment effect on the
final clinical outcome. Fleming and DeMets describe a number of scenarios where, depending on
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the mechanism of action of a treatment, the latter criteria may not be satisfied. Limitations of
Prentice’s criteria for surrogacy have been discussed by a number of other authors [66, 67, 68],
who emphasised that satisfying those criteria does not guarantee a causal relationship between the
treatment effects on the surrogate and the final outcome.

The issue of the causal effect mostly affects surrogate evaluation when such analysis is based
on a single study. A meta-analytic approach, based on data from a number of trials, follows the
causal association paradigm which, as discussed by Joffe and Greene, is based on establishing the
association between the treatment effects on the candidate surrogate endpoint and on the final
outcome (rather than modelling the effect of surrogate on the final outcome) [66]. The authors
point out that this approach is more useful for evaluation of surrogate endpoints as it is free
from the restrictions of the causal effect paradigm. The meta-analytic approach to the causal
association study involves associations between quantities that derive directly from randomisation
and as such are average causal effects. Meta-analytic approach is based on data from a number of
studies or subgroups and is likely to include heterogeneous treatment contrasts which is an obvious
advantage over evaluation based on a single study. A single trial validation cannot guarantee that
an association between effects confirmed based on individual data under one treatment will hold
in other interventions.

3.1.3 Meta-analytic approach to surrogate endpoint evaluation

A range of meta-analytic techniques have been proposed to evaluate surrogate outcomes. Putative
surrogate endpoints are validated, using these techniques, by estimating the pattern of association
between the treatment effects on surrogate and final endpoints across trials, in different populations
and/or investigating different treatments [8, 9, 10, 11, 12, 13]. Multivariate meta-analysis methods
are used to obtain average treatment effects on multiple endpoints while taking account of the
correlations between them [2, 4, 6, 5] and, as such, are suitable tools for modelling surrogate
endpoints [12, 13]. Such methods are superior to, for example, meta-regression models as they
take into account the uncertainty around the treatment effects – not only on the final outcome but
also on the surrogate endpoint (which would be treated as a fixed covariate in a meta-regression).
Bivariate meta-analysis of treatment effects on a surrogate and a final outcome allows for both the
validation of a surrogate endpoint and for making predictions of an unobserved treatment effect on
the final clinical outcome from observed treatment effects on a surrogate endpoint. In this TSD we
focus on the application of bivariate meta-analytic methods to surrogate evaluation at the study
level. IPD models evaluating surrogacy at both individual level and study level are discussed briefly
in Section 3.8.

3.1.4 Data requirements for surrogate endpoint validation

To use bivariate meta-analytic techniques to evaluate surrogate endpoints, data from all relevant
studies on the treatment effect on both outcomes (the surrogate endpoint and the final clinical
outcome) and corresponding standard errors will be required for the analysis. When more than
one surrogate endpoint is investigated one at a time, multiple data sets (as many as the number of
candidate surrogate endpoints) will be requited that include the same information: the treatment
effects on the candidate surrogate endpoint and treatment effects on the final clinical outcome along
with the corresponding standard errors. Example of such data set is included in the Appendix B.1.
Studies reporting only treatment effect on one of the outcomes typically would not be included in
this analysis, although they could be included as the unreported effects in these studies are predicted
by the models and these predicted effects can contribute to the estimation of the between-studies
correlation. More details on this issues are included in Section 2.1.3 discussing missing data and
also in the discussion of the results of the example in rheumatoid arthritis in Section 2.3.2. Multiple
surrogate endpoints may also be investigated jointly by the use of multivariate meta-analysis, as
discussed in Section 4.5. In this case, data containing multiple treatment effects (on all surrogate
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endpoints and on the final outcome) and corresponding standard errors will be needed.
Data in the same format is required when carrying out cross-validation procedure described in

detail in Section 3.6.1.
When predicting treatment effect on the final clinical outcome from the treatment effect on a

surrogate endpoint in a new study, as in Section 3.6.2, unlike in the cross-validation procedure the
treatment effect on the final outcome will not be known and should be included as missing effect.
When making prediction, we want to account for the uncertainty around the predicted effect and,
therefore, the interval around this effect will also need to be estimated. To do so, we will need to
make additional assumptions about the variances of the treatment effect at the population level,
therefore it will be more convenient to have data on the treatment effects with the corresponding
population variances along with the numbers of patients in each study. This is discussed in detail in
Section 3.6.2 and an example of such data set is included in the Appendix B.5, which corresponds
to the example described in Section 3.7.4.

Relevant studies are typically identified through a systematic review and the scope for this
literature review may be much larger than, for example, for the technology under evaluation by
a HTA body. For a strong surrogate endpoint (a good predictor of clinical benefit) the surrogate
relationship will not depend on a treatment or a subpopulation and data from all trials in all
subgroups of patients in a given disease area would be used. Often, however, subsets of interventions
or population may only be included. This may be the case when the differences in mechanism of
action between treatment types or patients subgroups affect the estimates of the treatment effect
on the surrogate and final outcomes in different ways, thus affecting the estimates of the surrogate
relationship. Data from all studies including all treatments may be used together in more complex
models which are discussed in Section 3.8.

3.2 Standard surrogacy model by Daniels and Hughes

In a model proposed by Daniels and Hughes [8], the estimates of the treatment effects measured by
the surrogate endpoint Y1i and the final outcome Y2i are assumed to come from a bivariate normal
distribution and they estimate underlying true effects on the surrogate and final outcomes δ1i and
δ2i, respectively, from each study i with corresponding within-study standard deviations σ1i and
σ2i and the within-study correlation ρ12

wi:(
Y1i

Y2i

)
∼ N

((
δ1i

δ2i

)
,

(
σ2

1i σ1iσ2iρ
12
wi

σ1iσ2iρ
12
wi σ2

2i

))
δ2i | δ1i ∼ N(λ0 + λ1δ1i, ψ

2
2),

(7)

where the true effects δ1i measured by the surrogate endpoint are assumed to be study-specific
fixed effects (which here means that they are independent effects in each study) and to have a
linear relationship with the true final outcomes δ2i. Prior distributions are given to all parameters,
for example on the fixed effects δ1i ∼ N(0, 1000), and the regression parameters: λ0 ∼ N(0, 1000),
λ1 ∼ N(0, 1000), ψ2 ∼ Unif(0, 2).

Daniels and Hughes described a strong surrogate relationship as one with λ0 = 0 (to ensure
that no treatment effect on the surrogate endpoint implies no treatment effect on the final clinical
outcome) and λ1 6= 0 (establishing a relationship between treatment effects on the surrogate and
final clinical outcomes). The conditional variance ψ2

2 measures the strength of the association
and for a perfect surrogate relationship it will be equal to 0. We will refer to these three criteria
describing the strength of the surrogate relationship as “surrogacy criteria.” The use of these
criteria is further discussed in Section 3.8.

3.3 BRMA in product normal formulation

The BRMA model in product normal formulation, described in Section 2.2, can also be used for
surrogate endpoint evaluation, in a similar way as the above model adopted from the paper by
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Daniels and Hughes. The main difference is in the assumption of random effects (exchangeability)
for the true treatment effects on the surrogate endpoints δ1i ∼ N(η1, ψ

2
1) in the BRMA model,

whilst Daniels and Hughes assumed fixed affects on the surrogate endpoint. When this assumption
of exchangeability is reasonable, this model can lead to more precise predictions due to increased
borrowing of information across studies (for both outcomes). However, as discussed by Daniels
and Hughes, the choice of the distribution for the random effects may be difficult and depend
on the ordering of the active and control treatments. It also can be complex when, for example,
the distribution of the effects on the surrogate endpoint is bimodal (for example when two classes
of treatments of very different effectiveness, both against the same control, are investigated). As
shown in a simulation study by Bujkiewicz et al. [12], when the exchangeability assumption does
not hold, the predictions obtained from BRMA PNF model may be biased.

The surrogacy criteria for this model are the same as in the model by Daniels and Hughes in
the previous section.

3.4 BRMA in the standard form

BRMA in the standard form, described in Section 2.1, can also be used to evaluate surrogate
endpoints. In this case, the measure of the strength of the surrogacy pattern is the between-studies
correlation ρ. When the surrogate relationship is perfect the correlation is ρ = ±1. Similarly as
for BRMA PNF discussed above, this model assumes random effect on the surrogate endpoint.
Therefore analysts should exercise caution when using this model.

3.5 Relationships between the models and with other models in the literature

The balance between the advantages and potential limitations of each method needs to be con-
sidered when evaluating surrogate endpoints and a sensitivity analysis is advised to investigate
models’ fit. This can be achieved by comparing models using deviance information criteria (DIC)
[69] and by cross validation procedure, described in more detail in Section 3.6.1.

The parameters of models discussed in Sections 3.2–3.4 and the relationships between them are
summarised in Table 4. The parameters of the between-studies model of BRMA, the means dj ,
heterogeneity parameters τj on both outcomes and the between-studies correlation ρ between the
true effects on the two outcomes relate directly to the parameters of BRMA PNF model and the
corresponding surrogacy criteria. The slope and the conditional variance are

λ1 = ρ
τ2

τ1
(8)

and
ψ2

2 = τ2
2 − λ2

1τ
2
1 = τ2

2 (1− ρ2). (9)

Since the slope is also λ1 = (d2 − λ0)/d1 (which can be easily seen by drawing a picture with a
regression line, two mean values d1 and d2 on each axis and a non-zero intercept), we can express
the intercept in terms of the parameters of BRMA:

λ0 = d2 − d1ρτ2/τ1. (10)

In the BRMA PNF model (similarly as in the model by Daniels and Hughes)), the surrogate
relationship was perfect when the conditional variance was zero: ψ2

2 = 0 (Daniels and Hughes [8],

Bujkiewicz et al [12]). From (9), ρ2 = 1 − ψ2
2

τ22
, which implies that if ψ2

2 = 0 then the correlation

ρ = ±1. Therefore the criteria for perfect surrogacy for the two BRMA models are equivalent. The
criteria have the same meaning in terms of surrogacy for the model by Daniels and Hughes but
the corresponding parameters do not relate directly to those of the BRMA model. This is because
of the fixed effects assumption in the model by Daniels and Hughes, and hence no heterogeneity
parameters or means.
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Table 4: Parameters in the surrogacy models and the relationships between them
emp D&H empty BRMA PNF BRMA

λ0 λ0 ρ
λ1 λ1 τ1

ψ2
2 ψ2

1 τ2

ψ2
2 d1

η1 d2

η1 = d1 d1 = η1

λ1 = ρτ2/τ1
∗d2 = λ0 + λ1η1

λ0 = d2 − d1ρτ2/τ1 ρ = λ1τ1/τ2

ψ1 = τ1 τ1 = ψ1

ψ2
2 = τ2

2

(
1− ρ2

)
τ2

2 = ψ2
2 + λ2

1ψ
2
1

ρ2 = λ2
1ψ

2
1/
(
ψ2

2 + λ2
1ψ

2
1

)
D&H – model by Daniels and Hughes, BRMA – bivariate random effects meta-analysis,

BRMA PNF – BRMA in product normal formulation

λ0 – intercept, λ1 – slope, ψ2
2 – conditional variance, ρ – between-studies correlation,

η1, d1, d2 – mean values, τ1, τ2 – between-studies heterogeneity parameters

∗ if the effects are centred d2 = λ0 (see Section 2.2).

The measure of surrogacy can be also expressed as ρ2 (ρ2 = 1 for perfect surrogacy), which some
authors refer to as the study-level adjusted R-squared (Burzykowski et al [10] and Renfro et al [11]).

3.6 Validation and making predictions

3.6.1 Cross-validation procedure

To evaluate surrogate endpoints, in the first instance the surrogacy criteria are obtained from the
meta-analysis of all of the data: the regression coefficient for models by Daniels and Hughes and
BRMA PNF or the between-studies correlation (or adjusted R-squared) when using BRMA in
the standard form. Following this, predicted values (and corresponding predicted intervals) of the
treatment effects on the final outcome are compared to the observed estimates in take-one-out
cross-validation procedure. In one study at a time, the estimate of the treatment effect on the
final outcome Y2i is removed (and treated as missing at random) and then this treatment effect
is predicted from the treatment effect on the surrogate endpoint, conditional of the data on both
outcomes from all the remaining studies in the meta-analysis. The mean predicted effect is equal
to the mean predicted true effect δ̂2i, predicted by MCMC simulation, and the variance of the
predicted effect is equal to σ2

2i + var(δ̂2i|Y1i, σ1i, Y1(−i), Y2(−i)), where Y1(−i) and Y2(−i) denote the
data from the remaining studies without the validation study i [8]. For a valid surrogate endpoint,
the predicted interval, constructed using this variance, should contain the observed estimate, at
least in 95% of the studies if using 95% predicted intervals.

As discussed in Section 2.1.3, when missing data are present in the bivariate meta-analysis,
in the Bayesian framework these missing treatment effects are directly predicted from the meta-
analytic model using MCMC simulation. To implement this, prior distributions need to be placed
on the missing data. The model used to synthesise the treatment effects already takes care of
this for missing values of treatment effect Yji on the missing outcome j in study i. However, the
corresponding missing standard errors σji still need to be given prior distributions. For the cross
validation, only one treatment effect is missing; on the final outcome in the validation study, so
there is also only one missing standard error corresponding this this treatment effect. A prior
distribution can be placed on this standard error, such as, for example, σji ∼ Unif(0.0001, 15).

In Section 2.1.3, discussing use of bivariate meta-analysis for estimation of pooled effects, we

32



also suggested a model allowing for exchangeability of the population variances as a method for
estimating the missing standard errors. In the cross-validation procedure, however, this would not
be a suitable approach as this may lead to either overestimating or underestimating the predicted
intervals. An independent prior distribution in the ”missing” standard error is sufficient, as we do
not need to estimate this parameter. When constructing the predicted interval (as in the formula
in the first paragraph of this section), we use the actual standard error (which we do know, only
treat as unreported for the purpose of the cross-validation). However, in a situation when we want
to predict the treatment effect on the final outcome in a new study where we only have data on the
treatment effect on the surrogate endpoint, but not on the final outcome, we do need to estimate
this parameter to account for the uncertainty around the predicted estimate appropriately. We
discuss this issue in the next section.

3.6.2 Predicting treatment effect on the final outcome from the effect measured on
a surrogate endpoint in a new study

When our validation procedure was successful and we concluded that an endpoint can be used as
a surrogate endpoint to the final clinical outcome, then we can predict the treatment effect on the
final outcome in a new study reporting only the treatment effect on the surrogate endpoint. To do
so, we use a bivariate meta-analytic model. It can be the model by Daniels and Hughes, described
in Section 3.2, or a BRMA model as discussed in Sections 3.3 and 3.4.

The main difference between the model by Daniels and Hughes and BRMA (in either for-
mulation) is that the former assumes fixed effects (independent prior distributions) and the latter
random effects for the treatment effects on the surrogate endpoint. When the normality assumption
of the random effects, i.e. the true effects δ1j on the surrogate endpoint is not satisfied (for example
plotting a histogram of the estimated effects of the surrogate endpoints shows clear deviation from
normality such as a bimodal distribution for these effects) then the model by Daniels and Hughes
will be more appropriate. However, if the normality assumption of these effects is reasonable, using
BRMA may give more precise predictions, as the assumption of the random effects gives additional
borrowing of information across studies.

When predicting the treatment effect on the final outcome in a new study reporting only the
treatment effect on the surrogate endpoint, we use all data from the previous relevant studies (see
Section 3.1.4) reporting the treatment effects on both outcomes with corresponding standard errors,
together with the data on the treatment effects on the surrogate endpoint and the corresponding
standard error for the new study. As in BRMA with missing data, we code the unreported treatment
effect on the final outcome in the new study and the corresponding standard error as missing.
However, as in BRMA with missing data, we will want to assume exchangeability of the population
variances to be able to estimate the interval for the predicted effect on the final outcome. To do
this, we need data on the population variances (rather than the standard errors) corresponding
to the treatment effects on both outcomes and the numbers of participants. See Section 2.1.3 for
details. By assuming that the two treatment effects, the effect on the surrogate endpoint and
the unreported treatment effect on the final outcome, and their corresponding population level
variances follow the same model as the data from all other studies reporting the treatment effects
on both outcomes, the unreported effect and variance corresponding to the final outcome in the
new study are predicted from the model (conditional on all of the data) by the MCMC simulation.
The predicted effect on the final outcome in the new study will be obtained as the mean and the
credible interval of Y2k for the new study k. This is illustrated in Section 3.7.4.

There may be more than one new study reporting the treatment effects on the surrogate endpint
but not on the final outcome. We can then predict the treatment effects on the final outcome for
all of those new studies and either treat them as separate predicted estimates that can be used
in a decision-making framework individually or jointly by obtaining an average predicted effect by
using, for example, a standard (univariate) meta-analysis of the predicted effects. When the new
studies are investigating different treatments, individual predicted effects for each study are likely
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to be of interest.

3.7 Example: surrogacy validation in relapsing remitting multiple sclerosis

To illustrate the use of the modeling techniques discussed in sections 3.2-3.6, we applied them to
an example in RRMS. Multiple sclerosis is an inflammatory disease of the brain and spinal cord,
and RRMS is the most common type of the disease. During the course of the disease, patients
experience a series of periods of exacerbations (relapses) and remission. A large proportion of
patients eventually progresses to secondary progressive disease. Treatments in RRMS aim to reduce
the relapses and delay disease progression, therefore the disability progression can be considered
the final clinical outcome. The annualised relapse rate is another endpoint typically used in clinical
trials in MS and potential surrogate endpoint to the disability progression. This example is based
on work by Sormani et al. [60] who showed that in studies investigating treatment effect in patients
with RRMS, the treatment effect on relapse rate can potentially be used as a surrogate endpoint
to the treatment effect on the disability progression. We use data from this study as an illustrative
example of surrogate endpoint evaluation process and refer to these data as the “RRMS data” in
the remainder of this section.

3.7.1 Data

The annualized relapse rate ratio, the ratio between the relapse rate in the experimental and the
control arms, was used as the summary estimate of the treatment effect on relapses (the surrogate
endpoint measuring the treatment effect). The disability progression risk ratio, the ratio between
the proportion of patients with a disability progression in the experimental and the control arms
at year 2 (or at year 3 for trials of longer follow up time which do not report the outcome at year
2), was used as the summary estimate of the treatment effect on disability progression, which was
the final clinical outcome. We model these treatment effects on the log scale. Details of the specific
treatment regimens are included in Table 5. Figure 3 shows data on both outcomes presented
graphically in the form of a forest plot, revealing similar heterogeneity patterns between the effects
for both outcomes across studies, and hence implying a strong correlation between the effects on
these outcomes. The studies are grouped as placebo-controlled and active-treatment-controlled.

Every study in this example included both endpoints as only those studies contribute directly
to estimation of the surrogate association (through the correlation in BRMA or equivalently the
slope and conditional variance in the model by Daniels and Hughes). However, additional studies
that include only one endpoint could be included in such analyses. In particular, when using a
BRMA model assuming random effects for the treatment effects on the surrogate endpoint, the
data from studies reporting only the treatment effect on surrogate endpoint may contribute to the
individual “shrunken” estimates in each study and ultimately to the estimation of the surrogate
relationship parameters.

Within-study correlations were not available for any of the studies in this example. We placed
prior distributions on all of these correlations assuming that they are all positive between 0 and 1.

3.7.2 Implementation

All three models, described in Sections 3.2–3.4, were applied to the RRMS data. WinBUGS codes
including data for all three models are included in appendices B.1–B.3. Appendix B.4 includes R
code for cross-validation procedure (along with the WinBUGS code for each model and data in a
suitable format). Appendix B.5 includes WinBUGS code for making prediction of the treatment
effect on the final outcome in a new study.
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Figure 3: Summary of the RRMS data. The point estimates and corresponding 95% confidence
intervals, presented graphically and numerically, represent the annualised relapse rate ratio (left)
and the disability progression risk ratio (right).

3.7.3 Results of surrogate endpoint validation

To discuss the results of applying the models to RRMS data, in the first instance we present
the summary estimates of the parameters on both outcomes, which include the pooled effects on
both outcomes; the log annualized relapse rate ratio d1 and the log disability progression risk
ratio d2, the between-studies correlations between them ρ, the heterogeneity parameters τ1 and
τ2 corresponding to the two outcomes, the intercept λ0, slope λ1 and the conditional variance ψ2

2

as the parameters describing the linear relationship between the effects on the two outcomes (for
BRMA these parameters were derived from other parameters as discussed in section 3.4), and the
between-studies correlation squared ρ2 (or adjusted R-squared). The estimates of these parameters,
obtained from the three methods, are listed in Table 6. Due to the heterogeneity of the control arm
between the studies (and the fact that an intervention which is a control arm in one study may
be an experimental arm in the other) there is limited clinical interpretation of the pooled effects.
We present them for completeness, but the interest here lies in the heterogeneity patterns and the
parameters describing the shape and strength of the surrogate relationship. The results are based
on 50,000 iterations after a burn-in of 50,000.

Both forms of BRMA allowed for the estimation of the pooled effect of both outcomes, in
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contrast to the model by Daniels and Hughes (however the estimation of the pooled effect on the
disability progression could be made by centering the effect of the surrogate endpoint, resulting in
the mean effect on disability progression being equal to the intercept [12]).

For the model by Daniels and Hughes, the intercept was close to zero with the 95% CrI including
zero. The slope was positive and the conditional variance relatively small. These three parameters
indicate a good surrogacy pattern between the treatment effects on the two outcomes, the annual-
ized relapse rate and the disability progression. Similar estimates were obtained from BRMA PNF
model, which in addition gave high between-studies correlation and R-squared, although the CrI
around these parameter estimates was a little large. Results obtained from BRMA in the standard
form were similar to those obtained from BRMA PNF. This was expected as there were no missing
data and the same prior distributions were used on all parameters in the two models. The slopes
obtained from BRMA were reduced compared to the slope obtained from D&H model. This was
likely due to the over-shrinkage caused by the assumption of random treatment effects made in
the BRMA models, possibly also resulting in the underestimated between-studies correlations and
R-squared statistics.

Table 6: Summary results for placebo-controlled studies for the treatment effects on the risk of
disability progression and annualized relapse rate ratio

D&H BRMA (PNF) BRMA

d1 NA -0.50 (-0.68, -0.33) -0.50 (-0.68, -0.33)
d2 NA -0.22 (-0.35, -0.11) -0.22 (-0.34, -0.11)
ρ NA 0.90 (0.63, 1.00) 0.90 (0.62, 1.00)
τ1 NA 0.42 (0.30, 0.58) 0.41 (0.30, 0.57)
τ2 NA 0.21 (0.11, 0.34) 0.20 (0.11, 0.33)
λ0 0.03 (-0.07, 0.14) 0.001 (-0.12, 0.12) -0.003 (-0.12, 0.11)
λ1 0.52 (0.35, 0.70) 0.44 (0.24, 0.65) 0.43 (0.24, 0.64)
ψ2

2 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03)
ρ2 (R2) NA 0.82 (0.40, 0.99) 0.81 (0.39, 0.99)

NA – not applicable, D&H – model by Daniels & Hughes, BRMA – bivariate

random-effects meta-analysis, PNF – product normal formulation

All three models were then applied to make predictions in a cross-validation procedure. The
treatment effect on the final outcome (log of the disease progression risk ratio) in the 25 studies was
assumed unknown (in one study at a time which in that case became a validation study) and then
predicted from the treatment effect on the surrogate endpoint (log annualized relapse rate ratio),
conditional on the data for treatment effects on both outcomes from the remaining 24 studies. The
cross-validation was carried out by each model to make comparison.

Table 7 lists all the predictions obtained from the cross-validation procedure, using all of the
models for all of the studies. For most studies, all models gave predicted effects on disability
progression Ŷ2i with the 95% predicted intervals containing the corresponding observed estimates,
except for one study by Durelli et al.

The discrepancies between the observed and predicted values were obtained for all studies
(by taking the absolute difference between the observed estimate of the treatment effect and the
predicted effect on the log risk ratio scale) and summarised in Table 8, which also summarises
the degree of uncertainty around the predicted estimate compared to the uncertainty around the
observed value (by calculating the ratio wŶ2j/wY2j of the length of the 95% predicted interval to

the length of the 95% confidence interval of the observed estimate, shown in the last column of the
table). Note that the intervals of the predicted Ŷ2j were inflated compared to those corresponding
to the observed effects Y2j due to the additional between-studies variability. The accuracy of
predictions for the point estimate was similar across models.
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Table 8: Results of the comparison of the models for predicting the treatment effect on disability
progression from the treatment effect on relapse rate

absolute discrepancy wŶ2j/wY2j
Model median (range) median (range)

Daniels & Hughes 0.16 (0.01, 1.15) 1.12 (1.02, 1.60)
BRMA PNF 0.15 (0.01, 1.26) 1.12 (1.02, 1.67)
BRMA 0.15 (0.00, 1.26) 1.12 (1.02, 1.67)

3.7.4 Making prediction for a new study

To demonstrate the use of the model for predicting a treatment effect in a new study, let’s imagine
that the second study by Paty was a new study where we only have the treatment effect on the
relapse rate recorded, but not on the disability progression.

To make a prediction, we follow the approach described in Section 3.6.2. To predict the variance
we make an assumption of exchangeability of population variances. In this case we will assume
exchangeability of population variances in the arms, as some of the studies in the MS data were
unbalanced (see end of Section 2.1.3), and we only assume exchangeability of the variances for the
final outcome, because only the effect on this final outcome is missing. These variances are obtained

by calculating vari = σ2
2i/
(

1
NAi

+ 1
NBi

)
, where NAi and NBi are the numbers of individuals in arms

A and B and σ2i are the SEs corresponding to the treatment effects on the final outcome in each
study i. The population variances in the arms, vari, along with the numbers of individuals in each
arm, NAi and NBi, are added to the data set. The WinBUGS code (using the model by Daniels
and Hughes) with the full data set is included in Appendix B.5. By assuming exchangeability
of the population variances in the arms (see formulae (3)), the missing population variance var2

for the disability progression in the “new study” k = 2 is predicted from the MCMC simulation
and then used to calculate the predicted SEs for this outcome (j = 2) in the new study: σ22 =√
var2

(
1

NA2
+ 1

NB2

)
(which is needed to populate the within-study covariance matrix for the new

study). This in turn leads to predicting the unmeasured treatment effect on the final outcome Y22

in the new study.
Applying the model by Daniels and Hughes (all details of the implementation are included in

Appendix B.5) gave the predicted effect on disability progression 0.86 (0.52, 1.36). This predicted
effect is similar to the one obtained from the cross-validation procedure (Table 7), where the interval
was constructed using the actual standard error of the observed estimate. In a similar way, other
models (BRMA and BRMA PNF) can be used to make such prediction.

3.7.5 Discussion of the results for RRMS

Based on our results we can conclude that relapse rate is a reasonably good surrogate endpoint for
disability progression as the cross-validation procedure gave good prediction for almost all of the
studies (it only failed for the study by Durelli using all methods). Considering that we use 95%
prediction intervals, we would expect one study (out of 25 included in the data set) be outside this
range.

Note that the effect on the final outcome in the data set investigated here is measured at
the same time point as the effect on the surrogate endpoint. Since the disability progression
is considered a long term endpoint, when measured early it is measured with a relatively large
uncertainty due to low number of events. Further research may establish whether the relapse rate
is a good surrogate endpoint and in particular an early marker of longer term disability progression.
Such further research could include disability progression reported later compared to relapse rate,
but potentially also consider both outcomes on alternative scales such as the hazard ratio for the
time to disability progression. However, as indicated earlier in this section, despite the surrogate
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relationship not being 100% perfect in this setting, a successful cross-validation in a majority of
studies can be considered to be sufficient to accept the validity of the surrogate endpoint.

Alternative candidate surrogate endpoints may be investigated when validation of a surrogate
endpoint fails or an endpoint is deemed a weak surrogate. However, less perfect surrogate endpoints
may be considered reasonable in a situation, for example, where the need for timely evaluation of a
new intervention outweighs the need for further research. This may be the case when in a regulatory
setting a licensing decision about a new intervention is based conditional on a surrogate marker,
but the treatment is re-evaluated when data on the final clinical outcome become available. We
discuss these issues further in the next section.

3.8 Discussion of surrogacy criteria, other surrogacy models and further work

As described above, the between-studies correlation equal to ±1 indicates perfect surrogacy. In
practice, it is difficult to quantify how large the correlation should be in order to consider the
surrogate endpoint suitable to make the prediction. Some authors claimed that a high level of
association is required to demonstrate surrogacy. For example, Lassere et al in their Biomarker-
Surrogacy Evaluation Schema defined such high association by the square of the between-studies
correlation (or so-called adjusted R-squared) above 0.6 [70], and the German Institute of Quality
and Efficiency in Health Care (IQWiG) requires high correlation with the lower limit of the 95%
confidence interval above 0.85 [71]. Other authors emphasised that the decision of whether the
surrogate endpoint may be used to make the prediction of the clinical benefit should be based on
the balance between the strength of the surrogate relationship and the need for the decision to
be made about the effectiveness of the new treatment, for example for regulatory purposes [72].
Moreover, the strength (or weakness) of the surrogate relationship will manifest itself in the width
of the predicted interval of the treatment effect on the final outcome. A smaller value of the
correlation will result in a larger interval and hence increased uncertainty about the regulatory
or clinical decision made based on such prediction. The implication of this is that perhaps we
don’t need criteria about the correlation and instead we need only look at the predictions [48].
Such predicted estimate (along with the uncertainty) of the treatment effect may be used in HTA
decision making. The evaluation of the quality of predictions can be achieved through a cross-
validation procedure, discussed in Section 3.6.1.

In this TSD, we focused on meta-analytic methods for summary data which, when applied to
surrogate endpoint evaluation, describe level 1 of evidence in the hierarchy described in Section
3.1.2 (Taylor and Elston [30]), which is most relevant to regulatory decision making. When IPD
are available, surrogate endpoints can be evaluated at both individual- and study-level (levels 2
and 1 of evidence). Methods by Buyse et al. [9] were developed to model surrogate endpoints at
the arm level by extending the ideas developed by Prentice [65] to a meta-analytic framework. The
authors developed a mixed model framework where two measures, the individual-level R-squared
and the trial-level R-squared, were developed to validate candidate surrogate endpoint at both
levels simultaneously. These methods are developed in a frequentist approach. Various extensions
to this approach have been developed [7], for example for the time-to-event data by Burzykowki et
al. [10] extended further to a Bayesian framework by Renfro et al. [11].

3.8.1 Further work

As discussed in Section 3.1.4, surrogate relationship may depend on the mechanism of action of
treatments or treatment classes. When this is the case, surrogate relationship may be investi-
gated in subgroups. Data included in such analysis will be limited to a certain class of treatments.
This may dramatically reduce evidence base for surrogate endpoint evaluation. To overcome this
limitation, new methods have recently been developed. Bujkiewicz et al, developed a bivariate
network meta-analytic method for surrogate endpoint evaluation [48]. The method allows for mod-
elling surrogate relationships in each treatment contrast individually whilst borrowing information
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from other treatment contrasts by taking into account the network structure of the data. The
authors proposed an extension of the method that in addition to modelling the study-level surro-
gate relationship (within each treatment contrast), a treatment-level surrogacy is also modelled by
assuming additional similarity between the treatments. This extended method allows for predicting
treatment effect on the final outcome for a new study and a new treatment. Another method has
recently been developed by Papanikos at al which allows for borrowing information about surrogate
relationships between treatment classes [73]. Two versions of the method are discussed by the au-
thors, one assuming exchangeability (similarity) of the surrogate relationships across the treatment
classes and a model which relaxes this assumption by allowing for partial exchangeability, i.e. the
level of exchangeability is defined by a probability of similarity which is learned from the data.
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4 Multivariate random effects meta-analysis (MRMA)

In this Section, we extend the bivariate meta-analytic methods to a more general case for multiple
outcomes. We begin with the technical description of the general model and discuss additional
complexities regarding the prior distributions for the between-studies covariances. We then discuss
two alternative parameterisations of the method, in the product normal formulation. We then
apply the methods to the example in rheumatoid arthritis introduced in Section 2.3. We follow this
by a discussion of the benefits of the multivariate meta-analysis and its application to modelling
multiple surrogate endpoints.

4.1 MRMA in the standard form

Suppose our data consists of treatment effects measured on N outcomes (Y1, Y2, . . . , YN ). If we
assume that these effect are normally distributed (i.e. they are continuous outcomes or transfor-
mations of other outcomes) and correlated, we can model them simultaneously in the multivariate
random-effect meta-analysis (MRMA) model, by extending BRMA model described in Section 2.1,
as follows:

Y1i

Y2i
...

YNi

 ∼ N




δ1i

δ2i
...
δNi

 ,Σi

 , Σi =


σ2

1i σ1iσ2iρ
12
wi · · · σ1iσNiρ

1N
wi

σ2iσ1iρ
12
wi σ2

2i · · · σ2iσNiρ
2N
wi

...
...

. . .
...

σNiσ1iρ
1N
wi σNiσ2iρ

2N
wi · · · σ2

Ni

 (11)


δ1i

δ2i
...
δNi

 ∼ N




d1

d2
...
dN

 ,T

 , T =


τ2

1 τ1τ2ρ
12 · · · τ1τNρ

1N

τ2τ1ρ
12 τ2

2 · · · τ2τNρ
2N

...
...

. . .
...

τNτ1ρ
1N τNτ2ρ

2N · · · τ2
N

 . (12)

In the above model, the treatment effects Y1i, Y2i, . . . , YNi on N outcomes in each study i are
the estimates of correlated true effects δ1i, δ2i, . . . , δNi with corresponding within-study covariance
matrices Σi of the estimates. The elements of Σi are assumed known as discussed in Section 2.1.
The study-level true effects δji (j = 1, . . . N) are assumed exchangeable and hence follow a common
multivariate normal distribution with means (d1, d2, . . . , dN ) and covariance T in this hierarchical
framework. Equations (11) and (12) describe the within-study and the between-studies models
respectively. In the Bayesian framework, prior distributions need to be placed on the mean effects,
for example dj ∼ N(0.0, 1000) and the between-studies covariance matrix T.

4.1.1 Prior distribution on the between-studies covariance matrix

There is an additional complexity in multivariate meta-analysis of more than two outcomes, in
particular when it comes to placing prior distributions on the between-studies covariances. A
matrix of covariances has to satisfy certain conditions to be a proper covariance matrix. In linear
algebra, matrix satisfying such conditions is called positive semi-definite. A prior distribution
has to be placed on the covariance matrix in such a way to ensure that the matrix satisfies this
condition. In contrast to the bivariate case, where it is sufficient to ensure that each element of
the covariance matrix is given a prior distribution restricting the parameters to possible values
(positive for the variances and between -1 and 1 for the correlation), in the general case a prior
distribution has to be placed on the whole variance-covariance matrix or the correlation matrix.
Placing independent prior distributions on the elements of the covariance matrix in general case,
may lead to set of sampled values (in a MCMC simulation) amounting to the covariance matrix that
is not positive semi-definite. There are a number of approaches to constructing a prior distribution
on the between-studies covariance matrix, for example by using so called separation strategy with
either Cholesky or spherical decomposition, which we describe in Appendix C.1.
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4.2 MRMA in the product normal formulation

Multivariate meta-analysis can be parameterised in the product normal formulation by extending
the model described in Section 2.2 to multiple outcomes. This approach has a number of advantages.
In contrast to placing a prior distribution on the covariance matrix as a whole, the product normal
formulation allows direct control over the prior distributions on all elements of the between-studies
covariance matrix (between-studies standard deviations and correlations). It also describes the
association patterns between the treatment effects on all outcomes which is useful when modelling
multiple surrogate endpoints which we discuss in Section 4.5.

For simplicity, we focus here on the trivariate random-effect meta-analysis (TRMA), i.e. meta
analysis of treatment effects on three correlated outcomes and describe MRMA for correlated
treatment effects on any number of outcomes in the product normal formulation (MRMA PNF)
in Appendix C.7. One of the advantages of the PNF for the multivariate meta-analysis is that
it allows for a flexible modelling of the covariance structure. To illustrate this we describe two
scenarios, one with fully unstructured covariance matrix and one with some structure imposed on
the covariance. The two scenarios are illustrated graphically in Figure 4.

Figure 4: Scenarios for modelling multiple outcomes; (a) true treatment effects on all three outcomes
are correlated and modelled using unstructured covariance matrix T , (b) true effects on outcomes
one and three, δ1 and δ3 are conditionally independent, conditional on δ2, which is modelled with
structured covariance matrix equivalent to the precision matrix T−1 with element {1, 3} equal to
zero.

(a)

δ3

δ1 δ2
(b)

δ1 δ2 δ3

T =

 · · ·· · ·
· · ·

 T−1 =

 · · 0
· · ·
0 · ·



4.2.1 TRMA PNF unstructured model

For the first scenario where the true treatment effects δji on all three outcomes are correlated,
represented graphically in Figure 4a, the between-studies covariance has an unstructured form
(this means that all three treatment effects are correlated and there are no special assumptions
made about the covariance structure). The between study model (12) for three outcomes for this
scenario is re-parameterised in the product normal formulation as a series of univariate conditional
distributions 

δ1i ∼ N(η1, ψ
2
1)

δ2i | δ1i ∼ N(η2i, ψ
2
2)

η2i = λ20 + λ21δ1i

δ3i | δ1i, δ2i ∼ N(η3i, ψ
2
3)

η3i = λ30 + λ31δ1i + λ32δ2i,

(13)

where λ20 and λ21 represent the intercept and slope for the association between the treatment effect
on outcomes 2 and 1, and λ30, λ31 and λ32 denote the intercept and the slopes for the association
between treatment effects on outcome 3 and effects on outcomes 1 and 2, specifically λ31 is the
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slope between the treatment effects on outcomes 3 and 1 and λ32 is the slope between the effects on
outcomes 3 and 2 respectively. Instead of placing independent non-informative prior distributions
on all the parameters of the model, relationships between these parameters and the elements of the
between-studies covariance matrix are derived to allow to take into account the inter-relationship
between the parameters. These relationships have the following forms

ψ2
1 = τ2

1 , ψ2
2 = τ2

2 − λ2
21τ

2
1 , ψ2

3 = τ2
3 − λ2

31τ
2
1 − λ2

32τ
2
2 − 2λ31λ32λ21τ

2
1 ,

λ21 =
τ2

τ1
ρ12, λ31 =

τ3

(
ρ13 − ρ12ρ23

)
τ1

(
1− (ρ12)2

) , λ32 =
τ3

(
ρ23 − ρ12ρ13

)
τ2

(
1− (ρ12)2

) (14)

which are obtained by following the procedure described in detail in Section C.7.1 for N -dimensional
case. Having established them, allows us to place prior distributions on the between-studies stan-
dard deviations and correlations. By placing prior distributions on these parameters, for example
ρ12, ρ13, ρ23 ∼ Unif(−1, 1), τ1(2,3) ∼ Unif(0, 2), the above derived relationships give the implied
prior distribution on the parameters λ21, λ31, λ32, ψ1, ψ2 and ψ3. Note that the between-studies
correlations and standard deviations are inter-related and their relationships with each other and
with other parameters are defined by the formulaes (4.2.1). The remaining parameters are given
“vague” prior distributions, η1 ∼ N(0, 1000), λ20(30) ∼ N(0, 1000).
Note also that the pooled effects d1(2,3) on the three outcomes in model (12) are also directly linked
to the model (13); d1 = η1, d2 = λ20 + λ21d1 and d3 = λ30 + λ31d1 + λ32d2. It is possible to centre
the true effects on outcomes 1 and 2 (by replacing δji with (δji − δji) in the third and fifth line of
equation (13), which can be useful if there are problems with autocorrelation) in which case the
pooled effects will be equal to the intercepts; d2 = λ20 and d3 = λ30.

4.2.2 TRMA PNF structured model

The aforementioned TRMA PNF model may be computationally demanding and even more so for
MRMA of many outcomes, as it requires many parameters to be estimated and relatively large data
sets may be needed to fit the model. Another option, that helps to reduce the number of parameters
to be estimated, is a simplified model assuming conditional independence between treatment effects
on some of the outcomes. For TRMA, such assumption of conditional independence can be made,
for example, between the treatment effects on outcomes 1 and 3. We can consider a situation
where treatment effect is measured on different outcomes sequentially in time (or on the same
outcome repeatedly in time). For example, if treatment effect on the first outcome is measured at
12 months, second at 24 months and third at 36 months, then it may be conceivable to assume
that the effect on the final outcome may be conditionally independent from the effect on the first
outcome conditional on the second. This scenario, illustrated in Figure 4b, can be described by a
simplified between-studies model with the true effect on the third outcome now conditional on the
effect on the second outcome only: 

δ1i ∼ N(η1, ψ
2
1)

δ2i | δ1i ∼ N(η2i, ψ
2
2)

η2i = λ20 + λ21 µ1i

δ3i | δ2i ∼ N(η3i, ψ
2
3)

η3i = λ30 + λ32 δ2i,

(15)

The assumption of conditional independence of the true treatment effects on outcomes three and
one, δ3 and δ1, conditional on the effect on outcome two, δ2 puts a structure on the covariance matrix
giving the corresponding element {1, 3} of the inverse covariance (precision) matrix equal to zero.
This means that partial correlation between the true treatment effects on outcomes one and three
conditional on the true treatment effect on outcome two ρ13|2 = 0. Since the partial correlation
between δ1 and δ3 (adjusted for δ2) equals ρ13|2 =

(
ρ13 − ρ12ρ23

)
/
√

1− (ρ12)2
√

1− (ρ23)2 = 0,
it implies that ρ13 = ρ12ρ23. This reduces the number of parameters in the model that need to
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be estimated and also simplifies the relationships between the parameters of the model with the
elements of the between-studies covariance matrix:

ψ2
1 = τ2

1 , ψ2
2 = τ2

2 − λ2
21τ

2
1 , ψ2

3 = τ2
3 − λ2

32τ
2
2 ,

λ21 = ρ12 τ2

τ1
, λ32 = ρ23 τ3

τ2
, (16)

which both can have an advantage in scenarios with multiple outcomes beyond trivariate case
as discussed in Appendix C.7. As in the case of the unstructured covariance matrix, placing
prior distributions directly on the between-studies standard deviations τ1(2,3) ∼ N(0, 10)I(0, ) and

correlations ρ12(23) ∼ Unif(−1, 1) gives implied prior distributions placed on the parameters of
the model (15), ψ1(2,3) and λ21(32) obtained from the the derived relationship between the two
sets of parameters. The remaining parameters are given non-informative prior distributions η1 ∼
N(0, 1000), λ20(30) ∼ N(0, 1000). The pooled effects d1(2,3) on the three outcomes in model (12)
are also directly linked to the model (15); d1 = η1, d2 = λ20 + λ21d1 and d3 = λ30 + λ32d2. As in
the model in Section 4.2.1, centering of the true effects on outcomes 1 and 2 can be applied to this
model in which case the pooled effects would equal the intercepts.

4.3 Example: rheumatoid arthritis

To illustrate the use of MRMA methods, we return to the example in rheumatoid arthritis described
in Section 2.3. We apply the methods discussed in this section to meta-analyse treatment effects
on three outcomes, HAQ, DAS-28 and ACR20 from RA data included in Table 1. The results
of applying MRMA with Cholesky decomposition and PNF with unstructured covariance, to the
three outcomes in RA, are presented in Table 9 along with the results from univariate and bivariate
meta-analysis, which were listed in Table 2, for comparison. Results of applying MRMA models
with spherical decomposition and PNF with structured covariance are also available and can be
found in Appendix C. The code for all four MRMA models and data corresponding to the trivariate
case (of DAS-28, ACR20 and HAQ) are included in Appendix C.

The results are based on 50,000 iterations after a burn-in of 50,000 and applying thinning every
10 iteration (500,000 iterations were run after burn-in).

When applying MRMA to jointly synthesise the treatment effects on the three outcomes (ex-
tending application of BRMA to RA data in Section 2.3 to TRMA), we were able to include three
additional studies (which reported the ACR20, but not the HAQ or DAS-28 scores). By incorporat-
ing an additional outcome, ACR20, we not only extended the data by those three studies, but also
incorporated the data on ACR20 from eight studies already in BRMA, which reported the HAQ
and/or DAS-28 as well as ACR20 (the details can be found in Table 1). Adding ACR20 in TRMA
did not, however, lead to any change in the point estimate of HAQ or its uncertainty; they remained
almost the same as in BRMA, perhaps with slightly increased uncertainty. The between-studies
heterogeneity increased slightly (τH increased from 0.21 to 0.22 when using BRMA and TRMA
in the standard form and from 0.22 to 0.23 when using the PNF) after inclusion of the 3 studies
reporting the ACR20. This is likely due to the relatively high between-studies heterogeneity of the
treatment effects on ACR20 across the studies and lack of correlation between the true treatment
effects on ACR20 and HAQ or DAS28.

The between-studies correlation was estimated higher for TRMA with the Cholesky decompo-
sition compared to TRMA in the product normal formulation. This is likely due to the fact that
these models do not use the same prior distributions for the correlations. However, the uncertainty
around the correlation was comparable, with more precise estimate obtained from TRMA with
Cholesky decomposition.
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We focussed here on the estimate of the treatment of HAQ as an outcome of particular interest
in HTA as it is a disease-specific measure of quality of life in RA. However, in general terms,
all outcomes may be of interest in multivariate meta-analysis and can be investigated in a similar
manned. In our example in RA, the average treatment effect on other outcomes did not benefit from
the multivariate approach in terms of reduced uncertainty. The point estimate for the treatment
effect on DAS-28 has shifted slightly, but the uncertainty remained the same when using both
BRMA and TRMA. Treatment effect on ACR20 remained unchanged.

4.4 Benefits of multivariate meta-analysis

The benefits of multivariate meta-analysis are diverse but mostly are related to the potential gain
in precision when estimating effects of treatments, as discussed by Riley et al. [14]. Such gain
has been quantified by measures of efficiency [74] and borrowing of strength (BoS) [75]. Copas et
al. [74] propose that, in comparison to a multivariate (or network) meta-analysis with the same
magnitude of between-trial heterogeneity, a standard (univariate) meta-analysis (of just the direct
evidence in NMA) is similar to throwing away 100×(1−E)% of the available studies. The efficiency
(E) is defined by,

E =
variance of summary result based on direct and related evidence

variance of summary result based on only direct evidence

where “related evidence” refers to either indirect or correlated evidence (or both), and the variance
relates to the original scale of the meta-analysis (so typically the log relative risk, log odds ratio,
log hazard ratio, or mean difference). For example, if E = 0.9 then a standard meta-analysis is
similar to throwing away 10% of available studies and patients (and events). Let us also define n
as the number of available studies with direct evidence (i.e. those that would contribute toward a
standard meta-analysis). Then, the extra information gained toward a particular summary meta-
analysis result by using indirect or correlated evidence can also be considered similar to having
found direct evidence from a further n × ((1 − E))/E studies of a similar size to the n trials.
For example, if there are nine studies providing direct evidence about an outcome for a standard
univariate meta-analysis and E = 0.9, then the advantage of using a multivariate meta-analysis is
like finding direct evidence for that outcome from a further 9× ((1− 0.9))/0.9 = 1 study. We thus
gain the considerable time, effort and money invested in about one research study.

Jackson et al. also propose the borrowing of strength (BoS) statistic, [75] which can be
calculated for each summary result within a multivariate or network meta-analysis by BoS =
100× (1−E)%. BoS provides the percentage reduction in the variance of a summary result that is
due to (borrowed from) correlated or indirect evidence. An equivalent way of interpreting BoS is
the percentage weight in the meta-analysis that is given to the correlated or indirect evidence [76].
For example, in a network meta-analysis, a BoS of 0% indicates that the summary result is based
only on direct evidence, whereas a BoS of 100% indicates that it is based entirely on indirect evi-
dence. Riley et al. show how to derive percentage study weights for multi-parameter meta-analysis
models, including network and multivariate meta-analysis [77].

Following Riley et al. [14], the potential importance of a multivariate meta-analysis of multiple
outcomes is greatest when borrowing of information and gain in precision are large, which is more
likely when:

• the proportion of studies without direct evidence for an outcome of interest is large;

• results for other outcomes are available in studies where an outcome of interest is not reported;

• and the magnitude of correlation amongst outcomes is large (e.g. > 0.5 or < -0.5), either
within-studies or between-studies.

Riley et al. [14] suggest that BoS and (1-E) are usually greatest in a network meta-analysis
of multiple treatments; that is, more information is usually gained about multiple treatments via
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the consistency assumption than is gained about multiple outcomes via correlation. A multivariate
meta-analysis of multiple outcomes is best reserved for a set of highly correlated outcomes, as
otherwise BoS and E are usually small. Such outcomes should be identified and specified in advance
of analysis, for example using clinical judgement and statistical knowledge, so as to avoid data
dredging across different sets of outcomes. A multivariate meta-analysis of multiple outcomes is
also best reserved for a situation with missing outcomes (at the study-level), as anecdotal evidence
suggests that BoS for an outcome is approximately bounded by the percentage of missing data for
that outcome. For example, in multivariate meta-analysis to examine the prognostic effect of a
1-unit increase of fibrinogen on CVD rate, the percentage of trials with a missing fully adjusted
outcome is 55%(= 100%× 17/31), and thus the multivariate approach is flagged as worthwhile as
BoS could be as high as 55% for the fully adjusted pooled result. As discussed, the actual BoS
was 53% and thus very close to 55%, due to the near perfect correlation between partially and
fully adjusted effects. In contrast, in situations with complete data or a low percentage of missing
outcomes, BoS (and thus a multivariate meta-analysis) is unlikely to be important. Multivariate
meta-analysis is likely to be most advantageous in terms of large BoS when there are missing
outcome data. In situations with complete data (i.e. all outcomes are available in all studies) BoS
will usually be small (e.g. < 10%). Also, multivariate meta-analysis cannot handle trials that
do not report any of the outcomes of interest. Therefore, although it can reduce the impact of
selective outcome reporting in published trials, it cannot reduce the impact of non-publication of
entire trials (publication bias).

In addition to increasing precision, the extra information used in multivariate meta-analysis
may lead to different summary effect estimates compared to univariate meta-analysis. This is most
likely to occur in situations with selectively missing data for some outcomes. For example Kirkham
et al. [20] conclude that multivariate meta-analysis can reduce the impact of outcome reporting
bias, where some outcomes are selectively missing (for example, based on their p-value) but other
correlated outcomes (from which information can be borrowed) are more consistently available.

If a formal comparison of correlated treatment effects is of interest (e.g. to estimate the difference
between the treatment effects on systolic and diastolic blood pressure), then this should always be
done in a multivariate framework regardless of the amount of missing data, in order to account for
correlations between treatment effects and thus avoid erroneous confidence intervals and p-values
[4]. Similarly, a network meta-analysis of multiple treatments is preferable even if all trials examine
all treatments, as we require a single analysis framework for estimating and comparing the effects
of each treatment.

The benefits of multivariate (and network) meta-analysis depend on missing study results being
missing at random [78]. We are assuming that the relationships that we do observe in some trials
are transferable to other trials where they are unobserved. For example, in a multivariate meta-
analysis of multiple outcomes the observed linear association (correlation) of effects for pairs of
outcomes (both within-studies and between-studies) is assumed to be transferable to other studies
where only one of the outcomes is available. This relationship is also used to justify surrogate
outcomes [79, 12], but often receives criticism and debate therein [80]. Missing not at random may
be more appropriate when results are missing due to selective outcome reporting [81], or selective
choice of analyses [82]. Missing at random assumes that the distribution of missing values is known
conditional on other variables that are available. However, with selective outcome reporting, it
is likely that the full set of factors needed (for the missing at random assumption to hold) is
unavailable. However, even by conditioning on one of the factors related to the missingness (here
a correlated outcome) we may do better (in terms of statistical properties of the summary meta-
analysis results) in a multivariate meta-analysis, than in a univariate meta-analysis (which does
not condition on any of the factors). A multivariate approach may therefore still reduce selective
reporting biases in this situation [20], but not completely.
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4.5 Application to multiple surrogate endpoints

Most meta-analytic methods for surrogate endpoint evaluation are designed to evaluate a single sur-
rogate endpoint. However, methods for multiple surrogate endpoints evaluated as joint predictors
of clinical benefit have also been proposed. The idea of evaluating multiple surrogate endpoints
jointly is not new. In the summary of a National Institutes of Health Workshop on the use of
surrogate endpoints, Gruttola et al. [83] made a number of recommendations for future research
that included development of models that can accommodate multiple surrogate endpoints and/or
multiple clinical outcomes. Methods for evaluating multiple surrogate endpoints were proposed by
Xu and Zeger [84] for time-to-event data modelled jointly with multiple biomarkers measured lon-
gitudinally. Other examples of validating multiple surrogate endpoints include the plasma HIV-1
RNA and CD4+ lymphocytes as predictors of progression to AIDS in HIV-positive patients [85, 86]
and relapse rate and number of active lesions in the brain as predictors of disability progression in
relapsing remitting multiple sclerosis (RRMS) [87]. These studies investigated study-level surrogacy
using individual-level data.

Bujkiewicz et al developed methods for multivariate meta-analysis in product normal formu-
lation, described in Sections 4.2.1 and 4.2.2, to evaluate multiple surrogate endpoints in a meta-
analytic framework [13]. This can be achieved in the same way as using the bivariate meta-analysis,
by extending BRMA to multiple outcomes: the number of surrogate endpoints plus the final out-
come. Both scenarios depicted graphically in Figure 4, and many more for any number of outcomes
or covariance structures, could be investigated. Similarly as for BRMA, the regression coefficients,
the intercept, slope and the conditional variance, can be used to describe and evaluate surrogate
relationships. When using MRMA in the standard form, the between-studies correlations (or cor-
relations squared) can be used to quantify the strength of the surrogate relationship. The choice
between the models (and appropriate structure for the covariance matrix) can be made based on
the biological plausibility of the correlations supported by the exploratory analysis of the data
and verified by fitting alternative models and making comparison using the deviance information
criteria (DIC) or cross-validation procedure. As in bivariate case discussed in Section 3.4, the as-
sumption of random effect for the surrogate endpoints may not be satisfied and it may be preferable
to assume fixed effects for the true treatment effects on the surrogate endpoints, as in the model
by Daniels and Hughes (7) for a single surrogate endpoint. A similar approach was investigated by
Pozzi et al. [88].
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5 Network meta-analysis of multiple correlated outcomes

The methods and examples considered in the previous sections were focused on multiple outcomes.
The heterogeneity of evidence is also often related to multiple treatments. Data from RCTs inves-
tigating multiple treatments can be synthesised simultaneously using NMA, which is well explained
in the NICE DSU TSD by Dias et al. [41]. However, there is a growing interest in accommodating
both multiple outcomes and multiple treatments together, in order to help identify the best treat-
ment across multiple clinically relevant outcomes [89, 90, 91, 92, 93, 94]. This is achievable, but
challenging due to the extra complexity of the statistical models required.

There is a growing body of literature on methods for multivariate network meta-analysis
(mvNMA). For example, Efthimiou et al. [89] proposed a model for the joint modelling of odds
ratios on multiple endpoints. Efthimiou et al. then developed another model [91] that is a network
extension of an alternative multivariate meta-analytic model that was originally proposed by Riley
et al.[46]. The authors perform a network meta-analysis of 68 studies comparing 13 active antimanic
drugs and placebo for acute mania. Two primary outcomes of interest were efficacy (defined as the
proportion of patients with at least a 50% reduction in manic symptoms from baseline to week 3)
and non-acceptability (defined as the proportion of patients with treatment discontinuation before
3 weeks). These are likely to be negatively correlated (as patients often discontinue treatment due
to lack of efficacy), so the authors extend a network meta-analysis framework to jointly analyse
these outcomes and account for their correlation (estimated to be about -0.5; by applying an ex-
tension of Riley’s overall correlation modelling approach [46, 91], which avoids having to know the
within-study correlations which were unavailable here). This is especially important as 19 of the
68 studies provided data on only one of the two outcomes. Compared to considering each outcome
separately, this approach produces narrower confidence intervals for summary treatment effects
and has an impact on the relative ranking of some of the treatments. In particular, carbamazepine
ranks as the most effective treatment in terms of response when considering outcomes separately,
but falls to fourth place when accounting for their correlation.

Achana et al. [90] developed a model for multiple correlated outcomes in multi-arm studies
in public health. The authors extend the standard NMA model to multiple outcome settings in
two stages. In the first stage, information is borrowed across outcomes as well as across studies
through modelling the within-study and between-studies correlation structure. In the second stage,
an additional assumption is made, that intervention effects are exchangeable between outcomes, to
predict effect estimates for all outcomes. This enables prediction of treatment effects on outcomes
for which evidence is either sparse or the treatment effects had not been considered by any one of
the studies included in the analysis. Achana et al. applied the methods to binary outcome data
from a systematic review evaluating the effectiveness of nine home safety interventions on uptake
of three poisoning prevention practices (safe storage of medicines, safe storage of other household
products, and possession of poison centre control telephone number) in households with children.
The first stage multivariate models produced broadly similar point estimates of intervention effects
as the univariate approach to NMA, but the uncertainty around the multivariate estimates varied
depending on the prior distribution specified for the between-studies covariance structure. The
second stage multivariate analyses produced more precise effect estimates while enabling interven-
tion effects to be predicted for all outcomes, including intervention effects on outcomes not directly
considered by the studies included in the analysis.

Bujkiewicz et al adapted and developed further these ideas for use in surrogate endpoint eval-
uation, where surrogate relationships may vary across treatment contrasts [48].

In this TSD, we start by introducing a simple bivariate network meta-analysis (bvNMA) for
data from two-arm studies by showing how BRMA, introduced in Section 2.1, extends to bvNMA
by taking into account the network structure of the data (entered at the contrast level, i.e. as
relative effects). We then describe an alternative formulation for data entered at the arm level
(absolute effects in each treatment arm). To clarify, both models are contrast based, only the data
entry is at either contrast or arm level leading to different parameterisations of the within-study

50



model. We then move onto describing a general model of mvNMA for multi-arm studies of multiple
outcomes. We illustrate the use of this method in an example in multiple sclerosis.

5.1 Bivariate network meta-analysis (bvNMA) for contrast level data entry

In the pairwise meta-analytic methods we model treatment effects corresponding to the same treat-
ment contrast (or sometimes class of treatments) where the treatment effects follow a common
distribution at the between-studies level. In contrast to this, the NMA methods allow us to model
simultaneously effects corresponding to multiple treatment contrasts and only the effects corre-
sponding to the same treatment contrast follow the same distribution. In other words, only the
treatment effects corresponding to the same treatment contrast are assumed similar (exchangeable).
The consistency assumption then brings all the evidence together by combining the direct effects
(for example of treatments B vs A and C vs A, obtained from studies of these specific treatment
contrasts) and indirect effects (C vs B, obtained from treatment effects B and C vs a common refer-
ence treatment A). This is a common approach to NMA, described in detail for the univariate case
by Dias et al. [41]. The extension from pairwise model to NMA model is made by distinguishing
between studies/effects of different contrasts and allowing for consistency assumption. In a similar
way, pairwise BRMA model, discussed in Section 2.1, can be generalised to bvNMA.

To model correlated treatment effects on two outcomes for multiple treatment contrasts, the
assumption made by BRMA, that the true effects follow a common distribution, can be replaced by
an assumption that the true effects corresponding to different treatment contrasts follow separate
distributions (but common to studies from the same treatment contrasts). This naturally leads to
allowing the elements of the between-studies covariance matrix (the between-studies correlations
ρ12
kl between the treatment effects l vs. k on two outcomes and the heterogeneity parameters for

the treatment effects on the two outcomes τ2
(kl)1 and τ2

(kl)2) to vary across the treatment contrasts
kl.

To take into account the network structure of the data, we model the treatment effect differences
Y(kl)ij between treatments k and l in study i for outcome j = 1, 2, following an approach by
Bujkiewicz et al [48]:(

Y(kl)i1

Y(kl)i2

)
∼ N
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where k and l denote baseline (control) and experimental treatments respectively in study i, δ(kl)ij

denote the random true treatment effects (differences between the effects of treatments k and l)
on outcome j in study i, and the d(kl)j are mean treatment effect differences between treatments k
and l for each outcome j. The first-order consistency assumption, described by Lu and Ades [95],
is extended here to the bivariate case. For any three treatments (b, k, l), the treatment differences
(δ(kl)ij) satisfy the following transitivity relations(

δ(kl)i1

δ(kl)i2

)
=

(
δ(bl)i1 − δ(bk)i1

δ(bl)i2 − δ(bk)i2

)
. (19)

These relationships imply (by taking their mean) the first order consistency equations(
d(kl)1

d(kl)2

)
=

(
d(bl)1 − d(bk)1

d(bl)2 − d(bk)2

)
(20)

which represent the relationships between the treatment contrasts in the population. When b = 1 is
a common reference treatment in the network, the treatment effects of each treatment k relative to
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this common reference treatment 1; the d(1k)j are referred to as basic parameters for each outcome
j, with d(11)j = 0 and the others are given prior distributions:

d(1k)j ∼ N(0, 103). (21)

Prior distributions are also placed on the elements of the between-studies variance-covariance ma-
trices. As in BRMA, prior distributions for the heterogeneity parameters are selected to ensure that
they are restricted to plausible positive values, such as τ(kl)j ∼ Unif(0, 2) and for the correlations

to ensure restriction to the values between −1 and 1, e.g.
ρ12kl+1

2 ∼ Beta(1.5, 1.5), thus guaranteeing
that the variance-covariance matrix for each treatment contrast is positive semi-definite.

5.2 Bivariate network meta-analysis (bvNMA) for arm level data entry

The above model was applicable to data representing the estimates of treatment effects Y(kl)ij at
the contrast level, comparing the effect of treatment l vs k for each outcome j and study i. When
data are available at the arm level, we can reformulate the bvNMA as in Achana et al [90]:(
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where the within-study correlations ρ12

wi between the estimates of treatment effects Yikj in each
arm k on the two outcomes j = 1, 2 in each study i are assumed known. The between-studies
correlations between effect on outcomes 1 and 2 for each contrast bk are given prior distributions,
for example ρ12

bk ∼ Unif(−1, 1) . The average effects can be represented in terms of the basic
parameters d(1k)j for the effect of each treatment k compared to the common reference treatment
in the network b = 1 for each outcome j:

d(bk)j = d(1k)j − d(1b)j , (22)

and the basic parameters are given prior distributions: d(1k)j ∼ N(0, 103), d11 = 0. We place prior
distributions on other parameters: the baseline effects in each study i, µibj ∼ N(0, 103) and the
heterogeneity parameters τ(bk)j ∼ Unif(0, 2), j = 1, 2.

Often homogeneity of the between-studies parameters (correlations and standard deviations) is
assumed: ρ12

bk = ρ12 and τ(bk)j = τj , j = 1, 2 resulting in a simplified form of the between-studies
model: (

δ(bk)i1

δ(bk)i2

)
∼ N

((
d(bk)1

d(bk)2

)
,

(
τ2

1 τ1τ2ρ
12

τ1τ2ρ
12 τ2
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))
with prior distributions ρ12 ∼ Unif(−1, 1), τm ∼ Unif(0, 2), d(1k)m ∼ N(0.0, 103), µibm ∼
N(0.0, 103), m = 1, 2.
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5.3 Multivariate network meta-analysis (mvNMA) for arm level data entry

We present here a mvNMA model described by Achana et al [90] assuming that the treatment effects
are normally distributed. We assume that in each study i and for each k-th arm, the estimates
of the treatment effects Yikm (such as log odds of an event) on all outcomes m (m = 1, 2, . . . ,M)
jointly follow a multivariate normal distribution: Yik1

...
YikM

 ∼ N


 θik1
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where (Yik1, . . . , YikM ) and (θib1, θib2, . . . , θibM ) represent vectors of observed and true treatment
effects respectively (for example log-odds of response) in arm k of study i and Σik is the associated
within-study covariance matrix usually assumed known but estimated in practice from the data
[2]. The within-study correlations ρmnik between treatment effects on outcomes m and n (m 6= n) in
arm k of study i can be obtained from IPD as discussed in Section 2.1.1. Vectors (µib1, . . . , µibM )
represent study-specific true baseline treatment effects and (δ(bk)i1, . . . , δ(bk)iM ) are relative effects
of treatment in arm k versus baseline treatment b in study i for outcomes (1, . . . ,M). Equation (25)
describes the between-studies model for the network of two-arm trials. The true effects δi(bk)m (m =
1, 2, . . . ,M) jointly follow a Normal distribution with mean effects d(bk)m, which are the pooled
effects of treatment k relative to treatment b and τ2

m is the between-studies variance or heterogeneity
parameter corresponding to outcome m (assuming homogeneity of the between-studies variances
and correlations across treatments as discussed in the previous section). The pooled effects d(bk)m

can be expressed as functions of basic parameters as in the bivariate case (i.e. d(bk)m = d(1k)m −
d(1b)m). This multivariate NMA extends to allow for the multi-arm trials by assuming that all
effects in trial i relative to a common baseline treatment in this trial are correlated and normally
distributed. We discuss this in more detail in Appendix D.1.

The baseline effects and the basic parameters are given minimally informative prior distribu-
tions: µibm ∼ N(0, 103) and d(1k)m ∼ N(0, 103). A prior distribution also needs to be specified
for the between-studies covariance matrix TM×M ensuring it is positive semi-definite. This can
be achieved, for example, by using a separation strategy, with spherical [95, 6] or Cholesky de-
composition [6] of the correlation matrix, as outlined by Lu and Ades [95] and more recently by
Wei and Higgins [6] (see Section 4.1.1 for details). The separation strategy following Barnard et
al. [96] expresses the covariance matrix: TM×M = V 1/2RV 1/2, where V 1/2 is a diagonal matrix
of the standard deviations and R is a positive semi-definite matrix of correlations. In Cholesky
decomposition, matrix R is represented as R = LTL with L being a M × M upper triangular
matrix. The spherical parameterization technique [6, 95] can be used to express R in terms of sine
and cosine functions of the elements in L. Using this later technique, we specified uniform prior
distributions for the spherical coordinate in our model, φmn ∼ Unif(0, π) to ensure that elements
of the correlation matrix R lie in the interval (−1, 1). Finally, the elements of V 1/2 correspond to
the between-studies standard deviation terms in TM×M and are given independent uniform prior
distributions; Unif(0, 2).
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5.4 Example: relapsing remitting multiple sclerosis (RRMS)

5.4.1 Data

Melendez-Torres et al. conducted a systematic review and economic evaluation to investigate the
clinical and cost-effectiveness of beta-interferon and glatiramer acetate as treatment options for
adults with RRMS [97]. Thirty-two studies identified in the review evaluated the impact of various
interventions across a range of RRMS outcomes: annualised relapse rate, disability progression,
proportion remaining relapsed free at end of follow-up, treatment related adverse events, and
discontinuation due to adverse events 24 months after randomisation. For purpose of illustrating
multivariate NMA modelling, we consider models for arm-level data and the bivariate case (bvNMA)
with proportion remaining relapsed free and discontinuation due to adverse events as outcomes.
Review by Melendez-Torres et al. provided summary data for these two outcomes in the form
of the number of events and the total number randomised to treatment for 22 of the 32 studies
comparing a total of 8 interventions. Table 10 summarises the available data and Figure 5 shows
network diagrams representing the data structure. Data were available for both outcomes from
11 studies with the remaining 11 studies only reporting data for the proportion relapse free. Two
of the 22 studies are 3-arm trials, one reporting data for the proportion relapse free [98] and the
other reporting both outcomes [99]. We added 0.5 continuity correction when arms had zero events.
The network for proportion relapse free shows comparisons between 8 interventions from 22 studies
whilst discontinuation due to adverse events shows comparisons between 6 interventions from 11
studies that reported both outcomes. We refer to these data as the “RRMS network data” in the
remainder of this TSD.

Figure 5: Network diagrams for proportion remaining relapse free (left graph) and discontinuation
due to adverse events at 24 months (right graph). Treatment names: Placebo (plac), Glatiramer
20 mg daily (ga20), Glatiramer 40 mg thrice weekly (ga40), IFN-B-1a 22ug SC 3x daily (ifn1a22),
IFN-B-1a 30ug IM weekly (ifn1a30), IFN-B-1a 44ug SC 3x weekly (ifn1a44), IFN-B-1a 250ug SC
every other day (ifn1a250) and IFN-B-1a pegylated 125ug every 2 weeks.
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Table 10: RRMS network data from systematic review by Melendez-Torres et al.
Study Name Treatment Number r1 n1 r2 n2 ID Arm
Euro-Canadian 2001 Placebo 1 59 120 NA NA 1 1
Euro-Canadian 2001 Glatiramer 20 mg daily 2 66 119 NA NA 1 2
GATE 2015 Placebo 1 62 84 NA NA 2 1
GATE 2015 Glatiramer 20 mg daily 2 264 357 NA NA 2 2
GALA 2013 Placebo 1 302 461 NA NA 3 1
GALA 2013 Glatiramer 40 mg thrice weekly 7 726 943 NA NA 3 2
Kappos 2011 Placebo 1 41 54 NA NA 4 1
Kappos 2011 IFN B-1a 30 mcg IM weekly 3 42 54 NA NA 4 2
REMAIN 2012 Placebo 1 7 15 NA NA 5 1
REMAIN 2012 IFN B-1a 44 mcg SC thrice weekly 4 11 15 NA NA 5 2
ADVANCE 2014 Placebo 1 370 500 NA NA 6 1
ADVANCE 2014 IFN B-1a pegylated 125 mcg every 2 weeks 8 422 512 NA NA 6 2
Knobler 1993 Placebo 1 1 6 NA NA 7 1
Knobler 1993 IFN B-1b 250 mcg SC every other day 5 10 24 NA NA 7 2
EVIDENCE 2007 IFN B-1a 30 mcg IM weekly ) 3 162 338 NA NA 8 1
EVIDENCE 2007 IFN B-1a 44 mcg SC thrice weekly 4 190 339 NA NA 8 2
CombiRx 2013 Glatiramer 20 mg daily 2 206 259 NA NA 9 1
CombiRx 2013 IFN B-1a 30 mcg IM weekly 3 185 250 NA NA 9 2
REFORMS 2012 IFN B-1a 44 mcg SC thrice weekly 4 6 65 NA NA 10 1
REFORMS 2012 IFN B-1b 250 mcg SC every other day 5 0.5 64 NA NA 10 2
Etemadifar 2006 IFN B-1a 30 mcg IM weekly 3 17 30 NA NA 11 1
Etemadifar 2006 IFN B-1a7 44 mcg SC thrice weekly 4 6 30 NA NA 11 2
Etemadifar 2006 IFN B-1b 250 mcg SC every other day 5 13 30 NA NA 11 3
CONFIRM 2012 Placebo 1 149 363 38 363 12 1
CONFIRM 2012 Glatiramer 20 mg daily 2 112 350 35 351 12 2
Bornstein 1987 Placebo 1 6 23 0.5 23 13 1
Bornstein 1987 Glatiramer 20 mg daily 2 14 25 2 25 13 2
Copolymer 1 1995 Placebo 1 34 126 1 126 14 1
Copolymer 1 1995 Glatiramer 20 mg daily 2 42 125 5 125 14 2
BRAVO 2014 Placebo 1 275 450 19 450 15 1
BRAVO 2014 IFN B-1a 30 mcg IM weekly 3 308 447 26 447 15 2
MSCRG 1996 Placebo 1 23 87 2 143 16 1
MSCRG 1996 IFN B-1a 30 mcg IM weekly 3 32 85 7 158 16 2
IFNB group 1993 Placebo 1 17 123 1 123 17 1
IFNB group 1993 IFN B-1b 250 mcg SC every other day 5 27 124 10 124 17 2
REGARD 2008 Glatiramer 20 mg daily 2 132 347 19 378 18 1
REGARD 2008 I FN B-1a 44 mcg SC thrice weekly 4 126 332 23 386 18 2
BEYOND Glatiramer 20 mg daily 2 264 448 8 448 19 1
BEYOND IFN B-1b 250 mcg SC every other day 5 520 897 13 897 19 2
BECOME 2009 Glatiramer 20 mg daily 2 28 39 0.5 39 20 1
BECOME 2009 IFN B-1b 250 mcg SC every other day 5 19 36 1 36 20 2
INCOMIN 2002 IFN B-1a 30 mcg IM weekly 3 33 92 1 92 21 1
INCOMIN 2002 IFN B-1b 250 mcg SC every other day 5 49 96 5 96 21 2
PRISMS 1998 Placebo 1 30 187 1 187 22 1
PRISMS 1998 IFN B-1a 44 mcg SC thrice weekly 4 59 184 7 184 22 2
PRISMS 1998 IFN B-1a 22 mcg SC thrice weekly 6 51 189 3 189 22 3

5.4.2 Models fitted

Fitting the mvNMA models described in this TSD requires a vector of continuous and approximately
normally distributed responses. Non-normal data should therefore be transformed so that the data
are approximately normal on the transformed scale of measurement. Regardless of data type,
however, the statistics required for analysis are exactly the same and come in the form of the arm-
specific vector of mean-responses and matrices carrying covariance information between outcomes
for each study. For our illustrative example, binary data were available as number of events and
total number randomised in each treatment-arm for proportion relapse free and discontinuation
due to adverse events. We model on the log odds scale by taking logistic transformation of the
underlying event probabilities of each outcome. Corresponding estimated standard errors on the
log odds scale were calculated using standard 2 × 2 table formulae. Within-study correlations
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were not available, hence we fitted models reflecting this lack of information by formulating prior
distributions for the within-study correlation based on assumptions about the correlation between
the treatment effect:

• In Model 1, we assumed that outcomes are uncorrelated by setting the within-study and
between-studies correlation parameters to zero. This model is therefore equivalent to fitting
separate univariate network meta-analysis (uvNMA) models.

• Model 2 assumes outcomes are uncorrelated within-studies by setting the within-study cor-
relation to zero but take count of the between-studies correlation of treatment effects on
different outcomes.

• In Model 3 we place a uniform prior distribution on the positive scale on the within-study
correlations, Unif(0, 1) encoding the assumption that more effective treatments (as measured
by the number of patients remaining relapse free) are also more likely to be associated with
increased adverse effect profile leading to discontinuation of treatment.

• Model 4 expresses a complete lack of information about the nature of the within-study cor-
relation between the treatment effects on the two outcomes by specifying a uniform prior
distribution over all possible range of correlations, Unif(−1, 1).

We chose the above scenarios as an illustration for modelling the correlation. Other scenarios may
also be considered. For example, there may be a rationale for modelling the correlation on the
negative scale, Unif(−1, 0), reflecting both worse effectiveness and increased adverse events.

5.4.3 Results

Estimates of the between-studies standard deviations along with the between-studies correlation
parameters from fitting all four models, assuming homogeneity of between-studies variances across
treatment contrasts, are presented in Table 11. The estimates of the between-studies correlation
were similar across the models (apart form model 1 which assumed no correlation); they were stable
to prior specification of the within-study correlation, with a median estimate close to 0.9 across
alternative prior specifications. Overall, the results suggest borrowing of information from mod-
elling the between-studies correlation. The resultant impact of being able to borrow information
across outcomes is a decrease in the between-studies standard deviation from 0.84 (95% CrI 0.17
to 2.08) on the log odds ratio scale in Model 1 (univariate NMA) to 0.78 (95% CrI 0.15 to 1.87)
in Model 4 (bvNMA model assuming ρw ∼ U(−1, 1)) for discontinuation due to adverse events
where we have relatively few studies reporting this outcome. This represents a small reduction in
heterogeneity on the log odds ratio scale which might indicate a meaningful reduction in between-
studies heterogeneity on odds ratio scale. For proportion relapse free where borrowing of strength
did not take place, the between-studies standard deviation remained relatively unchanged in both
univariate and bivariate models. All results are based on 70,000 iterations after a burn-in of 20,000
and applying thinning every 10 iteration.

Table 11: Estimates of the between-studies correlation and the between-studies standard deviation
parameters (medians and 95% CrIs) obtained from fitting univariate and multivariate network
meta-analysis models to the multiple sclerosis data.

model τ1 τ2 ρb
Model 1: ρw = 0, ρb=0 0.40 (0.20, 0.78) 0.84 (0.17, 2.08) 0.00 (0.00, 0.00)
Model 2: ρw = 0 0.40 (0.18, 0.79) 0.77 (0.17, 1.82) 0.90 (-0.14, 1.00)
Model 3: ρw ∼ Unif(0, 1) 0.43 (0.20, 0.83) 0.74 (0.08, 1.77) 0.83 (-0.50, 1.00)
Model 4: ρw ∼ Unif(−1, 1) 0.42 (0.20, 0.82) 0.78 (0.15, 1.87) 0.87 (-0.31, 1.00)

56



Figure 6 and Figure 7 are summary forest plots of intervention effects relative to placebo on
proportion relapse free and discontinuation due to adverse events respectively. All models produced
estimates of treatment effect with a similar degree of precision for proportion relapse free in Figure 6
but the multivariate models produced more precise estimates of treatment effect on discontinuation
than the univariate model.

Figure 6: Forest plot intervention effects relative to placebo on proportion of patients remaining
relapse free estimated from bivariate (Models 2 to 4) and univariate (model 1) random-effects NMA
models. Model 2 assumes zero within study-correlation whilst Models 3 and 4 assume Unif(0, 1)
and Unif(−1, 1) prior distributions for the within-study correlation common to all-studies.

Table 12 presents pairwise odds ratios comparing all 8 interventions relative to one another,
on the proportion relapse free from Model 1 (uvNMA) and Model 4 (bvNMA assuming ρw ∼
Unif(−1, 1)). The corresponding pairwise odds ratios for discontinuation due to adverse events
are presented in Table 13. The upper triangle of Table 12 and Table 13 display the bvNMA
results whilst the lower triangle are the estimates from the uvNMA. Interventions are consecutively
arranged top-down and left-right such that rows represent comparator interventions for estimates
in the upper half of the table whilst columns the comparators for estimates presented in the lower
half. For example, the estimated odds ratios for ifnb1a44 versus ifnb1a30 on proportion relapse free
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Figure 7: Forest plot intervention effects relative to placebo on discontinuation to due to adverse
effect of treatment from bivariate random-effect network meta-analyses (Models 2 to 4) and univari-
ate network meta-analysis (model 1). Model 2 assumes zero within-study correlation whilst Models
3 and 4 assume Unif(0, 1) and Unif(−1, 1) prior distributions for the within-study correlation
common to all-studies.

are 1.24 (95%CrI: 0.69, 2.15) and 1.22 (95% CrI: 0.67, 2.21) from univariate and bivariate models
respectively (Table 12). The corresponding estimates for ifnb1a44 vs ifnb1a30 on discontinuation
due to adverse events are 2.32 (95% CrI: 0.24, 28.05) and 2.84 (95% CrI: 0.45, 24.53) in the
univariate and bvNMA models respectively (Table 13). In the network for proportion relapse free
where we have a relatively large body of evidence, including head-to-head comparisons between
44mcg SC versus ifnb1a30 (Figure 5) from two studies [98, 100], univariate and bivariate models
produced broadly identical estimate of the treatment effect. In contrast to the proportion relapse
free, few studies reported discontinuation due to adverse events including the two studies that
directly compared ifnb1a44 vs ifnb1a30. The consequent borrowing of information between the two
outcomes in the bvNMA model suggest a worse but more precise estimate of the side-effect profile
for ifnb1a44 vs ifnb1a30 in comparison with the estimate from the uvNMA model. The comparison
between ifnb1a44 vs ifnb1a30 illustrates the situation where there is direct and indirect evidence on
the pairwise contrasts on one outcome but only indirect evidence for the same contrasts on another.
In such situation, it may be advantageous to fit a multivariate NMA and borrow information from
the network with direct and indirect evidence on pairwise to inform estimates of the corresponding
contrasts in the “indirect evidence only” network.
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5.5 Discussion of mvNMA methodology and ongoing research

Network meta-analysis in the univariate form already leads to borrowing of information from other
treatment contrasts (compared to analysing the data in each contrast separately using pairwise
meta-analysis). Therefore, we may not observe additional borrowing of strength when using mul-
tivariate meta-analysis methods. However, when a network on one outcome is sparse, such as the
network on discontinuation due to adverse events in the RRMS example, the borrowing of infor-
mation from other outcomes (in this case proportion relapse free) can reduce uncertainty around
pooled estimates. Moreover, a joint posterior distribution for the correlated average treatment
effects, used in health economic decision models may also result in more appropriate estimates of
the cost-effectiveness models [101]. Another novel application of bivariate NMA is in the area of
surrogate endpoint evaluation developed by Bujkiewicz et al [48], as discussed in Section 3.8. Such
methodology will be useful when an effect on a decision endpoint is not available from any study for
one or more interventions of interest and evidence is available on a surrogate endpoint. Predictions
then can be made about the effect on the outcome of interest for specific intervention.

Other methods for multivariate NMA have also been reported. A network meta-analysis of
multiple outcomes with individual patient data has also been proposed by Hong et al. [92] under
both contrast-based and arm-based parameterizations (where by contrast-based approach we mean
an approach aiming to estimate the average relative treatment effect of an experimental treatment
compared control, whilst the arm-based approach models absolute treatment effects on individual
treatment arms), and Hong et al. [93] developed a Bayesian framework for multivariate network
meta-analysis. These multivariate network meta-analysis models are based on the assumption of
consistency of treatment effects in the network (as described in Section 5.1), extending the approach
introduced by Lu and Ades [102]. Jackson et al. [94] developed a mvNMA model that allows for the
inconsistency, i.e the assumption of consistency in the network of treatment effects is not satisfied
and additional inconsistency term is modelled to account for this. In other words, different forms
of direct and indirect evidence may not agree, even after taking between-studies heterogeneity into
account. The inconsistency is taken into account using a design-by-treatment interaction, where
design is the composition of a trial in the network such as A vs B or three-arm trial of treatments
C, D and E compared against one another. The aim of all these methods is to obtain pooled effects
for correlated multiple outcomes and treatment contrasts in a network of studies.
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6 Discussion and extensions

6.1 Normality assumption for random effects

The methods considered here are models with random effects to reflect the assumption that the
modelled true treatment effects are different (but still similar) between the studies. The differences
in the true effects may be due to the varying populations, different treatments under investigation
in those studies or perhaps heterogeneity in the definitions of the outcomes and follow-up length
[42]. Typically, a normal distribution of the between-studies random effects is assumed to reflect the
similarity of the effects. The assumption that the true treatment effects on both outcomes (such as
log odds ratios on two outcomes) are normally distributed may, however, not always be reasonable
[103]. When dealing with departures from normality of the modelled data, this assumption can
lead to limitations of modelling and restricted inferences [104], especially when making predictive
inferences about the potential magnitude of effects in new studies or populations. For example, as
discussed by Marshall and Spiegelhalter, inadequate use of normality assumption about the random
effects may lead to “overshrinkage” of the true effects and hence to misleading inferences [105].

One way of relaxing this assumption is to use a t-distribution as recommended, for example, by
Smith, Spiegelhalter and Thomas [106] or by Lee and Thompson [104]. In contrast to the normal
distribution, the t-distribution gives more weight in the tails which is more likely to be better at
modelling extreme effects such as outlying observations [105]. If the distribution of the data is, for
example, bimodal or skewed, other approaches can be investigated such as a convolution of normal
distributions [107] or skewed t-distribution as proposed by Lee and Thompson [104].

6.2 Binary, nested and mutually exclusive outcomes

Often, data are collected from multiple binary outcomes. A standard approach is to model such data
on the log odds ratio scale (or log odds scale for single arm data) using normal approximation, as we
did in this TSD, for example for the ACR20 response in the example in rheumatoid arthritis or for
the multivariate NMA example in multiple sclerosis. Exact methods, using binomial likelihood, may
be preferable, in particular when the number of studies in the meta-analysis is small or probability
of an event is close to 0 or 1. In the bivariate case, however, the model is limited to one that ignores
the within study correlation, which may lead to biased results [43]. This issue is further discussed
by Chen et al. [108] who also propose alternative techniques for modelling correlated binomial
data. However, binomial models can be used when outcomes are mutually exclusive or have a
“is-subset-of” relationship, as described by Trikalinos et al. [109], who also discuss multivariate
meta-analytic models for categorical data.

6.3 Bayesian versus frequentist methods and related software

We used Bayesian approach to modelling multiple outcomes. Bayesian methods are most suited
to flexibly model the uncertainty for the multiple parameters in such models. Multivariate meta-
analytic models can also be implemented using frequentist approach. In Stata, for example, the
model can be implemented using the command mvmeta [110]. Bujkiewicz et al. [12] also provide
additional Stata code for cross-validation procedure for surrogate endpoint evaluation which can
be used alongside of the mvmeta command. However, only BRMA in the standard form is available
in Stata (not BRMA PNF or model by Daniels and Hughes for surrogate endpoints). Multivariate
meta-analysis can also be performed in R using mvmeta package [111]. Software for multivariate
network meta-analysis is available in R, which was developed by Jackson et al. [94] for model
accounting for inconsistency, but it also provides estimates from a model assuming consistency.
Polanin et al provide review of other packages for meta-analysis in R which include multivariate
approaches [112].
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6.4 Other application areas

As discussed in the introduction, multivariate meta-analysis has a wide range of application areas.
In addition to synthesising data on clinical effectiveness of treatments, in can also include data of
effects of treatment on adverse events (as we shown in our example of applying multivariate network
meta-analysis in multiple sclerosis). Equally, multivariate meta-analysis can be used for obtaining
estimates of the treatment effect on a common scale of HRQoL, by modelling such estimates jointly
or through mapping techniques. Bujkiewicz et al [57] showed that when use of multivariate meta-
analysis leads to more precise estimates of disease-specific measures of HRQoL, then mapping such
estimates onto a common scale, such as EQ-5D, will also result in these estimates on the common
scale obtained with increased precision, potentially leading to reduced uncertainty when making
decisions based on cost-effectiveness models (or even change in the decision about reimbursement
of a new health technology). Multivariate meta-analysis can also be used to model jointly estimates
of clinical effectiveness and HRQoL outcomes (both disease-specific and generic such as EQ-5D)
which can lead to obtaining not only pooled estimates on all outcomes but also predicting estimates
for desirable scale in a similar way as is done for surrogate endpoints, where treatment effect on the
final clinical outcome is predicted from the treatment effect on the surrogate endpoint. Alternative
mapping techniques that involve a form of multivariate meta-analysis were also proposed by Lu et
al. [113].

Dias et al. discuss a number of other applications of multivariate meta-analysis in the decision
making context [114]. They describe a number of scenarios where evidence structure can be mod-
elled by capturing functional relationship between outcomes. These scenarios include, for example,
a “chain of evidence” structures that lead to relationships between outcomes when modelling the
natural history of a disease or use of multiple time points of follow-up which can generate different
network structures of evidence at different time points.
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7 Summary and recommendations for use of multivariate meta-
analysis to inform decision modelling

In health technology assessment, decisions are often based on complex cost-effectiveness models
which require numerous input parameters. Multivariate meta-analysis can facilitate inclusion of
broader range of data in the analysis, potentially avoiding excluding valuable evidence. In the
introduction to this TSD we discussed two examples of use of bivariate meta-analysis in technology
appraisals by NICE, where this methodology allowed for inclusion of broader evidence base or
accounting for relevant correlations between treatment effects on two outcomes. In our illustrative
example in rheumatoid arthritis, we demonstrated how multivariate meta-analysis can help include
a larger number of studies when estimating treatment effect. We showed that this approach can
also potentially lead to the effectiveness estimates obtained with higher precision, which was the
case in particular when external data were incorporated into the analysis in the form of informative
prior distributions, thus highlighting the advantage of the Bayesian approach to the analysis. This
may be particularly beneficial when interest lies in the treatment effect on outcomes for which trials
have not been powered, such as adverse events. Our illustration of applying multivariate network
meta-analysis to the data in multiple sclerosis showed that modeling the effects on these outcomes
together with the effects on primary outcome can result in borrowing of information, increasing
the precision of the underpowered outcome. Multivariate meta-analytic techniques are particularly
useful in modelling surrogate endpoints or similar correlated outcomes. When treatment effects
on outcomes required for populating a decision model are not reported for a treatment under
investigation, these effects can be predicted from other outcomes using multivariate meta-analytic
framework, as we have shown in our example in multiple sclerosis.

7.1 Recommendations

When conducting an analysis for HTA decision making or other areas of evidence based medicine
the following aspects of multiple outcomes should be considered

• At the scoping stage, a careful consideration should be made when deciding on the outcomes
of interest to ensure that sources of relevant evidence are not missed.

• Correlated treatment effects on multiple endpoints should be analysed jointly when the syn-
thesis aims to obtain robust pooled estimates of the treatment effect on one or more of these
outcomes. This approach has benefits in particular when

– there are relatively few studies and borrowing of strength from other outcomes is more
likely to have an impact on the final estimate (relevant methods and examples are
described in Sections 2.1 and 4)

– a proportion of studies identified through the systematic review do not report an outcome
of interest (or missing data suggests outcome reporting bias), in which case borrowing
of strength is also more likely to have impact on the uncertainty of the estimates, but
also a more appropriate estimates can be obtained in the presence of outcome reporting
bias (see methods and examples described in Sections 2.1 and 4)

– when multiple treatment comparisons are needed and only a few studies reporting treat-
ment effect on an outcome of interest are available for some of the treatments; then taking
into account the network structure of the data will help borrow information from data
on other treatments and outcomes (see methods of multivariate NMA and an example
described in Section 5)

– a health-economic model takes inputs from multiple outcomes which are propagated
through the model using multivariate posterior distribution and accounting for the cor-
relation between the outcomes may reduce bias of the resulting cost-effectiveness esti-
mates (see methods and examples described in Section 2.1 for pairwise meta-analysis
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of treatment effects on two outcomes, Section 4 for pairwise meta-analysis of treatment
effects on multiple (at least three) outcomes and Section 5 for multiple comparisons
(network) meta-analysis of treatment effects on two or more outcomes).

• When study (or studies) investigating a new treatment does not report the treatment effect
on the final clinical outcome needed to make a decision by, for example, informing a health-
economic decision model, but treatment effect on another outcome (or multiple outcomes),
such as a surrogate endpoint, is reported, then joint synthesis of the treatment effects on the
two (or multiple) outcomes can be preformed. Such joint synthesis can be used

– to assess the strength of the surrogate relationship between the treatment effects on
the surrogate endpoint (or multiple surrogate endpoints) and the final outcome using
data from other studies reporting the treatment effects on both outcomes (see relevant
methods in Section 3.4 or for multiple surrogate endpoints in Section 4)

– and to predict the treatment effect on the final clinical outcome from an observed treat-
ment effect on the surrogate endpoint using data from the study (or multiple studies)
reporting the treatment effect on surrogate endpoint along with data from other studies
reporting the treatment effects on both outcomes (which provide evidence base for the
surrogate relationship between the treatment effects on the two outcomes (see Sections
3.6.2 and 3.1.4).

7.2 Conclusions

Multivariate meta-analysis provides a range of opportunities for effective synthesis of diverse sources
of evidence. This TSD offers recommendations on the use of different parameterisations of multi-
variate meta-analysis in different settings of application. When used appropriately, the methods
can help model available evidence more effectively in future HTAs and other settings of evidence
based decision making. In the context of HTA, such more effective modelling should increase the
likelihood of making appropriate reimbursement decisions.
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A Supplementary materials for application of bivariate meta-analysis
to the example in rheumatoid arthritis

In this supplement we provide code for the example in rheumatoid arthritis introduced in Section
2.3. In the next two sections (A.1 and A.2), we provide the details of the implementation of two
methods of BRMA: in the standard form and in the product normal formulation, applied to the
example in RA. In the last part of the appendix (Section A.3), we provide details of the analysis
with informative prior distributions described in Section 2.4.

A.1 WinBUGS code for BRMA in the standard form

A.1.1 Data requirements

In this section we provide WinBUGS code for BRMA for synthesis of data on two outcomes with
some data missing. To account for the missing data, we use model (3) described in Section 2.1.3.
The data for this model is required from the treatment effect estimates along with the population
variances (standard errors squared multiplied by the number of patients) and the number of pa-
tients. We include the data in this format below. In the below code, we also give alternative version
- with comments in grey that follow the #. When there are no missing data, data would be given as
treatment effects and corresponding standard errors, and the first part of the model (assuming the
exchangeability of population variances) will be omitted and the within-study covariance matrix Σ
constructed using SEs. The data in this format (using SEs) can also be used when missing data
are present. However, the exchangeability model for the variances (first 6 lines) will not apply and
other approaches to missing data can then be used instead (see Section 2.1.3). Please ensure
that appropriate data are used.

A.1.2 Code

model{

#exchangeability of variances to predict missing SEs

#next 6 lines should be omitted if there are no missing data

#(or using different approach for missing data)

for (k in 1:num){

var[k,1]~dnorm(0,h1)I(0,)

var[k,2]~dnorm(0,h2)I(0,)

}

h1~dgamma(1.0,0.01)

h2~dgamma(1.0,0.01)

#hirerarchical structure of the model:

for(i in 1:num) {

rho_w[i]<-corr_w # we use the same within-study correlation for all studies

prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-var[i,1]/n[i,1]

sigma[i,2,2]<-var[i,2]/n[i,2]

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]
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#when data on SEs provided (instead of var and n),

#(i.e. above exchangeability of variances model not used) then use this version:

#sigma[i,1,1]<-pow(se[i,1],2)

#sigma[i,2,2]<-pow(se[i,2],2)

#sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]

#sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]

Y[i,1:2] ~ dmnorm(delta[i,1:2],prec_w[i,1:2,1:2]) # within-study model

delta[i,1:2] ~ dmnorm(d[1:2],prec_b[1:2,1:2]) # between-studies model

}

#prior distributions:

for (j in 1:2) {

d[j] ~ dnorm(0.0,0.001)

}

prec_b[1:2,1:2]<-inverse(Cov_b[,])

for (j in 1:2) {

tau[j]~dunif(0,2)

tau.sq[j]<-pow(tau[j],2)

Cov_b[j,j]<-tau.sq[j]

}

Cov_b[1,2]<-rho*tau[1]*tau[2]

Cov_b[2,1]<-Cov_b[1,2]

rho~dunif(-0.999,0.999)

} #model end

#data

#uncertainty represented in the data as population variances and sample sizes

#used to calculate standard errors

#and to allow for exchangeability of the population variances as in Section 2.1.3

If not using this approach, data will have the following structure:

Y[,1] se[,1] Y[,2] se[,2]

...

END

list(num=18, corr_w=0.24) #number of studies and within-study correlation

#n_das Y_das var_das n_haq Y_haq var_haq

n[,1] Y[,1] var[,1] n[,2] Y[,2] var[,2]

26 -1.7 1.683457 26 -0.31 0.4410603

188 -1.6 1.88 188 -0.352 0.388497

810 -1.9 1.96 810 -0.48 0.36

72 -1.47 2.337441 72 NA NA

30 -1.87 1.698847 30 NA NA

18 -2.1 1.532179 18 NA NA

66 -0.98 2.165142 66 NA NA

22 NA NA 22 -0.45 0.443637

110 -1 1.425636 110 NA NA
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331 NA NA 331 -0.12 0.3628

37 NA NA 37 0.15 0.6399

6 -1.17 2.602115 6 NA NA

20 -1.26 2.483544 20 NA NA

83 -1.1 2.638806 83 -0.21 0.4161627

24 -2.4 0.6029454 24 NA NA

41 -1.5 2.56 41 -0.21 0.25

9 -1.9 0.4222091 9 NA NA

27 -1.3 2.169941 27 NA NA

END

#initial values

#in the presence of missing data, initial values need to be specified for the missing items

#(the missing effects Y and the missing variances var)

list(

Y = structure(.Data = c(

NA, NA, NA, NA, NA, NA, NA, 0.0, NA, 0.0, NA, 0.0, NA,0.0, 0.0,

NA, NA, 0.0,0.0, NA, 0.0, NA, NA,0.0, NA, 0.0, NA, NA, NA, 0.0,

NA, NA, NA,0.0, NA, 0.0),.Dim = c(18,2)),

rho = 0.5, tau = c(0.25, 0.25), d=c(0.0,0.0),

h1 = 0.1, h2 = 0.1,

delta = structure(.Data = c(

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25,-1.5),

.Dim = c(18,2)),

var = structure(.Data = c(

NA, NA, NA, NA, NA, NA, NA, 0.5, NA, 0.5, NA, 0.5, NA,0.5, 0.5,

NA, NA, 0.5,0.5, NA, 0.5, NA, NA,0.5, NA, 0.5, NA, NA, NA, 0.5,

NA, NA, NA,0.5, NA, 0.5),.Dim = c(18,2))

)

75



A.2 WinBUGS code for BRMA in product normal formulation

Model{

#exchangeability of variances to predict missing SEs (if using - see previous appendix)

for (k in 1:num){

var[k,1]~dnorm(0,h1)I(0,)

var[k,2]~dnorm(0,h2)I(0,)

}

h1~dgamma(1.0,0.01)

h2~dgamma(1.0,0.01)

#within study precision matrix

for (i in 1:num) {

rho_w[i]<-corr_w

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-var[i,1]/n[i,1]

sigma[i,2,2]<-var[i,2]/n[i,2]

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w[i]

}

# Hierarchical structure of the random effects model:

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2]) #within-study model

# between-studies model in the product normal formulation:

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda20+lambda21*(delta[i,1] - mean(delta[,1]))

}

eta1~dnorm(0.0, 0.001)

lambda20~dnorm(0.0, 1.0E-3)

tau.1~dunif(0,2)

tau.2~dunif(0,2)

corr.1.2~dunif(-0.999,0.999)

tau1.sq<-pow(tau.1,2)

prec1<-1/tau1.sq

tau2.sq<-pow(tau.2,2)

psi2.sq<-tau2.sq-pow(lambda21,2)*tau1.sq

prec2<-1/psi2.sq

lambda21<-corr.1.2*tau.2/tau.1

mean.das<-eta1

mean.haq<-lambda20

sd.das<-tau.1

sd.haq<-tau.2

}
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#data

list(num=18, corr_w=0.24)

n[,1] Y[,1] var[,1] n[,2] Y[,2] var[,2]

26 -1.7 1.683457 26 -0.31 0.4410603

188 -1.6 1.88 188 -0.352 0.388497

810 -1.9 1.96 810 -0.48 0.36

72 -1.47 2.337441 72 NA NA

30 -1.87 1.698847 30 NA NA

18 -2.1 1.532179 18 NA NA

66 -0.98 2.165142 66 NA NA

22 NA NA 22 -0.45 0.443637

110 -1 1.425636 110 NA NA

331 NA NA 331 -0.12 0.3628

37 NA NA 37 0.15 0.6399

6 -1.17 2.602115 6 NA NA

20 -1.26 2.483544 20 NA NA

83 -1.1 2.638806 83 -0.21 0.4161627

24 -2.4 0.6029454 24 NA NA

41 -1.5 2.56 41 -0.21 0.25

9 -1.9 0.4222091 9 NA NA

27 -1.3 2.169941 27 NA NA

END

#initial values

list(

Y = structure(.Data = c(

NA, NA, NA, NA, NA, NA, NA, 0.0, NA, 0.0, NA, 0.0, NA,0.0, 0.0,

NA, NA, 0.0,0.0, NA, 0.0, NA, NA,0.0, NA, 0.0, NA, NA, NA, 0.0,

NA, NA, NA,0.0, NA, 0.0),.Dim = c(18,2)),

corr.1.2 = 0.5,

eta1 = 0.0,

h1 = 0.1,

h2 = 0.1,

lambda20 = 0.0,

delta = structure(.Data = c(

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5,

-0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25,-1.5),

.Dim = c(18,2)),

tau.1 = 0.25,

tau.2 = 0.25,

var = structure(.Data = c(

NA, NA, NA, NA, NA, NA, NA, 0.5, NA, 0.5, NA, 0.5, NA,0.5, 0.5,

NA, NA, 0.5,0.5, NA, 0.5, NA, NA,0.5, NA, 0.5, NA, NA, NA, 0.5,

NA, NA, NA,0.5, NA, 0.5),.Dim = c(18,2))

)
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A.3 WinBUGS code for the analysis with informative prior distributions for
the correlations (as discussed in Section 2.4, with methods described in
Section 2.4.4)

Analysis of EIPD to obtain the within-study correlation

Model {

for (j in 1:n.ipd){

HAQ[j]~dnorm(thetaH,prec1)

DAS[j]~dnorm(thetaD[j],prec2)

thetaD[j]<-alpha0+alpha1*(HAQ[j]-mean(HAQ[]))

}

thetaH~dnorm(0.0, 0.001)

alpha0~ dnorm(0.0,1.0E-3)

alpha1~ dnorm(0.0,1.0E-3)

xiD~dunif(0,10)

xiH~dunif(0,10)

xiD.sq<-xiD*xiD

xiH.sq<-xiH*xiH

prec1<-1/xiH.sq

prec2<-1/xiD.sq

meanH <- thetaH

#meanH <-alpha0+alpha1*mean.das

meanD <-alpha0

varH<-xiH.sq

varD<-pow(alpha1,2)*varH+xiD.sq

covDH<-alpha1*varH

corrDH<-covDH/sqrt(varD*varH)

ftcorr.ipd<- 0.5*log((1.0+corrDH)/(1.0-corrDH))

}

#data format:

list(n.ipd=293}

HAQ[] DAS[]

-0.0773258 0.000

-0.8360777 0.125

-0.8287334 0.000

0.8641753 0.250

...

END
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Analysis of ESD to obtain estimates for constructing prior distribution for the between-
studies correlation

The same code as for BRMA (PNF) included in Section A.2 is applied to the ESD (listed below)
with removed first part dealing with missing variances (full data included in the ESD set). We only
highlight the differences (or additions) when applying the code to the external data.

#remove the following lines:

#var[k,1]~dnorm(0,h1)I(0,)

#var[k,2]~dnorm(0,h2)I(0,)

#}

#h1~dgamma(1.0,0.01)

#h2~dgamma(1.0,0.01)

#replace the within-study correlation with a prior (if assume unknown):

# rho_w[i]<-corr_w

rho_w[i]~dunif(-1,1)

#include additional line to calculate Fisher transform

#of the between-studies correlation:

ftcorr<- 0.5*log((1.0+corr.1.2)/(1.0-corr.1.2))

#data

list(num=9)

#variances in the data are standard errors squared

Y[,2] var[,2] Y[,1] var[,1]

-0.55 0.0000698 -2.2 0.0003171

-0.6 0.0222836 -2.5 0.0295069

-0.27 0.0222836 -0.82 0.0122722

-0.1 0.0222836 -0.65 0.0338

-0.29 0.0037443 -1.3 0.0241509

-0.39 0.0034321 -1.6 0.0258036

-0.38 0.0031858 -1.7 0.0226549

-0.46 0.0007451 -2 0.0059507

-0.49 0.0028311 -2 0.0248544

END

#initial values:

list(

rho_w=c(0,0,0,0,0,0,0,0,0), corr.1.2 = 0.5, eta1 = 0.0, lambda20 = 0.0,

delta = structure(.Data = c(

-1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25,

-1.5, -0.25, -1.5, -0.25, -1.5, -0.25, -1.5, -0.25),.Dim = c(9,2)),

tau.1 = 0.25, tau.2 = 0.25)
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Analysis of RA data (the main part of the analysis) with informative prior distribu-
tions for the correlations obtained from the above two sets of analyses

The code for BRMA (PNF) included in Section A.2 is run on the RA data with the following
amendments:

Replace the within-study correlation with a prior:

#rho_w[i]<-corr_w

#prior distribution for the within-study correlations

#estimated from Fisher transformed correlation from IPD

ftcorr.ipd<-0.2476

ftcorr.ipd_se<-0.058

ftcorr.ipd_prec<-1.0/(ftcorr.ipd_se*ftcorr.ipd_se)

fcorr.w~ dnorm(ftcorr.ipd,ftcorr.ipd_prec)

rho_w<-(exp(2.0*fcorr.w)-1.0)/(exp(2.0*fcorr.w)+1.0)

Replace non-informative prior distribution for the between-studies correlation with informative
prior distribution:

#corr.1.2~dunif(-0.999,0.999)

ftcorrDH<-2.0

ftcorrDH_se<-0.76

FcorrDH_prec<-1.0/(ftcorrDH_se*ftcorrDH_se)

FcorrDH~ dnorm(ftcorrDH,FcorrDH_prec)

corr.1.2<-(exp(2.0*FcorrDH)-1.0)/(exp(2.0*FcorrDH)+1.0)

Remove the within-study correlation from the data (using prior distribution here).

Remove the entry for the between-studies correlation from the initial values and include the entries
for the Fisher transformed correlations:

#corr.1.2 = 0.5,

fcorr.w=0.0,

FcorrDH=0.5,
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B Supplementary materials for evaluation of surrogate endpoints
in relapsing remitting multiple sclerosis (RRMS)

In this appendix, we provide examples of code for methods of surrogate endpoint evaluation, de-
scribed in Section 3 and applied to the illustrative example in RRMS described in Section 3.7.
The next three sections (B.1–B.3) give details of implementing methods by Daniels and Hughes,
BRMA PNF and BRMA in the standard form respectively. In Section B.4 we present R code (with
embedded bugs code for the meta-analytic models) for the cross-validation procedure introduced
in Section 3.6.1 and applied to the RRMS example in Section 3.7. Section B.5 gives an example of
the analysis for predicting the treatment effect on the final outcome in a new study reporting only
the treatment effect on the surrogate endpoint. We use model by Daniels and Hughes for this final
analysis, but the analysis can be easily adapted to use one of the BRMA methods using the code
from the earlier sections in this appendix.

B.1 WinBUGS code for model by Daniels and Hughes

Model{

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Bivariate model for surrogacy:

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2]) # within-study model

# Daniels and Hughes formulation for the between-studies model:

delta[i,1]~dnorm(0.0, 0.001)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda20+lambda21*delta[i,1]

}

# prior distributions:

lambda20~dnorm(0.0, 1.0E-3)

lambda21~dnorm(0.0, 1.0E-3)

psi.2~dunif(0,2)

psi2.sq<-pow(psi.2,2)

prec2<-1/psi2.sq

}
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#data

list(num=25)

#logrelef logrelef_se logdisef logdisef_se

Y[,1] se[,1] Y[,2] se[,2]

-0.0833816 0.0813719 0 0.2036533

-0.4155154 0.0893046 -0.3364722 0.2302073

-0.210721 0.3563859 0.1278334 0.7592028

-0.3424903 0.1067276 -0.1300531 0.2210844

-0.3856625 0.1266053 -0.461035 0.258417

-0.8915981 0.1351165 -0.3629056 0.3393006

-1.07881 0.2388631 -1.665008 0.7296625

-0.9942523 0.2406259 -0.2000212 0.74131

-0.3424903 0.0706827 -0.2097205 0.1464617

-0.3856625 0.0723215 -0.315081 0.1542706

0.0487901 0.0458876 0 0.0920902

-0.3424903 0.1348356 -0.8362481 0.3022435

-0.1625189 0.1005056 0.074108 0.1935841

-1.139434 0.0751103 -0.5340825 0.124761

-0.7985078 0.0603509 -0.2318016 0.0995418

-1.171183 0.1881434 -1.060872 0.3856541

-1.514128 0.2149895 -0.9555115 0.3515206

0.0295588 0.139198 0.2962659 0.2174605

-0.8675006 0.1082371 -0.3650315 0.1504737

-0.7985078 0.1038128 -0.3105963 0.145336

-0.1392621 0.1319462 0.2087549 0.3854737

-0.356675 0.1371439 0.040822 0.3966984

-0.9942523 0.2183502 -0.4462871 0.3555565

0.0582689 0.0695049 0.0487901 0.1145532

-0.0304592 0.0704836 0.0953102 0.1134564

END

#initial values

list(

lambda20=0.0,lambda21=0.0,

delta = structure(.Data = c(

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5),.Dim = c(25,2)),

psi.2=0.25, rho_w=0.25)
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B.2 WinBUGS code for BRMA PNF model for surrogate endpoints

Model{

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Random effects model

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2]) #within-study model

# product normal formulation for the between-studies model:

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda20+lambda21*delta[i,1]

}

eta1~dnorm(0.0, 0.001)

lambda20~dnorm(0.0, 1.0E-3)

tau1~dunif(0,2)

tau2~dunif(0,2)

rho~dunif(-0.999,0.999)

tau1.sq<-pow(tau1,2)

prec1<-1/tau1.sq

tau2.sq<-pow(tau2,2)

psi2.sq<-tau2.sq-pow(lambda21,2)*tau1.sq

prec2<-1/psi2.sq

lambda21<-rho*tau2/tau1

d1<-eta1

d2<-lambda20+lambda21*eta1

R2<-pow(rho,2)

}

Data in the same format as in appendix B.1.

#initial values:

list(

rho = 0.5, eta1=0.0, lambda20=0.0,

delta = structure(.Data = c(

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5),.Dim = c(25,2)),

tau1 = 0.25, tau2=0.25, rho_w=0.25)
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B.3 WinBUGS code for BRMA standard model for surrogate endpoints

Model{

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

Y[i,1:2] ~ dmnorm(delta[i,1:2],prec_w[i,1:2,1:2]) # within-study model

delta[i,1:2] ~ dmnorm(d[1:2],prec_b[1:2,1:2]) # between-studies model

}

for (j in 1:2) {

d[j] ~ dnorm(0.0,0.001)

}

prec_b[1:2,1:2]<-inverse(Cov_b[,])

for (j in 1:2) {

tau[j]~dunif(0,2)

tau.sq[j]<-pow(tau[j],2)

Cov_b[j,j]<-tau.sq[j]

}

Cov_b[1,2]<-rho*tau[1]*tau[2]

Cov_b[2,1]<-Cov_b[1,2]

rho~dunif(-0.999,0.999)

R2<-pow(rho,2)

psi.sq<-pow(tau[2],2)*(1.0-pow(rho,2))

lambda1<-rho*tau[2]/tau[1]

lambda0<-d[2]-d[1]*rho*tau[2]/tau[1]

}

Data in the same format as in appendix B.1.

#initial values:

list(

rho_w=0.25, rho = 0.5, tau = c(0.25, 0.25), d=c(0.0,0.0),

delta = structure(.Data = c(

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5),.Dim = c(25,2))

)

84



B.4 R code (with models in bugs) for cross-validation (Sec. 3.6.1 and 3.7)

#Load Package & directory where WinBUGS program is

library(R2WinBUGS)

bugs.dir<-"Z:/My Documents/WinBUGS14"

#Define working directory where source files are located

wd<-"Z:/My documents/Research/TSD/MSexample"

setwd(wd)

#set number of iterations for MCMC simulations

n.iter<- 100000 # Number of iterations

n.burnin<-50000 # Burn-in

# RRMS data (data for surrogate endpoints, reformatted in R for cross-validation):

num<-25

# data consist of lists of: authors, effects on relapse, corresponding standard errors,

# effects on disability progression ad corresponding SEs form all (num=25) studies:

author<-c("Paty1", "Paty2","Miligan","Johnson",

"Jacobs","Fazekas","Millewfiorini","Achiron",

"Li1","Li2","Clanet","Durelli",

"Baumhackl","Polman","Rudick","Coles",

"Coles","Mikol","Comi1","Comi2",

"Havrdova1","Havrdova2","Sorensen","O’Connor1", "O’Connor2")

logrelef<-c(-0.0833816, -0.4155154, -0.210721, -0.3424903,

-0.3856625, -0.8915981, -1.07881, -0.9942523,

-0.3424903, -0.3856625, 0.0487901, -0.3424903,

-0.1625189, -1.139434, -0.7985078, -1.171183,

-1.514128, 0.0295588, -0.8675006, -0.7985078,

-0.1392621, -0.356675, -0.9942523, 0.0582689, -0.0304592)

logrelef_se<-c(0.0813719, 0.0893046, 0.3563859, 0.1067276,

0.1266053, 0.1351165, 0.2388631, 0.2406259,

0.0706827, 0.0723215, 0.0458876, 0.1348356,

0.1005056, 0.0751103, 0.0603509, 0.1881434,

0.2149895, 0.139198, 0.1082371, 0.1038128,

0.1319462, 0.1371439, 0.2183502, 0.0695049, 0.0704836)

logdisef<-c(0, -0.3364722, 0.1278334, -0.1300531,

-0.461035, -0.3629056, -1.665008, -0.2000212,

-0.2097205, -0.315081, 0, -0.8362481,

0.074108, -0.5340825, -0.2318016, -1.060872,

-0.9555115, 0.2962659, -0.3650315, -0.3105963,

0.2087549, 0.040822, -0.4462871, 0.0487901, 0.0953102)

logdisef_se<-c(0.2036533, 0.2302073, 0.7592028, 0.2210844,

0.258417, 0.3393006, 0.7296625, 0.74131,

0.1464617, 0.1542706, 0.0920902, 0.3022435,

0.1935841, 0.124761, 0.0995418, 0.3856541,

0.3515206, 0.2174605, 0.1504737, 0.145336,

0.3854737, 0.3966984, 0.3555565, 0.1145532, 0.1134564)

85



#effects on the final outcome (log relative risk and corresponding CIs)

#for comparison with predicted effects

fin<-logdisef

fin.lci<-logdisef-1.96*logdisef_se

fin.uci<-logdisef+1.96*logdisef_se

#effects on the final outcome as relative risk (no log) and corresponding CIs:

e.fin<-exp(logdisef)

e.fin.lci<-exp(logdisef-1.96*logdisef_se)

e.fin.uci<-exp(logdisef+1.96*logdisef_se)

######################################################################################

# Daniels & Hughes model

#create text file for BUGS code of the Daniels & Hughes model:

dh_model_pred<-"model{

se[index,2]~dunif(0.0001,15) #prior on the missing SE in the validation study i=index

pred.delta2<-delta[index,2] #predicted effect on the final outcome in the validation study

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Random effects model

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

delta[i,1]~dnorm(0.0, 0.001)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda0+lambda1*delta[i,1]

}

lambda0~dnorm(0.0, 1.0E-3)

lambda1~dnorm(0.0, 1.0E-3)

psi.2~dunif(0,2)

psi2.sq<-pow(psi.2,2)

prec2<-1/psi2.sq

}"

writeLines(dh_model_pred,"model_dh.txt")
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#cross-validation code for D&H model:

#setting new variables for results of cross-validation:

pred.delta2.dh<-pred.cri.dh<-bias.dh<-cil.dh<-ciu.dh<-sd.dh<-array(0,num)

for(i in 1:num){

index<-i

Y<-se<-array(0,dim=c(num,2))

#data

Y[,1]<-logrelef

Y[,2]<-logdisef

se[,1]<-logrelef_se

se[,2]<-logdisef_se

#setting final outcome in the validation study i to misisng value

#to be predicted

Y[i,2]<-NA

se[i,2]<-NA

data=list(Y=Y, se=se, num=num, index=i)

#inits

#setting initial values for missing final outcome in the validation study

Y0<-se0<-structure(rep(NA,num*2),dim=c(num,2))

Y0[index,2]<- -0.5

se0[index,2]<- 0.2

inits=list(list(psi.2 = 0.25, lambda1 = 0.0, lambda0 = 0.0, rho_w=0.25,

delta = structure(.Data = c(rep(-0.5,num),rep(-0.5,num)), .Dim=c(num,2)),

Y=Y0,se=se0))

#monitoring

para=c("psi2.sq", "pred.delta2")

#run D&H

fit.dh<-bugs(data=data, inits=inits, para=para,

model.file="model_dh.txt",

n.chains=1, n.burnin=n.burnin, n.iter=n.iter, n.thin=1,

DIC=F, debug=F, save.history =F,

bugs.directory = bugs.dir, working.directory = wd)

x <- fit.dh$sims.matrix[,grep("pred.delta2",colnames(fit.dh$sims.matrix))]

pred.delta2.dh[i]<-mean(x)

bias.dh[i]<-logdisef[i]-pred.delta2.dh[i]

sd.dh[i] <- fit.dh$summary[grep("pred.delta2",rownames(fit.dh$summary)),c(2)]

pred.cri.dh[i]<-sqrt(logdisef_se[i]^2+sd.dh[i]^2)*2.00*1.96

cil.dh[i] <- pred.delta2.dh[i]-pred.cri.dh[i]/2.0

ciu.dh[i] <- pred.delta2.dh[i]+pred.cri.dh[i]/2.0

}

e.pred.dh<-exp(pred.delta2.dh)

e.pred.dh.lci<-exp(cil.dh)

e.pred.dh.uci<-exp(ciu.dh)
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e.predictions.brma.dh<-data.frame(author,e.fin,e.fin.lci,e.fin.uci,

e.pred.dh,e.pred.dh.lci,e.pred.dh.uci,

fin,fin.lci,fin.uci,pred.delta2.dh,cil.dh,ciu.dh)

write.csv(e.predictions.brma.dh, file = "epredictions.dh.ms.csv", row.names = FALSE)

######################################################################################

### BRMA PNF

#create text file for BUGS code of the BRMA PNF model

pnf_model_pred<-"model{

se[index,2]~dunif(0.0001,15) #prior on the missing SE in the validation study i=index

pred.delta2<-delta[index,2] #predicted effect on the final outcome in the validation study

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Random effects model

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda0+lambda1*delta[i,1]

}

eta1~dnorm(0.0, 0.001)

lambda0~dnorm(0.0, 1.0E-3)

tau1~dunif(0,2)

tau2~dunif(0,2)

rho~dunif(-0.999,0.999)

tau1.sq<-pow(tau1,2)

prec1<-1/tau1.sq

tau2.sq<-pow(tau2,2)

psi2.sq<-tau2.sq-pow(lambda1,2)*tau1.sq

prec2<-1/psi2.sq

lambda1<-rho*tau2/tau1

d1<-eta1

d2<-lambda0+lambda1*eta1

R2<-pow(rho,2)

}"

writeLines(pnf_model_pred,"model_pnf.txt")
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#cross-validation code for BRMA PNF model:

pred.delta2.pnf<-pred.cri.pnf<-bias.pnf<-cil.pnf<-ciu.pnf<-sd.pnf<-array(0,num)

for(i in 1:num){

index<-i

Y<-se<-array(0,dim=c(num,2))

#data

Y[,1]<-logrelef

Y[,2]<-logdisef

se[,1]<-logrelef_se

se[,2]<-logdisef_se

#setting final outcome in the validation study i to misisng value

#to be predicted

Y[i,2]<-NA

se[i,2]<-NA

data=list(Y=Y, se=se, num=num, index=i)

#inits

#setting initial values for missing final outcome in the validation study

Y0<-se0<-structure(rep(NA,num*2),dim=c(num,2))

Y0[index,2]<- -0.5

se0[index,2]<- 0.2

inits=list(list(rho = 0.5, eta1=0.0, lambda0 = 0.0,

tau1 = 0.25, tau2=0.25, rho_w=0.25,

delta = structure(.Data = c(rep(-0.5,num),rep(-0.5,num)), .Dim=c(num,2)),

Y=Y0,se=se0))

#monitoring

para=c("psi2.sq", "pred.delta2")

#run PNF

fit.pnf<-bugs(data=data, inits=inits, para=para,

model.file="model_pnf.txt",

n.chains=1, n.burnin=n.burnin, n.iter=n.iter, n.thin=1,

DIC=F, debug=F, save.history =F,

bugs.directory = bugs.dir, working.directory = wd)

x <- fit.pnf$sims.matrix[,grep("pred.delta2",colnames(fit.pnf$sims.matrix))]

pred.delta2.pnf[i]<-mean(x)

bias.pnf[i]<-logdisef[i]-pred.delta2.pnf[i]

sd.pnf[i] <- fit.pnf$summary[grep("pred.delta2",rownames(fit.pnf$summary)),c(2)]

pred.cri.pnf[i]<-sqrt(logdisef_se[i]^2+sd.pnf[i]^2)*2.00*1.96

cil.pnf[i] <- pred.delta2.pnf[i]-pred.cri.pnf[i]/2.0

ciu.pnf[i] <- pred.delta2.pnf[i]+pred.cri.pnf[i]/2.0

}

e.pred.pnf<-exp(pred.delta2.pnf)

e.pred.pnf.lci<-exp(cil.pnf)

e.pred.pnf.uci<-exp(ciu.pnf)
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e.predictions.brma.pnf<-data.frame(author,e.fin,e.fin.lci,e.fin.uci,

e.pred.pnf,e.pred.pnf.lci,e.pred.pnf.uci,

fin,fin.lci,fin.uci,pred.delta2.pnf,cil.pnf,ciu.pnf)

write.csv(e.predictions.brma.pnf, file = "epredictions.pnf.ms.csv", row.names = FALSE)

######################################################################################

### BRMA

#create text file for BUGS code of the BRMA model

brma_model_pred<-"model{

se[index,2]~dunif(0.0001,15) #prior on the missing SE in the validation study i=index

pred.delta2<-delta[index,2] #predicted effect on the final outcome in the validation study

#within study precision matrix

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Random effects model

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda0+lambda1*delta[i,1]

}

eta1~dnorm(0.0, 0.001)

lambda0~dnorm(0.0, 1.0E-3)

tau1~dunif(0,2)

tau2~dunif(0,2)

rho~dunif(-0.999,0.999)

tau1.sq<-pow(tau1,2)

prec1<-1/tau1.sq

tau2.sq<-pow(tau2,2)

psi2.sq<-tau2.sq-pow(lambda1,2)*tau1.sq

prec2<-1/psi2.sq

lambda1<-rho*tau2/tau1

d1<-eta1

d2<-lambda0+lambda1*eta1

R2<-pow(rho,2)

}"

writeLines(brma_model_pred,"model_brma.txt")
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#cross-validation code for BRMA model:

pred.delta2.brma<-pred.cri.brma<-bias.brma<-cil.brma<-ciu.brma<-sd.brma<-array(0,num)

for(i in 1:num){

index<-i

Y<-se<-array(0,dim=c(num,2))

#data

Y[,1]<-logrelef

Y[,2]<-logdisef

se[,1]<-logrelef_se

se[,2]<-logdisef_se

#setting final outcome in the validation study i to misisng value

#to be predicted

Y[i,2]<-NA

se[i,2]<-NA

data=list(Y=Y, se=se, num=num, index=i)

#inits

#setting initial values for missing final outcome in the validation study

Y0<-se0<-structure(rep(NA,num*2),dim=c(num,2))

Y0[index,2]<- -0.5

se0[index,2]<- 0.2

inits=list(list(rho = 0.5, eta1=0.0, lambda0 = 0.0,

tau1 = 0.25, tau2=0.25, rho_w=0.25,

delta = structure(.Data = c(rep(-0.5,num),rep(-0.5,num)), .Dim=c(num,2)),

Y=Y0,se=se0))

#monitoring

para=c("psi2.sq", "pred.delta2")

#run BRMA

fit.brma<-bugs(data=data, inits=inits, para=para,

model.file="model_brma.txt",

n.chains=1, n.burnin=n.burnin, n.iter=n.iter, n.thin=1,

DIC=F, debug=F, save.history =F,

bugs.directory = bugs.dir, working.directory = wd)

x <- fit.brma$sims.matrix[,grep("pred.delta2",colnames(fit.brma$sims.matrix))]

pred.delta2.brma[i]<-mean(x)

bias.brma[i]<-logdisef[i]-pred.delta2.brma[i]

sd.brma[i] <- fit.brma$summary[grep("pred.delta2",rownames(fit.brma$summary)),c(2)]

pred.cri.brma[i]<-sqrt(logdisef_se[i]^2+sd.brma[i]^2)*2.00*1.96

cil.brma[i] <- pred.delta2.brma[i]-pred.cri.brma[i]/2.0

ciu.brma[i] <- pred.delta2.brma[i]+pred.cri.brma[i]/2.0

}

e.pred.brma<-exp(pred.delta2.brma)

e.pred.brma.lci<-exp(cil.brma)

e.pred.brma.uci<-exp(ciu.brma)
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e.predictions.brma.brma<-data.frame(author,e.fin,e.fin.lci,e.fin.uci,

e.pred.brma,e.pred.brma.lci,e.pred.brma.uci,

fin,fin.lci,fin.uci,pred.delta2.brma,cil.brma,ciu.brma)

write.csv(e.predictions.brma.brma, file = "epredictions.brma.ms.csv", row.names = FALSE)
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B.5 Example of the analysis (using method by Daniels and Hughes) for pre-
dicting the treatment effect on the final outcome in a new study reporting
only the treatment effect on the surrogate endpoint

In this Appendix, the WinBUGS implementation for predicting the treatment effect on the final
outcome in a new study reporting only the treatment effect on the surrogate endpoint is discussed.
It refers to the prediction in the illustrative example in MS, discussed in Section 3.7.4.

Model{

#defining the within-study precision matrix

# model assuming exchangeable variances in the arms for the final outcome

# to predict missing standard error for the effect on the final outcome in the new study

for (k in 1:num){

var[k]~dnorm(0,h1)I(0,)

}

h1~dgamma(1.0,0.01)

se[index,2]<-sqrt(var[index]*(1/nA[index] + 1/nB[index]))

#rho_w<-corr_w #if known, a fixed correlation can be used

rho_w~dunif(0,0.999) #we assume positive within-study correlation

for (i in 1:num) {

Prec_w[i,1:2,1:2] <- inverse(sigma[i,1:2,1:2])

#covariance matrix for the j-th study

sigma[i,1,1]<-pow(se[i,1],2)

sigma[i,2,2]<-pow(se[i,2],2)

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

sigma[i,2,1]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w

}

# Model for surrogate relationship (Daniels and Hughes):

for (i in 1:num) {

Y[i,1:2]~dmnorm(delta[i,1:2], Prec_w[i,1:2,1:2])

# product normal formulation for the between study part:

delta[i,1]~dnorm(0.0, 0.001)

delta[i,2]~dnorm(eta2[i],prec2)

eta2[i]<-lambda20+lambda21*delta[i,1]

}

lambda20~dnorm(0.0, 1.0E-3)

lambda21~dnorm(0.0, 1.0E-3)

psi.2~dunif(0,2)

psi2.sq<-pow(psi.2,2)

prec2<-1/psi2.sq

#predicted effect on the final outcome 2 in the new study "index":

predicted.final<-exp(Y[index,2])

}

Variable ”index” in the data denotes the number/index of the new study in the data, for which
we are making the prediction. Data set includes treatment effects on both outcomes Y[,1] and Y[,2]
and corresponding standard errors se[,1] and se[,2]. Data on the final outcome are missing for the
second study which is assumed here a new study, for which the prediction is made. To make the
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prediction, we need to predict the standard error for the missing effect on the final outcome in the
second study. We assume exchangeability of the population variances var[] in the arms (see Section
2.1.3, paragraph second to last). These variances are included in the data along with the numbers
of individuals in each arm nA[] and nB[], which are needed to calculate the missing standard error
of the unreported effect on the final outcome in the new study.

In this case (where only one effect on one outcomes is missing) only numbers for the second
study are needed and only the variances for the second outcome are included. However, in general
case, a similar approach can be used for variances on both outcomes when data are missing on both
outcomes in some studies and treatment allocation is unbalanced.

#data

list(num=25, index=2)

Y[,1] se[,1] Y[,2] se[,2] var[] nA[] nB[]

-0.0833816 0.0814432 0 0.2036533 2.571428 124 124

-0.4155154 0.1165316 NA NA NA 124 124

-0.210721 0.348466 0.1278334 0.7592028 3.32 9 16

-0.3424903 0.1045693 -0.1300531 0.2210844 3.067065 126 125

-0.3856625 0.1265924 -0.461035 0.258417 2.871124 87 85

-0.8915981 0.1351122 -0.3629056 0.3393006 4.258843 73 75

-1.07881 0.2404074 -1.665008 0.7296625 6.764706 24 27

-0.9942523 0.2393568 -0.2000212 0.74131 5.495405 20 20

-0.3424903 0.0706421 -0.2097205 0.1464617 2.016341 187 189

-0.3856625 0.0723048 -0.315081 0.1542706 2.207251 187 184

0.0487901 0.0458702 0 0.0920902 1.700351 402 400

-0.3424903 0.1350154 -0.8362481 0.3022435 4.29156 92 96

-0.1625189 0.1006188 0.074108 0.1935841 2.707521 144 145

-1.139434 0.0751408 -0.5340825 0.124761 3.263509 315 627

-0.7985078 0.0603669 -0.2318016 0.0995418 2.900627 582 589

-1.171183 0.1900292 -1.060872 0.3856541 8.291479 111 112

-1.514128 0.2130032 -0.9555115 0.3515206 6.826923 111 110

0.0295588 0.138675 0.2962659 0.2174605 9.031223 378 386

-0.8675006 0.1080229 -0.3650315 0.1504737 4.924605 437 433

-0.7985078 0.104044 -0.3105963 0.145336 4.713475 437 456

-0.1392621 0.1317971 0.2087549 0.3854737 4.382145 60 58

-0.356675 0.1371352 0.040822 0.3966984 4.836237 60 63

-0.9942523 0.2156183 -0.4462871 0.3555565 4.107692 64 66

0.0582689 0.0695519 0.0487901 0.1145532 3.920694 448 897

-0.0304592 0.0705193 0.0953102 0.1134564 3.848822 448 899

END

#initial values

#the new study has missing Y and se (var) on the second outcome

#and these missing values (and all parameters) are given initial values for MCMC

list(

Y = structure(.Data = c(

NA, NA, NA, 0.0, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,
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NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA),

.Dim = c(25,2)),

h1 = 0.5,

lambda20=0.0,lambda21=0.0,

delta = structure(.Data = c(

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5),.Dim = c(25,2)),

psi.2=0.25, rho_w=0.25,

var = c(

NA, 0.01, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA)))
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C Supplementary materials for multivariate meta-analysis

C.1 Constructing prior distribution for the between-studies covariance matrix

There are a number of approaches to constructing a prior distribution on the between-studies
covariance matrix in MRMA. Wei and Higgins, for example, investigated placing inverse Wishart
prior distribution on the covariance matrix [6] or by using a separation strategy, with spherical
[95, 6] or Cholesky decomposition [6] of the correlation matrix.

Inverse Wishart distribution IW (Υ, df) is the conjugate prior distribution for the between-
studies variance-covariance matrix, where Υ is a N ×N scale matrix and df ≥ N is the number of
degrees of freedom [115, 6]. Using the inverse Wishart distribution with the following parameters:
the scale matrix equal to the identity matrix and the degrees of freedom equal to N + 1 (the
dimension of the matrix plus 1) will induce a uniform prior distribution (with values ranging
between -1 and 1) for the between-studies correlation ρjk between treatment effects on outcomes
j and k [116]. However, the implied prior distributions on the variances may not be suitably
non-informative. A number of authors found that Wishart priors had an influential impact on the
posterior distribution [117, 6, 12] therefore we do not recommend this approach.

A preferred way of representing the between-studies variance-covariance matrix is by decompos-
ing it as T = V1/2RV1/2, where V1/2 is a N ×N diagonal matrix of the standard deviations and
R is a positive semi-definite N×N matrix of correlations. In this separation strategy, described by
Barnard et al. [96], the standard deviations and correlations are separated out allowing for indepen-
dent prior distributions to be placed on these parameters. Prior distributions are placed on the stan-
dard deviations, which need to be restricted to positive values, for example τj ∼ Unif(0, 2). The
correlation matrix needs to be parameterized in such a way to ensure the positive semi-definiteness.

Separation by Cholesky decomposition

Wei and Higgins further reparameterize the correlation matrix to enforce the positive semi-definite
constraints [6]. Matrix R is represented as R = LTL with L being a N×N upper triangular matrix.
Because R is a correlation matrix, ensuring that its elements lie in the range (-1,1) will induce
constraints on possible values for the N(N + 1)/2 Cholesky factors Ljk (j, k = 1, . . . , N, j ≤ k).
The diagonal elements of R are each 1, so ρjj = LTj·Lj· = 1, where Lj· = (Lj1, Lj2, . . . , Ljj) denotes

column j in matrix L. The Cholesky factors must lie in the intersection of (−1, 1) and (Lljk, L
r
jk),

where (Lljk, L
r
jk) satisfies the conditions that ρjj = LTj·Lj· = 1. The prior distributions are then

placed on the Cholesky factors Lij .
To obtain the elements of the matrix L and the corresponding prior distributions, we follow the

method by Wei and Higgins (2013). The elements of the top row of the correlation matrix are

R1j = L11L1j ,

the diagonal elements are

Rjj =

j∑
k=1

L2
kj

and the remaining elements are

Rij =
i∑

k=1

LkiLkj

where j > i, i = 1, . . . , N − 1, j = 1, . . . , N . Prior distributions are placed on the elements of
matrix L in such a way to ensure the correlations are constrained to the range of values between -1
and 1. This is achieved, following Wei and Higgins (2013), by selecting plausible intervals for these
elements. For the top row of matrix L we set uniform prior distributions on the following intervals:

L1j ∈ [−1, 1]
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and the intervals for the remaining off-diagonal elements are

Lij ∈

−
√√√√1−

i−1∑
k=1

L2
kl,

√√√√1−
i−1∑
k=1

L2
kl


which gives implied prior distributions for the diagonal elements:

Ljj =

√√√√1−
j−1∑
k=1

L2
kj .

A limitation related to specifying the prior distribution for the variance-covariance matrix using
the Cholesky decomposition it that the resulting prior distributions for the between-studies corre-
lations are dependent on the ordering of the outcomes. A sensitivity analysis of the effect of the
ordering of outcomes is therefore recommended.

Separation by spherical decomposition

Lu and Ades [95] introduced spherical decomposition of the variance-covariance matrix to network
meta-analysis of multi-arm trials, where treatment effects relative to the same baseline treatment
in the same study are correlated. Wei and Higgins adopted this decomposition technique in mul-
tivariate meta-analysis [6]. Spherical decomposition is a reparameterization of the Cholesky de-
composition in terms of sine and cosine functions for the Cholesky factors Ljk. The products of
these sine and cosine functions are convenient for parameterization of a correlation matrix as they
lie within the interval (−1, 1). In this parameterization, the products of diagonal elements satisfy
the condition ρjj = LTj·Lj· = 1, where Lj· denotes column j in matrix L. The first element of the
diagonal is set L11 = 1 and for j = 1, . . . , N ,

Ll1 = cos(φl2) (26)

Ll2 = sin(φl2) cos(φl3) (27)

... (28)

Ll,l−1 = sin(φl2) sin(φl3) · · · cos(φll) (29)

Ll,l = sin(φl2) sin(φl3) · · · sin(φll) (30)

To ensure the uniqueness of the spherical parameterization, the parameters are restricted φlk ∈
(0, π), for k = 1, . . . , l [118, 6]. This ensures that, the (j, k) element of R can be represented as the
inner product ρjk = LTj·Lk·.
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C.2 WinBUGS code for multivariate meta-analysis with Cholesky decompo-
sition of the between-studies covariance matrix with application to the
example in rheumatoid arthritis

model{

corr_w[1,2]<-corrDA

corr_w[1,3]<-corrDH

corr_w[2,3]<-corrAH

#exchangeability of variances model:

#it can be replaced with priro distributions on individual missing SEs

#and data with SEs (instead of variances and number of participant) - see appendix A.1

for (i in 1:num){

for (j in 1:no){

#se[i,j]<--sqrt(var[i,j]/n[i,j])

var[i,j]~dnorm(0,h[j])I(0,)

}

}

for (j in 1:no){

h[j]~dgamma(1.0,0.01)

}

#Multivariate hierarchical model:

for(i in 1:num) {

prec_w[i,1:no,1:no] <- inverse(Sigma[i,1:no,1:no])

#covariance matrix for the j-th study

for (j in 1:no){

Sigma[i,j,j]<-var[i,j]/n[i,j]

}

for (j in 1:no){

for (k in j+1:no){

rho_w[i,j,k]<-corr_w[j,k] #assuming the same correlations across studies

rho_w[i,k,j]<-corr_w[j,k]

Sigma[i,j,k]<-sqrt(Sigma[i,j,j])*sqrt(Sigma[i,k,k])*rho_w[i,j,k]

Sigma[i,k,j]<-Sigma[i,j,k]

}

}

y[i,1:no] ~ dmnorm(delta[i,1:no],prec_w[i,1:no,1:no]) # within-study model

delta[i,1:no] ~ dmnorm(d[1:no],prec_b[1:no,1:no]) # between-studies model

}

prec_b[1:no,1:no]<-inverse(Cov_b[,])

for (j in 1:no){

d[j] ~ dnorm(0,0.001)

Cov_b[j,j]<-tau.sq[j]

tau.sq[j]<-pow(tau[j],2)

tau[j]~dunif(0,2)

#rho[j,j]<-1

}

for (j in 1:no){

for (k in j+1:no){

98



Cov_b[j,k]<- tau[j]*tau[k]*rho[j,k]

Cov_b[k,j]<-Cov_b[j,k]

}

}

constructing a prior distribution on the between-studies correlation matrix:

# assigning priors to the upper triangular matrix in Cholesky decomposition

L[1,1]<-1.0

for (k in 2:no){

L.u[1,k]~dunif(-0.999,0.999)

L[1,k] <- L.u[1,k]

}

for (x in 1:no-1){

for (k in x+1:no){

p[x,k]<-pow(L[x,k],2)

}

}

for (x in 3:no){

for (k in x:no){

s[x-1,k]<-sum(p[1:x-2,k])

lim[x-1,k]<- sqrt(1-s[x-1,k])

L.u[x-1,k]~dunif(-0.999,0.999)

L[x-1,k]<- lim[x-1,k] * L.u[x-1,k]

}

}

L.u[2,2]<-sqrt(1-pow(L[1,2],2))

L[2,2]<-L.u[2,2]

for (k in 3:no){

s2[k]<-sum(p[1:k-1,k])

L.u[k,k]<-sqrt(1-s2[k])

L[k,k]<-L.u[k,k]

}

#assigning values for the correlations:

#rho[1,1]<-L[1,1]

for (k in 2:no){

rho[1,k]<-L[1,k]

rho[k,1]<-L[1,k]

}

for (x in 1:no){

for (k in x:no){

for (j in 1:x){

LL[j,x,k]<-L[j,x]*L[j,k]
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}

}

}

for (x in 2:no-1){

for (k in x+1:no){

rho[x,k]<-sum(LL[1:x,x,k])

rho[k,x]<-rho[x,k]

}

}

for (x in 2:no){

rho[x,x]<-sum(LL[1:x,x,x])

}

#end of constructing the prior distribution

empty space

Calculating precentage responders ACR20

perc.acr<-exp(d[2])/(1+exp(d[2]))

}

#data

list(num=22, no=3, corrDA=-0.2, corrDH=0.24, corrAH=-0.13)

#n_acr n_das n_haq log_acr_odds var_acr_lodds das28meanchange das28changevar haqmeanchange

#haqchangevar

n[,2] n[,1] n[,3] y[,2] var[,2] y[,1] var[,1] y[,3] var[,3]

26 26 26 NA NA -1.7 1.683457 -0.31 0.4410603

188 188 188 -0.1920777 4.037007 -1.6 1.88 -0.352 0.388497

810 810 810 0.4054652 4.166667 -1.9 1.96 -0.48 0.36

25 25 25 0.9444618 4.960318 NA NA NA NA

72 72 72 1.17412 5.544385 -1.47 2.337441 NA NA

30 30 30 NA NA -1.87 1.698847 NA NA

18 18 18 NA NA -2.1 1.532179 NA NA

66 66 66 NA NA -0.98 2.165142 NA NA

22 22 22 0.5596157 4.321429 NA NA -0.45 0.443637

110 110 110 NA NA -1 1.425636 NA NA

331 331 331 NA NA NA NA -0.12 0.3628

37 37 37 NA NA NA NA 0.15 0.6399

337 337 337 0.041549 4.001727 NA NA NA NA

411 411 411 NA NA NA NA NA NA

6 6 6 NA NA -1.17 2.602115 NA NA

20 20 20 NA NA -1.26 2.483544 NA NA

83 83 83 NA NA -1.1 2.638806 -0.21 0.4161627

24 24 24 1.098612 5.333333 -2.4 0.6029454 NA NA

18 18 18 0.6931473 4.5 NA NA NA NA

41 41 41 -0.1466035 4.021531 -1.5 2.56 -0.21 0.25

9 9 9 1.252763 5.785714 -1.9 0.4222091 NA NA

27 27 27 0.8649974 4.796052 -1.3 2.169941 NA NA

END
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#initial values

list(

L.u = structure(.Data = c(

NA,0.5,0.5,

NA, NA,0.5 ,

NA, NA, NA),

.Dim = c(3,3)),

d = c(0.5, -1.5, -0.25),

delta = structure(.Data = c(

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25),

.Dim = c(22,3)),

h = c(0.1,0.1,0.1),

tau = c(0.5,0.5,0.5),

var = structure(.Data = c(

NA,0.5, NA, NA, NA,

NA, NA, NA, NA,0.5,

NA,0.5, NA, NA,0.5,

NA,0.5, 0.5, NA,0.5,

0.5, NA,0.5,0.5,0.5,

NA, NA, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5,0.5, NA, 0.5,

NA, NA, NA,0.5,0.5,

NA,0.5, NA, NA, NA,

NA, NA,0.5, NA, NA,

0.5),.Dim = c(22,3)),

y = structure(.Data = c(

NA,-0.5, NA, NA, NA,

NA, NA, NA, NA,-0.5,

NA,-0.5, NA, NA,-0.5,

NA,-0.5, -0.5, NA,-0.5,

-0.5, NA,-0.5,-0.5,-0.5,

NA, NA, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5,-0.5, NA, -0.5,

NA, NA, NA,-0.5,-0.5,

NA,-0.5, NA, NA, NA,

NA, NA,-0.5, NA, NA,

0.5),.Dim = c(22,3)))
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C.3 WinBUGS code for multivariate meta-analysis with spherical decompo-
sition of the between-studies covariance matrix with application to the
example in rheumatoid arthritis

model{

corr_w[1,2]<-corrDA

corr_w[1,3]<-corrDH

corr_w[2,3]<-corrAH

#exchangeability of variances model:

for (i in 1:num){

for (j in 1:no){

#se[i,j]<--sqrt(var[i,j]/n[i,j])

var[i,j]~dnorm(0,h[j])I(0,)

}

}

for (j in 1:no){

h[j]~dgamma(1.0,0.01)

}

# Multivariate hierarchical model:

for(i in 1:num) {

prec_w[i,1:no,1:no] <- inverse(Sigma[i,1:no,1:no])

#covariance matrix for the j-th study

for (j in 1:no){

Sigma[i,j,j]<-var[i,j]/n[i,j]

}

for (j in 1:no-1){

for (k in j+1:no){

rho_w[i,j,k]<-corr_w[j,k] #assuming the same correlations across studies

rho_w[i,k,j]<-corr_w[j,k]

Sigma[i,j,k]<-sqrt(Sigma[i,j,j])*sqrt(Sigma[i,k,k])*rho_w[i,j,k]

Sigma[i,k,j]<-Sigma[i,j,k]

}

}

y[i,1:no] ~ dmnorm(delta[i,1:no],prec_w[i,1:no,1:no]) # within-study model

delta[i,1:no] ~ dmnorm(d[1:no],prec_b[1:no,1:no]) # between-studies model

}

prec_b[1:no,1:no]<-inverse(Cov_b[,])

for (j in 1:no){

d[j] ~ dnorm(0,0.001)

Cov_b[j,j]<-tau.sq[j]

tau.sq[j]<-pow(tau[j],2)

tau[j]~dunif(0,2)

#rho[j,j]<-1

}
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# assigning spherical priors to the upper triangular matrix in covariance decomposition

for (l in 1:no-1){

for (j in (l+1):no){

Cov_b[l,j]<-rho[l,j]*tau[l]*tau[j]

Cov_b[j,l]<-Cov_b[l,j]

g[j,l]<-0.00000E+00

a[l,j]~dunif(0.00000E+00,pi)

rho[l,j]<-inprod(g[,l],g[,j])

}

}

g[1,1]<-1

g[1,2]<-cos(a[1,2])

g[2,2]<-sin(a[1,2])

g[1,3]<-cos(a[1,3])

g[2,3]<-sin(a[1,3])*cos(a[2,3])

g[3,3]<-sin(a[1,3])*sin(a[2,3])

#for four outcome version:

#g[1,4]<-cos(a[1,4])

#g[2,4]<-sin(a[1,4])*cos(a[2,4])

#g[3,4]<-sin(a[1,4])*sin(a[2,4])*cos(a[3,4])

#g[4,4]<-sin(a[1,4])*sin(a[2,4])*sin(a[3,4])

pi<-3.1415

perc.acr<-exp(d[2])/(1+exp(d[2]))

}

# data is the same format as for the model with Cholesky decomposition

#initial values

list(

a = structure(.Data = c(

NA, 1.0, 1.0,

NA, NA, 1.0),.Dim = c(2,3)),

d = c(-1.5, 0.5, -0.25),

delta = structure(.Data = c(

-1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25,

-1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25,

-1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25,

-1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25, -1.5, 0.5, -0.25,

-1.5, 0.5, -0.25, -1.5, 0.5, -0.25),

.Dim = c(22,3)),

h = c(0.1,0.1,0.1),

tau = c(0.5,0.5,0.5),

var = structure(.Data = c(
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NA,0.5, NA, NA, NA,

NA, NA, NA, NA,0.5,

NA,0.5, NA, NA,0.5,

NA,0.5, 0.5, NA,0.5,

0.5, NA,0.5,0.5,0.5,

NA, NA, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5,0.5, NA, 0.5,

NA, NA, NA,0.5,0.5,

NA,0.5, NA, NA, NA,

NA, NA,0.5, NA, NA,

0.5),.Dim = c(22,3)),

y = structure(.Data = c(

NA,-0.5, NA, NA, NA,

NA, NA, NA, NA,-0.5,

NA,-0.5, NA, NA,-0.5,

NA,-0.5, -0.5, NA,-0.5,

-0.5, NA,-0.5,-0.5,-0.5,

NA, NA, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5,-0.5, NA, -0.5,

NA, NA, NA,-0.5,-0.5,

NA,-0.5, NA, NA, NA,

NA, NA,-0.5, NA, NA,

0.5),.Dim = c(22,3)))
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C.4 WinBUGS code for trivariate meta-analysis with in PNF (unstructured
model) with application to the example in rheumatoid arthritis

Model {

#exchangeability of variances model:

for (k in 1:num){

for (j in 1:no){

var[k,j]~dnorm(0,h[j])I(0,)

}

}

for (j in 1:no){

h[j]~dgamma(1.0,0.01)

}

for (i in 1:num) {

Prec_w[i,1:3,1:3] <- inverse(sigma[i,1:3,1:3])

#covariance matrix for the j-th study

rho_w_12[i]<-rho12

rho_w_13[i]<-rho13

rho_w_23[i]<-rho23

sigma[i,1,1]<-var[i,1]/n[i,1]

sigma[i,2,2]<-var[i,2]/n[i,2]

sigma[i,3,3]<-var[i,3]/n[i,3]

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w_12[i]

sigma[i,2,1]<-sigma[i,1,2]

sigma[i,1,3]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,3,3])*rho_w_13[i]

sigma[i,3,1]<-sigma[i,1,3]

sigma[i,2,3]<-sqrt(sigma[i,2,2])*sqrt(sigma[i,3,3])*rho_w_23[i]

sigma[i,3,2]<-sigma[i,2,3]

}

# Random effects model

for (i in 1:num) {

y[i,1:3]~dmnorm(delta[i,1:3], Prec_w[i,1:3,1:3]) #within-study model

# product normal formulation for the between-studied model (unstructured covariance):

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

#eta2[i]<-lambda20+lambda21*delta[i,1] # no centering

eta2[i]<-lambda20+lambda21*(delta[i,1]-mean(delta[,1])) # centering on the mean

delta[i,3]~dnorm(eta3[i],prec3)

#eta3[i]<-lambda30+lambda31*delta[i,1] +lambda32*delta[i,2] # no centering

#centering on the mean:

eta3[i]<-lambda30+lambda31*(delta[i,1]-mean(delta[,1]))+lambda32*(delta[i,2]-mean(delta[,2]))

}

#prior distributions

eta1~dnorm(0.0, 0.001)

lambda20~dnorm(0.0, 1.0E-3)

lambda30~dnorm(0.0, 1.0E-3)

corr.1.2~dunif(-0.99,0.99)

corr.2.3~dunif(-0.99,0.99)
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corr.1.3~dunif(-0.99,0.99)

tau.1~dunif(0,2)

tau.2~dunif(0,2)

tau.3~dunif(0,2)

psi1.sq<-pow(tau.1,2)

prec1<-1/psi1.sq

psi2.sq<-pow(tau.2,2) - pow(lambda21,2)*pow(tau.1,2)

prec2<-1/psi1.sq

psi3.sq<-pow(tau.3,2) *(1-(pow(corr.1.3,2)+pow(corr.2.3,2)

-2*corr.1.2*corr.1.3*corr.2.3)/(1-pow(corr.1.2,2)))

prec3<-1/psi3.sq

mean.1<-eta1

#mean.2<-lambda20+lambda21*mean.1 # no centering in product normal

#mean.3<-lambda30+lambda31*mean.1+lambda32*mean.2 # no centering

mean.2<-lambda20 #when centering

mean.3<-lambda30 #when centering

lambda21<-corr.1.2*tau.2/tau.1

lambda31<-(corr.1.3-corr.1.2*corr.2.3)*tau.3/tau.1/(1-pow(corr.1.2,2))

lambda32<-(corr.2.3-corr.1.2*corr.1.3)*tau.3/tau.2/(1-pow(corr.1.2,2))

perc.acr<-exp(mean.2)/(1+exp(mean.2))

}

#data

list(num=22, no=3, rho12=-0.2, rho23=0.24, rho13=-0.13)

n[,2] n[,1] n[,3] y[,2] var[,2] y[,1] var[,1] y[,3] var[,3]

26 26 26 NA NA -1.7 1.683457 -0.31 0.4410603

188 188 188 -0.1920777 4.037007 -1.6 1.88 -0.352 0.388497

810 810 810 0.4054652 4.166667 -1.9 1.96 -0.48 0.36

25 25 25 0.9444618 4.960318 NA NA NA NA

72 72 72 1.17412 5.544385 -1.47 2.337441 NA NA

30 30 30 NA NA -1.87 1.698847 NA NA

18 18 18 NA NA -2.1 1.532179 NA NA

66 66 66 NA NA -0.98 2.165142 NA NA

22 22 22 0.5596157 4.321429 NA NA -0.45 0.443637

110 110 110 NA NA -1 1.425636 NA NA

331 331 331 NA NA NA NA -0.12 0.3628

37 37 37 NA NA NA NA 0.15 0.6399

337 337 337 0.041549 4.001727 NA NA NA NA

411 411 411 NA NA NA NA NA NA

6 6 6 NA NA -1.17 2.602115 NA NA

20 20 20 NA NA -1.26 2.483544 NA NA

83 83 83 NA NA -1.1 2.638806 -0.21 0.4161627

24 24 24 1.098612 5.333333 -2.4 0.6029454 NA NA

18 18 18 0.6931473 4.5 NA NA NA NA

41 41 41 -0.1466035 4.021531 -1.5 2.56 -0.21 0.25

9 9 9 1.252763 5.785714 -1.9 0.4222091 NA NA

27 27 27 0.8649974 4.796052 -1.3 2.169941 NA NA

END
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#initial values

# the initial values for the elements of the between-study covariance matrix

# need to ensure the resulting initial matrix is positive semi-definite

list(

delta = structure(.Data = c(

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25),

.Dim = c(22,3)),

h = c(0.1,0.1,0.1),

tau.1 = 0.5, tau.2 = 0.5, tau.3 = 0.5,

corr.1.2 = 0.5, corr.1.3 = 0.5, corr.2.3 = 0.0,

eta1 = 0.0,

lambda20=0.0, lambda30=0.0,

var = structure(.Data = c(

NA,0.5, NA, NA, NA,

NA, NA, NA, NA,0.5,

NA,0.5, NA, NA,0.5,

NA,0.5, 0.5, NA,0.5,

0.5, NA,0.5,0.5,0.5,

NA, NA, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5,0.5, NA, 0.5,

NA, NA, NA,0.5,0.5,

NA,0.5, NA, NA, NA,

NA, NA,0.5, NA, NA,

0.5),.Dim = c(22,3)),

y = structure(.Data = c(

NA,-0.5, NA, NA, NA,

NA, NA, NA, NA,-0.5,

NA,-0.5, NA, NA,-0.5,

NA,-0.5, -0.5, NA,-0.5,

-0.5, NA,-0.5,-0.5,-0.5,

NA, NA, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5,-0.5, NA, -0.5,

NA, NA, NA,-0.5,-0.5,

NA,-0.5, NA, NA, NA,

NA, NA,-0.5, NA, NA,

0.5),.Dim = c(22,3)))
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C.5 WinBUGS code for trivariate meta-analysis with in PNF (structured model)
with application to the example in rheumatoid arthritis

Model {

#exchangeability of variances model:

for (k in 1:num){

for (j in 1:no){

var[k,j]~dnorm(0,h[j])I(0,)

}

}

for (j in 1:no){

h[j]~dgamma(1.0,0.01)

}

for (i in 1:num) {

Prec_w[i,1:3,1:3] <- inverse(sigma[i,1:3,1:3])

#covariance matrix for the j-th study

rho_w_12[i]<-rho12

rho_w_13[i]<-rho13

rho_w_23[i]<-rho23

sigma[i,1,1]<-var[i,1]/n[i,1]

sigma[i,2,2]<-var[i,2]/n[i,2]

sigma[i,3,3]<-var[i,3]/n[i,3]

sigma[i,1,2]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,2,2])*rho_w_12[i]

sigma[i,2,1]<-sigma[i,1,2]

sigma[i,1,3]<-sqrt(sigma[i,1,1])*sqrt(sigma[i,3,3])*rho_w_13[i]

sigma[i,3,1]<-sigma[i,1,3]

sigma[i,2,3]<-sqrt(sigma[i,2,2])*sqrt(sigma[i,3,3])*rho_w_23[i]

sigma[i,3,2]<-sigma[i,2,3]

}

# Random effects model

for (i in 1:num) {

y[i,1:3]~dmnorm(delta[i,1:3], Prec_w[i,1:3,1:3]) # within-study model

# product normal formulation for the between-studies model (structured covariance):

delta[i,1]~dnorm(eta1,prec1)

delta[i,2]~dnorm(eta2[i],prec2)

#eta2[i]<-lambda20+lambda21*delta[i,1]

eta2[i]<-lambda20+lambda21*(delta[i,1]-mean(delta[,1])) # centering on the mean

delta[i,3]~dnorm(eta3[i],prec3)

#eta3[i]<-lambda30+lambda32*delta[i,2]

eta3[i]<-lambda30 +lambda32*(delta[i,2]-mean(delta[,2])) #centering

}

#prior distributions

eta1~dnorm(0.0, 0.001)

lambda20~dnorm(0.0, 1.0E-3)

lambda30~dnorm(0.0, 1.0E-3)

corr.1.2~dunif(-0.99,0.99)

corr.2.3~dunif(-0.99,0.99)

#corr.1.3~dunif(-0.99,0.99)
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tau.1~dunif(0,2)

tau.2~dunif(0,2)

tau.3~dunif(0,2)

psi1.sq<-pow(tau.1,2)

prec1<-1/psi1.sq

psi2.sq<-pow(tau.2,2) - pow(lambda21,2)*pow(tau.1,2)

prec2<-1/psi2.sq

psi3.sq<-pow(tau.3,2) - pow(lambda32,2)*pow(tau.2,2)

prec3<-1/psi3.sq

mean.1<-eta1

#mean.2<-lambda20+lambda21*mean.1 # no centering in product normal

#mean.3<-lambda30+lambda32*mean.2 # no centering

mean.2<-lambda20 #when centering

mean.3<-lambda30 #when centering

lambda21<-corr.1.2*tau.2/tau.1

lambda32<-corr.2.3*tau.3*tau.2

perc.acr<-exp(mean.2)/(1+exp(mean.2))

}

#data

list(num=22, no=3, rho12=-0.2, rho23=0.24, rho13=-0.13)

#order of variables in the data:

#n_acr n_das n_haq log_acr_odds var_acr_lodds das28meanchange das28changevar

#haqmeanchange haqchangevar

n[,2] n[,1] n[,3] y[,2] var[,2] y[,1] var[,1] y[,3] var[,3]

26 26 26 NA NA -1.7 1.683457 -0.31 0.4410603

188 188 188 -0.1920777 4.037007 -1.6 1.88 -0.352 0.388497

810 810 810 0.4054652 4.166667 -1.9 1.96 -0.48 0.36

25 25 25 0.9444618 4.960318 NA NA NA NA

72 72 72 1.17412 5.544385 -1.47 2.337441 NA NA

30 30 30 NA NA -1.87 1.698847 NA NA

18 18 18 NA NA -2.1 1.532179 NA NA

66 66 66 NA NA -0.98 2.165142 NA NA

22 22 22 0.5596157 4.321429 NA NA -0.45 0.443637

110 110 110 NA NA -1 1.425636 NA NA

331 331 331 NA NA NA NA -0.12 0.3628

37 37 37 NA NA NA NA 0.15 0.6399

337 337 337 0.041549 4.001727 NA NA NA NA

411 411 411 NA NA NA NA NA NA

6 6 6 NA NA -1.17 2.602115 NA NA

20 20 20 NA NA -1.26 2.483544 NA NA

83 83 83 NA NA -1.1 2.638806 -0.21 0.4161627

24 24 24 1.098612 5.333333 -2.4 0.6029454 NA NA

18 18 18 0.6931473 4.5 NA NA NA NA

41 41 41 -0.1466035 4.021531 -1.5 2.56 -0.21 0.25

9 9 9 1.252763 5.785714 -1.9 0.4222091 NA NA

27 27 27 0.8649974 4.796052 -1.3 2.169941 NA NA
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END

#initial values

list(

delta = structure(.Data = c(

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25, 0.5, -1.5, -0.25,

0.5, -1.5, -0.25, 0.5, -1.5, -0.25),

.Dim = c(22,3)),

h = c(0.1,0.1,0.1),

tau.1 = 0.5, tau.2 = 0.5, tau.3 = 0.5,

corr.1.2 = 0.5, corr.2.3 = 0.5,

eta1 = 0.0,

lambda20=0.0, lambda30=0.0,

var = structure(.Data = c(

NA,0.5, NA, NA, NA,

NA, NA, NA, NA,0.5,

NA,0.5, NA, NA,0.5,

NA,0.5, 0.5, NA,0.5,

0.5, NA,0.5,0.5,0.5,

NA, NA, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5, NA,0.5,0.5,

0.5,0.5, NA,0.5,0.5,

NA,0.5,0.5, NA, 0.5,

NA, NA, NA,0.5,0.5,

NA,0.5, NA, NA, NA,

NA, NA,0.5, NA, NA,

0.5),.Dim = c(22,3)),

y = structure(.Data = c(

NA,-0.5, NA, NA, NA,

NA, NA, NA, NA,-0.5,

NA,-0.5, NA, NA,-0.5,

NA,-0.5, -0.5, NA,-0.5,

-0.5, NA,-0.5,-0.5,-0.5,

NA, NA, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5, NA,-0.5,-0.5,

-0.5,-0.5, NA,-0.5,-0.5,

NA,-0.5,-0.5, NA, -0.5,

NA, NA, NA,-0.5,-0.5,

NA,-0.5, NA, NA, NA,

NA, NA,-0.5, NA, NA,

0.5),.Dim = c(22,3)))
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C.6 Additional results for the example in RA

Table 14 shows results of applying TRMA of treatment effects on HAQ, ACR20 and DAS-28 using
spherical decomposition and TRMA in PNF with structured covariance, along the results previously
presented in Table 9 of univariate, bivariate and trivariate (with Cholesky decomposition and PNF
with unstructured covariance) analyses. The results of all TRMA analyses are based on 50,000
iterations after a burn-in of 50,000 and applying thinning every 10 iteration (500,000 iterations
were run after burn-in).

The results of applying TRMA with spherical decomposition of the correlation matrix resulted
in similar estimates as from TRMA with Cholesky decomposition and PNF with unstructured
covariance, apart from the between-studies correlation between the effects on HAQ and DAS-
28 estimated with higher mean of 0.84 compared to 0.63 and 0.44 from the other two models.
Results from TRMA PNF with structured covariance were almost the same as those obtained form
the univariate analyses. This is due to the assumption of the effects on DAS-28 and HAQ being
conditionally independent, whilst in fact in these data these were the two outcomes with the highest
correlation. Changing the order of the outcomes from (DAS-28, ACR20 and HAQ and first, second
and third outcomes to, for example, ACR20, DAS-28 and HAQ, would account for the correlation
between the effects on DAS-28 and HAQ more effectively.
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C.7 Extension of multivariate-meta-analytic models in product normal formu-
lation (PNF) to multiple outcomes (beyond the trivariate case)

C.7.1 MRMA PNF: unstructured model

Assuming that true treatment effects on all the outcomes are correlated, we can parameterise the
between-studies model (12) in the form of product normal formulation by extending model (13) to

δ1i ∼ N(η1, ψ
2
1)

δ2i | δ1i ∼ N(η2i, ψ
2
2)

η2i = λ20 + λ21δ1i

δ3i | δ1i, δ2i ∼ N(η3i, ψ
2
3)

η3i = λ30 + λ31δ1i + λ32δ2i

...

δNi | δ1i, . . . , δ(N−1)i ∼ N(ηNi, ψ
2
N )

ηNi = λN0 + λN1δ1i + · · ·+ λN(N−1)δ(N−1)i.

(31)

In this model designed in a Bayesian framework, we need to place prior distributions on all the
parameters. Non-informative normal distributions are placed on the mean effect η1 ∼ N(0, 1000)
and the intercepts λ20, . . . , λN0 ∼ N(0, 1000). Similarly as in the trivariate case, we place prior
distributions on the between-studies correlations and between-studies standard deviations (ele-
ments of matrix T in (12) for which we are more likely to have an intuition about a reasonable
range of values (compared to the slopes and conditional variances of (34)) or, in some applica-
tions, we can obtain some external information to construct informative prior distributions for
them). The relationships between the model parameters (conditional variances ψ2

1, ψ
2
2, . . . , ψ

2
N and

slopes λ21, λ31, λ32, . . . , λN1, λN2, . . . , λN(N−1)) and the between-studies parameters (correlations
and standard deviations) give implied prior distributions for those parameters and also ensure that
the between-studies covariance is positively defined,

ψ2
1 = τ2

1

ψ2
2 = τ2

2 − λ2
21τ

2
1

ψ2
3 = τ2

3 − λ2
31τ

2
1 − λ2

32τ
2
2 − 2λ31λ32λ21τ

2
1

...

ψ2
N = τ2

N −
∑N−1

i=1 λ2
Niτ

2
i − 2

∑
1≤i<j≤N−1 λNiλNjCov(δi, δj).

(32)



λ21 = ρ12τ2/τ1

λ31 =
τ3(ρ13−ρ12ρ23)
τ1(1−(ρ12)2)

λ32 =
τ3(ρ23−ρ12ρ13)
τ2(1−(ρ12)2)

...

λNQ =

(
ρQNτQτN −

N−1∑
P=1,P 6=Q

λNPCov(δP , δQ)

)
/τ2
Q.

(33)

These relationships are obtained by calculating the variances and correlations in terms of the
parameters and the rearranging the equations for the variances and solving the set of simultaneous
equations for correlations. Some more details are given in Bujkiewicz et al [13]. This becomes
a complex task in higher dimensions. Alternative and simpler model can be used by assuming a
structure of the between-studies covariance matrix, which we describe in Section C.7.2.
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C.7.2 MRMA PNF: structured model

If we imagine that N outcomes are ordered in a sequence (for example according to measurement
time or other reasons that would impose such correlation structure), a conditional independence be-
tween any pair of outcomes that are not “neighbours” can be assumed, conditional on the outcomes
placed in the sequence in between that particular pair.

This leads to a structure being placed on the between-studies covariance matrix in such a way
to fully take into account of the correlations between the treatment effect on some pairs of outcomes
(for example those that are measured one after another in a time sequence), but assume conditional
independence between the effects on other pairs of outcomes. The elements of the precision matrix
T−1 corresponding to the pairs of the effects that are conditionally independent become zero and
(if assuming that only effects on consecutive outcomes are correlated) only those on diagonal and
immediate off-diagonals are non-zero. The between-studies model (12) is then parameterised in the
product normal, 

δ1i ∼ N(η1, ψ
2
1)

δ2i | δ1i ∼ N(η2i, ψ
2
2)

η2i = λ20 + λ21δ1i

δ3i | δ2i ∼ N(η3i, ψ
2
3)

η3i = λ30 + λ32δ2i
...
δNi | δ(N−1)i ∼ N(ηNi, ψ

2
N )

ηNi = λN0 + λN(N−1)δ(N−1)i.

(34)

As in previous models (the trivariate and the multivariate with unstructured between-studies
covariance), the parameters of the above model can be expressed in terms of the elements of the
between-studies covariance matrix T (12):

ψ2
1 = τ2

1 , ψ2
2 = τ2

2 − λ2
21τ

2
1 , ψ2

3 = τ2
3 − λ2

32τ
2
2 , . . . , ψ2

N = τ2
N − λ2

N(N−1)τ
2
N−1 (35)

and 
λ21 = ρ12 τ2

τ1
λ32 = ρ23 τ3

τ2
...

λN(N−1) = ρ(N−1)N τN
τ(N−1)

(36)

Non-informative prior distributions are then placed on the between-studies correlations and
standard deviations, ρ12, ρ23, ρ34, . . . , ρ(N−1)N ∼ dunif(−1, 1), τ1, . . . , τN ∼ N(0, 10)I(0, ), as
well as the remaining, independent parameters, η1 ∼ N(0, 1000), λ20, . . . , λN0 ∼ N(0, 1000). In
this from, the model is much easier to implement compared to the model with the unstructured
covariance matrix in Section C.7.1.
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D Supplementary materials for network meta-analysis of multiple
outcomes

D.1 Additional technical details for mvNMA of multi-arm trials

The multivariate NMA extends to account for the correlation in multi-arm trials by assuming that
all effects in trial i relative to a common baseline treatment in this trial are correlated and normally
distributed, resulting in the full between-studies model in the following form

 δi(bk1)1
...

δi(bk1)M


 δi(bk2)1

...
δi(bk2)M


... δi(bkp)1
...

δi(bkp)M





∼ N





 d(bk1)1
...

d(bk1)M


 d(bk2)1

...
d(bk2)M


... d(bkp)1
...

d(bkp)M





, TMp×Mp



(37)

for (p + 1)-arm trial (p comparisons) reported on M outcomes. The between-studies covariance
matrix has the following form

TMp×Mp = (38)



 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M

 1
2

 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M

 . . . 1
2

 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M

 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M

 ... 1
2

 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M


. . .

... τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M




The model assumes homogeneity of the between-studies variances and correlations across treat-
ment contrasts. On the block diagonal of the matrix TMp×Mp, the correlations are between the
treatment effects on different outcomes within the same arm contrast and on the block off-diagonal
the correlations are between the treatment effects on different arms and also different outcomes
(except for the diagonal elements of the blocks).

This model can be simplified by representing the blocks of the multivariate distributions, cor-
responding to different treatment arms as a series of conditional distributions which are univariate
at the arm level but multivariate at the outcome level, introducing a multivariate version of the
“correction” for multi-arm trials (Dias et al [41]) δi(bk1)1

...
δi(bk1)M

 ∼ N

 d(bk1)1

...
d(bk1)M

 , TM×M =

 τ2
1 . . . ρ1Mτ1τM

. . .
...
τ2
M


 (39)
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
δi(bkj)1

...
δi(bkj)M

 |




δi(bk1)1

.

.

.
δi(bk1)M




δi(bk2)1

.

.

.
δi(bk2)M


.
.
.

δi(bk(j−1))1

.

.

.
δi(bk(j−1)M





∼ N




d(bkj)1

+ 1
j

j−1∑
t=1

(δi(bkt)1
− d(bkt)1

)

.

.

.

d(bkj)M
+ 1

j

j−1∑
t=1

(δi(bkt)M
− d(bkt)M

)


,
j + 1

2j
TM×M


(40)

D.2 WinBUGS code for multivariate NMA applied to the example in multiple
sclerosis

We describe below the data preparations steps required to fit bvNMA to multiple sclerosis data.
This involves restructuring the data in Table 10 into three data files for the WinBUGS code:

• Datafile1 is a list specifying: the number of studies ns, number of outcomes no, total number
of treatments in each network nt.total, number of arms in each study na1 and variables nobs1
and nobs2 that indicate the total number of study-arms across studies reporting one and two
outcomes respectively. In our example, 11 studies have data for one outcome only, one of
which is a three-arm study giving nobs1 = 23 as the total number of observations that are
single. The remaining 11 studies of which one is a 3-arm study report paired outcomes given
nobs2 = 23. Finally na1 is a vector of length ns that specifies the number of study arms,
arranged such that, for example, the number of arms for study 1 and study 11 in datafile2
and datafile3 are 2 and 3 respectively.

• Datafile2 contains treatment indicators numbered: 1 to 8 in the network for outcome 1
(proportion remaining relapse free) and 1 to 6 in the network for outcome 2 (discontinuation
due to adverse events) where 8 and 6 are the total number of interventions in network 1 and
2 respectively (Figure 5). The following variables are included: s[] is a study identifier (same
as study[] in datafile2), t[,1], t[,2] and t[,3] carry treatment indicators in arm 1, 2 and 3 of
study i, na2[] is the number of arms, o[,1] identifies outcome/network and o[,2] equals o[i,1] if
the ith row defines treatments for outcome o[i,1] and zero otherwise. This enables treatments
to be numbered consecutively within each network and independent of treatment numbering
in other networks.

• Datafile3 contains arm-level summary data arranged such that studies reporting only one
outcome are placed on top followed by those reporting two outcomes and so forth. The
variable study[] indicates the study number consecutively numbered from 1 to ns, arm[] in-
dicates study-arm, y[,1] and y[,2] indicate mean-response for outcome 1 and 2 respectively
with corresponding standard-errors se[,1] and se[,2]. Finally v[] indicates the correlation be-
tween y[,1] and y[,2] specific to treatment-arms within-studies. The variable v[] has been
set to NA because the within-study correlations were not available for our illustrative exam-
ple. Instead, we specified prior-distributions for the within-study correlations in the model
likelihood and used this to explore the impact of various assumptions about the correlations
between outcomes on parameter estimates.

Datafile1

list(

ns=22, # number of studies

no=2, # number of outcomes

nobs1 = 23, # number of observations from studies reporting one outcome
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obs2 = 23, # number of observations from studies report both outcomes

nt.total = c(8,6), # total number of treatments in network 1 and network 2 respectively

na1 = c(2,2,2,2,2, 2,2,2,2,2, 3,2,2,2,2, 2,2,2,2,2, 2,3)

# number of study arms in each study

)

Datafile2

s[] t[,1] t[,2] t[,3] na2 o[,1] o[,2]

1 1 2 NA 2 1 1

1 1 2 NA 2 2 0

2 1 2 NA 2 1 1

2 1 2 NA 2 2 0

3 1 7 NA 2 1 1

3 1 7 NA 2 2 0

4 1 3 NA 2 1 1

4 1 3 NA 2 2 0

5 1 4 NA 2 1 1

5 1 4 NA 2 2 0

6 1 8 NA 2 1 1

6 1 8 NA 2 2 0

7 1 5 NA 2 1 1

7 1 5 NA 2 2 0

8 3 4 NA 2 1 1

8 3 4 NA 2 2 0

9 2 3 NA 2 1 1

9 2 3 NA 2 2 0

10 4 5 NA 2 1 1

10 4 5 NA 2 2 0

11 3 4 5 3 1 1

11 3 4 5 3 2 0

12 1 2 NA 2 1 1

12 1 2 NA 2 2 2

13 1 2 NA 2 1 1

13 1 2 NA 2 2 2

14 1 2 NA 2 1 1

14 1 2 NA 2 2 2

15 1 3 NA 2 1 1

15 1 3 NA 2 2 2

16 1 3 NA 2 1 1

16 1 3 NA 2 2 2

17 1 5 NA 2 1 1

17 1 5 NA 2 2 2

18 2 4 NA 2 1 1

18 2 4 NA 2 2 2

19 2 5 NA 2 1 1

19 2 5 NA 2 2 2

20 2 5 NA 2 1 1

20 2 5 NA 2 2 2

21 3 5 NA 2 1 1

21 3 5 NA 2 2 2

22 1 4 6 3 1 1

22 1 4 6 3 2 2
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END

Data file 3

study[] arm[] y[,1] y[,2] se[,1] se[,2] v[]

1 1 -0.033 NA 0.183 NA NA

1 2 0.219 NA 0.184 NA NA

2 1 1.036 NA 0.248 NA NA

2 2 1.043 NA 0.121 NA NA

3 1 0.642 NA 0.098 NA NA

3 2 1.208 NA 0.077 NA NA

4 1 1.149 NA 0.318 NA NA

4 2 1.253 NA 0.327 NA NA

5 1 -0.134 NA 0.518 NA NA

5 2 1.012 NA 0.584 NA NA

6 1 1.046 NA 0.102 NA NA

6 2 1.545 NA 0.116 NA NA

7 1 -1.609 NA 1.095 NA NA

7 2 -0.336 NA 0.414 NA NA

8 1 -0.083 NA 0.109 NA NA

8 2 0.243 NA 0.109 NA NA

9 1 1.358 NA 0.154 NA NA

9 2 1.046 NA 0.144 NA NA

10 1 -2.286 NA 0.429 NA NA

10 2 -4.844 NA 1.42 NA NA

11 1 0.268 NA 0.368 NA NA

11 2 -1.386 NA 0.456 NA NA

11 3 -0.268 NA 0.368 NA NA

12 1 -0.362 -2.146 0.107 0.171 NA

12 2 -0.754 -2.2 0.115 0.178 NA

13 1 -1.041 -3.807 0.475 1.43 NA

13 2 0.241 -2.442 0.403 0.737 NA

14 1 -0.995 -4.828 0.201 1.004 NA

14 2 -0.681 -3.178 0.189 0.456 NA

15 1 0.452 -3.122 0.097 0.234 NA

15 2 0.796 -2.785 0.102 0.202 NA

16 1 -1.023 -4.256 0.243 0.712 NA

16 2 -0.505 -3.071 0.224 0.387 NA

17 1 -1.83 -4.804 0.261 1.004 NA

17 2 -1.279 -2.434 0.218 0.33 NA

18 1 -0.488 -2.939 0.111 0.235 NA

18 2 -0.492 -2.759 0.113 0.215 NA

19 1 0.361 -4.007 0.096 0.357 NA

19 2 0.322 -4.22 0.068 0.279 NA

20 1 0.934 -4.344 0.356 1.423 NA

20 2 0.111 -3.555 0.334 1.014 NA

21 1 -0.581 -4.511 0.217 1.005 NA

21 2 0.042 -2.901 0.204 0.459 NA

22 1 -1.655 -5.226 0.199 1.003 NA

22 2 -0.751 -3.23 0.158 0.385 NA

22 3 -0.995 -4.127 0.164 0.582 NA

END
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model{

#Likilihood for studies reporting a single outcome (arm level data)

for(i in 1:nobs1){

tmp[i] <- v[i] #dummy variable within-study corr in datafile3

omega1[i,1] <- pow(se[i,1],-2) #precision

y[i,1] ~ dnorm(mean.y[study[i],arm[i],1],omega1[i,1]) # Normal dist.

}

#Likilihood for studies reporting two outcomea (arm level data )

rhoW ~ dunif(-1,1) # uniform(a,b) prior distr. for within-study corr.

for(i in (nobs1+1):(nobs1+nobs2)){

omega2[i,1:no,1:no] <- inverse(cov.mat[i,,])

y[i,1:no] ~ dmnorm(mean.y[study[i],arm[i],1:no],omega2[i,,])#mvNorm distr.

#Define within-study covariance matrix

cov.mat[i,1,1] <- pow(se[i,1],2)

cov.mat[i,2,2] <- pow(se[i,2],2)

cov.mat[i,1,2] <- se[i,1]*se[i,2] *rhoW

cov.mat[i,2,1] <- cov.mat[i,1,2]

}

#Transform unobserved effects to one-row per study and take contrasts

for(j in 1:ns) {

for(k in 1:na1[j]) {

for(m in 1:no) {

mean.y[j,k,m] <- mu[j,m] + delta[j,k,m]

}

}

}

#Multivariate random-effects (homogenous variance model)

for(j in 1:ns){

for(m in 1:no) {

delta[j,1,m] <-0 #set delta in treatment 1/baseline to zero

w[j,1,m] <-0 #set multi-arm adjustment in trt 1 to zero

}

for(k in 2:na1[j]){

delta[j,k,1:no] ~ dmnorm(md[j,k,1:no],PREC[j,k,1:no,1:no])

#Set precision matrix T for multiple outcomes

for(m in 1:no) {

for(mm in 1:no) {

PREC[j,k,m,mm] <- T[m,mm]*2*(k-1)/k

}

}

}

}

#Consistency relations between basic parameters

for(i in 1:(ns*no)) {
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for(k in 2:na2[i]) {

md[s[i],k,o[i,1]] <- (d[o[i,1],t[i,k]] - d[o[i,1],t[i,1]]) *equals(o[i,1],o[i,2])

+ sw[s[i],k,o[i,1]]

w[s[i],k,o[i,1]] <- (delta[s[i],k,o[i,1]] - (d[o[i,1],t[i,k]] - d[o[i,1],t[i,1]]))

*equals(o[i,1],o[i,2])

sw[s[i],k,o[i,1]] <- sum(w[s[i],1:k-1,o[i,1]])/(k-1)

}

}

##########################################################

#Constraints.

#set effect in trt 1 on both outcome to zero.

#outcome 2 has 8 treatments buts outcome 2 has only 6 treatments#

#so need to set d[2,7] and d[2,1]

d[1,1] <-0

d[2,1] <-0

d[2,7] <-0

d[2,8] <-0

d[1,1] <-0

#trt effects exponentiated and prior distributions

for(m in 1:no) {

sd[m] ~ dunif(0, 5)

sigma[m,m] <- pow(sd[m],2)

for(k in 2: nt.total[m]){

or[m,k] <- exp(d[m,k])

d[m,k] ~ dnorm(0,0.0001)

}

}

#Prior distributions and estimated between study correlation matrix

for(j in 1:ns){

for(m in 1:no) {

mu[j, m] ~ dnorm(0,0.0001)

}

}

#Parameterization of the between-studies covariance based

# on the separation strategy by spherical decomposition (Wei et al 2013)

T[1:no,1:no] <- inverse(sigma[,])

pi <- 3.1415

for(i in 1:2) {

for(j in (i+1):no) {

sigma[i,j] <- rhoB[i,j]*sd[i]*sd[j]

sigma[j,i] <- sigma[i,j]

g[j,i] <- 0

a[i,j] ~ dunif(0, pi)

rhoB[i,j] <- inprod(g[,i], g[,j])

}

}
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g[1,1] <- 1

g[1,2] <- cos(a[1,2])

g[2,2] <- sin(a[1,2])

#Additional parameterization in 3-outcome problem

#g[1,3] <- cos(a[1,3])

#g[2,3] <- sin(a[1,3])*cos(a[2,3])

#g[3,3] <- sin(a[1,3])*sin(a[2,3])

#pairwise ORs and LORs for all possible pair-wise comparisons, if nt>2

#outcome 1

for (c in 1:(nt.total[1]-1)) {

for (k in (c+1):nt.total[1]) {

or2[c,k] <- exp(d[1,k] - d[1,c])

lor1[c,k] <- (d[1,k]-d[1,c])

}

}

# outcome 2

for (c in 1:(nt.total[2]-1)) {

for (k in (c+1):nt.total[2]) {

or2[c,k] <- exp(d[2,k] - d[2,c])

lor2[c,k] <- (d[2,k]-d[2,c])

}

}

}
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