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EXECUTIVE SUMMARY 
 

Cost-effectiveness analyses informing NICE appraisals use a range of modelling 

approaches such as decision trees, Markov models and individual sampling models. Most 

of these have been subject to detailed discussion within the economic evaluation literature. 

This has not been the case for one approach, partitioned survival analysis, which has been 

used extensively in the NICE Technology Appraisal (TA) Programme and is now the most 

commonly used decision modelling approach for appraisals of interventions for advanced 

or metastatic cancers. 

 

The objective of this Technical Support Document (TSD) is to describe and critique 

partitioned survival analysis when used as a decision modelling tool in order to assist 

different stakeholders in determining its appropriateness as a basis for informing policy 

decisions. This TSD provides: 

 

• A description of the partitioned survival analysis approach and how it differs from more 

conventional state transition models in terms of structural assumptions and data 

requirements (Section 2).  

• A review of the use of partitioned survival analysis in recent NICE TAs of cancer 

treatments (Section 3).  

• A critique of the approach focusing on the implications of the structural assumptions 

made for extrapolation and quantification of uncertainties (Section 4). 

• The relative merits of partitioned survival analysis and state transition modelling 

approaches (Section 4). 

• Recommendations for the selection of a modelling approach, documentation of the 

selected approach, representation of uncertainties relating to extrapolation, and for further 

methods research (Section 6). 

 

The focus of this TSD is the application of partitioned survival analysis in appraisals of 

cancer treatments as this is where the approach has been used most frequently to date. 

Nonetheless, the TSD has broader relevance for the application of partitioned survival 

analysis as a decision modelling approach in other clinical settings.  
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Abbreviations  
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STA   Single Technology Appraisal 
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TSD   Technical Support Document 

TTD   Time to treatment discontinuation  
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1. INTRODUCTION 

 

Decision modelling has an established role in informing clinical decision making and 

policy decisions relating to cost-effectiveness. When using decision models to generate 

estimates of the costs and effects of interventions, a range of alternative decision modelling 

approaches can be used, such as decision trees, Markov models and individual sampling 

models. Existing literature considers the relative merits of these approaches (e.g. 

Sonnenberg et al. 1993, 1 Barton et al. 2004 2 and Brennan et al. 2006 3). Economic 

evaluations have also used a method not considered in this literature, a method referred to 

as partitioned survival analysis (PartSA) or area under the curve (AUC) modelling. This 

approach has been used in appraisals of interventions that are expected to prolong life 

expectancy and impact upon quality of life, mainly in advanced or metastatic cancers (e.g. 

Hoyle et al. 2013;4 Hornberger et al. 2010;5 Delea et al. 20146) although there are 

examples of its application in other areas including haematological cancers with relatively 

favourable prognosis.7 The strengths and limitations of this approach to decision modelling 

have not been formally considered.  

 

The objective of this Technical Support Document (TSD) is to provide a clear description 

and critique of PartSA as a decision modelling approach to inform policy decisions relating 

to cost-effectiveness. A set of recommendations is proposed to aid those developing and 

reviewing decision models (companies, Assessment Groups, AGs and Evidence Review 

Groups, ERGs) and making decisions based on their outputs (Appraisal Committees) to 

better understand the assumptions underlying the approach, and its strengths and 

weaknesses when compared with alternative decision modelling approaches. Areas of 

future methods research that would further inform the selection and implementation of 

appropriate modelling approaches are also outlined. 

 

This TSD is set out as follows. Section 2 describes the PartSA approach and how it differs 

from more conventional state transition models. Section 3 documents how the method has 

been used in NICE appraisals, focusing on recent oncology appraisals where the method 

has been most frequently applied. Section 4 provides a critique of PartSA and discusses 

alternative approaches, specifically state transition models. Section 5 provides a summary 

of the conclusions of the TSD and Section 6 provides specific recommendations.  
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2. PARTITIONED SURVIVAL AS A DECISION MODELLING APPROACH 

 

2.1. OVERVIEW OF DECISION MODELLING  

 

Decision modelling provides a quantitative  framework for synthesising available 

evidence, and generating estimates of clinical and cost-effectiveness that are relevant to 

decision makers.8 Three important roles of decision modelling in the NICE appraisal 

process are to allow all relevant interventions to be simultaneously compared, the full 

range of relevant information to be reflected in a single coherent analysis, and observed 

information to be used to predict outcomes and costs over an appropriate model time 

horizon via extrapolation. Decision models also play an important role in allowing 

heterogeneity and uncertainty to be characterised and reflected in the decision making 

process.  

 

Decision models aim to describe key biological or clinical processes, and the way in which 

interventions affect these processes. Many conditions can be described in terms of a series 

of distinct events (states) that individuals experience and move between. In these 

situations, state transition models are often used as they are conceptualised in these terms.9 

In state transition models, the allowed movements between states are referred to as 

transitions, and the speed at which these transitions occur as transition probabilities or 

rates. State values (sometimes called “rewards”) are used to reflect the costs and health-

related quality of life (HRQoL) implications of residing in, or transiting between, each 

health state. Estimates of expected costs and quality- adjusted life years (QALYs) are 

derived by assigning state values to the time spent by patients in each health state.  

 

2.2. PARTITIONED SURVIVAL ANALYSIS (PARTSA) 

 

PartSA models are conceptually similar to state transition models in that they are 

characterised by a series of health states with associated state values. However, they differ 

in the way that the proportion of patients in each health state at each time point (state 

membership) is determined. In state transition models, state membership is usually 

determined using matrices of transition probabilities which describe the probability an 
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individual will make each transition in a given time period. In the PartSA approach, state 

membership is determined from a set of non-mutually exclusive survival curves. The 

PartSA approach uses an overall survival (OS) curve to estimate the proportion of people 

alive over time directly and may include a statistical extrapolation beyond the time horizon 

of the original study depending on the requirement to model a lifetime horizon and the 

maturity of the available data. The area under the (extrapolated) OS curve provides an 

estimate of mean life expectancy. OS may be further disaggregated or “partitioned” into 

different health states to allow these health states to have different HRQoL and cost 

implications. Within PartSA models, there is a survival curve for each health state that 

describes time from model start (i.e. patient entry in to the model) to transiting to any 

health state that is further along the sequence. This means that the survival curves do not 

represent mutually exclusive estimates of state membership. For example, the survival 

curve for the last alive health state in the sequence - the OS curve - will include all patients 

who are still alive, including those in earlier health states in the sequence. When there are 

multiple health states in which patients who are alive can reside, state membership must 

therefore be derived from the modelled survival curves. State membership is not estimated 

using transition probabilities that describes transitions from one health state to the next; it 

is instead derived from the set of non-mutually exclusive survival curves.  

 

The way in which state membership is determined in PartSA models can be illustrated 

using a model structure commonly applied in economic evaluations of treatments for 

advanced or metastatic cancer. This model includes three states: progression-free, 

progressed and dead. Progression implies a worsening or spreading of the cancer. The 

definition of progression depends on the type of cancer and the criteria used. Patients who 

are alive are disaggregated according to progression status as progression generally has 

implications for HRQoL and costs. The PartSA approach requires two survival curves to 

estimate state membership for this model. The first describes time from model entry to 

exiting the progression-free state via progression or death (a composite outcome) and the 

second time from model entry to death. These are the progression-free survival (PFS) and 

OS endpoints commonly reported in cancer trials. The first survival curve (PFS) directly 

provides the proportion of patients remaining in the first health state – progression-free – 

over time. State membership for the dead state is simply 1 minus the OS curve at each time 

point. For the progressed health state, state membership is derived as the difference 

between the OS and the PFS curve at each time point, as this provides the proportion of 
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patients who are alive but not progression-free. This process of deriving the progressed 

state membership, PSM(t) is illustrated in Figure 1. Differences between interventions are 

typically modelled by using different PFS and OS curves for each treatment.  

 
Figure 1: Determining state membership in partitioned survival analysis models, an example 

of a three-state cancer model [adapted from the Pazopanib company submission to NICE].10 
PSM(t) denotes progressed state membership (PSM) as a function of time (t). 

 

Although many applications of the PartSA approach use a three-state structure as described 

in Figure 1, additional states can be included within PartSA models. For example, if 

patients who progress following initial treatment receive further treatment, four health 

states could be used: progression-free on initial treatment, progression-free on further 

treatment, progressed following further treatment and dead. 

 

More generally, we can consider an N state PartSA model where the order of states from 1 

to N (dead) is determined by the order in which patients can move through the states and 

patients cannot move to a lower indexed health state. For example, for the three state 

example described above, patients cannot move from being progressed to being 

progression-free. To specify the PartSA model n=1,…,N-1 survival curves are required. For 

health state n the corresponding survival function (S(t)n, also referred to as the cumulative 
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survival probability  or function) describes time-to-event data from model entry to 

transiting to any health state that is further along the sequence than state n. State 

membership for the first health state is determined directly from the survival function S(t)1. 

State membership for each other alive health state (n=2,…,N-1) is derived using the 

survival function for that state (S(t)n) and subtracting from this the survival function for the 

prior health state (S(t)n-1) at each time point. The resulting proportion represents the 

proportion of individuals who have not entered a higher state than n, minus the proportion 

residing in states lower than n. State membership for the dead state is estimated as one 

minus the final (S(t)N-1) survival function which is always the OS curve. The process of 

deriving state membership from each survival curve is summarised in Table 1. 

 

Table 1: Determining state membership in an N health state partitioned survival analysis 

model  
Health state  State membership at time t 

n=1 S(t)n 

n>1 and n ≠ N S(t)n
- S(t)n-1 

n=N 1-S(t)n-1 

S(t)n is a survival function describing the probability that a patient survives in state n or a lower indexed state 

beyond a specific time point (t) from model entry. 

 

Estimates of state membership can be represented visually as the observed differences 

between the survival curves at specific time points. This is shown for a four-state example 

in Figure 2 where state 4 is death and state membership estimates are shown for the 0.6 

year time point using vertical lines.  
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Figure 2: Determining state membership in partitioned survival analysis models, an example 

of a four state model.  
S(t)n is a survival function describing the probability that a patient survives in state n or a lower indexed state 

beyond a specific time point (t) from model entry. 

 

PartSA originated as a method for summarising the overall impact of treatments on 

HRQoL and survival, in the context of clinical trials. The method was suggested in 1989-

1990 by Goldhirsch et al. and Glasziou et al. 11, 12 who noted that analysing quality-

adjusted survival using standard survival analysis methods induced informative censoring. 

This occurred, as individuals with worse HRQoL were more likely to be censored earlier. 

The authors developed the PartSA approach to overcome this and provide trial-based 

estimates of quality-adjusted survival. A specific variation on this approach called the 

quality-adjusted time without symptoms or toxicity (Q-TWiST) method partitions 

individuals according to whether they are symptom- and toxicity-free or not. This method 

has been used in a wide variety of oncology settings to provide a trial-based summary 

measure of treatment benefit that takes into account the impact of treatment on survival, 

disease-related symptoms and the adverse effects of treatment.13  
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The survival curves used in the PartSA approach (e.g. the PFS and OS curves) are derived 

from independent analyses of each time-to-event endpoint. The PartSA approach was 

developed as a clinical tool for within-trial analysis and its use as a decision modelling 

approach has required extensions to the original method to allow for extrapolation and 

incorporation of additional evidence. In the context of NICE Technology Appraisals (TAs), 

decision models using the PartSA approach are typically based on one or more “pivotal” 

trials evaluating the appraised technology or technologies. For these trials, individual 

patient data (IPD) are generally available to companies or can be estimated by AGs or 

ERGs from reported summary Kaplan-Meier estimates using established methods.14, 15 For 

interventions included in the pivotal trial(s), the survivor functions required for application 

of PartSA can therefore be estimated using a wide range of analytic options. For the 

within-trial period, non-parametric approaches (e.g. Kaplan-Meier estimates) or parametric 

models (e.g. Weibull) may be used, whilst for the extrapolation period, parametric models 

are generally used. Flexible parametric models or mixture models may be used to allow 

more complex hazard functions to be represented. Different assumptions regarding the 

treatment effect can be reflected including proportional hazards or a constant acceleration 

factor, or  allowing time-dependent treatment effects by fitting separate survival models to 

each arm of a trial.16 Where external evidence on comparative effectiveness is used, it is 

generally taken from a meta-analysis, indirect comparison or network meta-analysis. This 

is commonly incorporated within the model by applying a constant hazard ratio to the 

hazard for the comparator used as the reference comparator in the synthesis work. 

Synthesis methods which allow for non-proportional hazards are emerging and can be 

reflected within PartSA models.17, 18 Where available, external evidence may be used to 

help inform the long-term extrapolation of survival. 

 

2.3. CONCEPTUAL DIFFERENCES BETWEEN PARTSA AND STATE TRANSITION MODELS 

 

Although there are clear similarities between the PartSA approach and state transition 

modelling, there are important conceptual differences. Firstly, the approaches differ in the 

types of disease and clinical processes to which they apply.  PartSA models can only be 

applied to processes in which patients move forward through a set of health states (though 

patients do not have to pass through every state), whereas state transition models can be 

used to represent any specified transitions. In the example model of advanced or metastatic 
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cancer described above (see Figure 1), a PartSA approach is possible as it is generally 

considered reasonable to assume that progressed patients cannot return to the original 

progression-free state (though they can be considered progression-free on a subsequent line 

of therapy, as progression is generally defined relative to measurements taken at the start 

of a course of treatment).   

 

Even when modelling the same set of allowed movements between states, PartSA and state 

transition modelling differ fundamentally in their underlying structural assumptions. In the 

PartSA approach, each endpoint (e.g. PFS, OS) is modelled independently of the other 

endpoints included within the model, whereas in state transition models clinical events are 

explicitly related.  

 

Returning to the example in advanced or metastatic cancer, Figure 3 shows the state 

transition model that corresponds to the PartSA model shown in Figure 1. State 

membership for state transition models is most commonly derived using cohort simulation 

in discrete time. Briefly, this involves specifying a set of transition probabilities p(c)ij, 

which describe the probability of transiting from a certain health state (i) to another (j) 

within one discrete time period (a model cycle, c). In this example, three transition 

probabilities would need to be estimated: the probability of disease progression p(c)12, the 

probability of death conditional on being in the progression-free state p(c)13 and the 

probability of death conditional on being in the progressed state p(c)23. All patients start 

the model in the progression-free state. State membership at the end of each cycle is 

estimated by applying the transition probabilities to the state membership at the end of the 

previous cycle. This is repeated until the model time horizon is reached.  

 

In some situations, (e.g. when transition probabilities depend on time spent by patients in 

an intermediate health state such as progressed), cohort simulation using standard methods 

can become cumbersome. When this is the case, patient-level simulation represents an 

alternative method for estimating state membership. Further guidance on this approach is 

available in TSD 15.19 

  

State transition models evaluated using cohort or patient-level simulation methods are 

centred around health states and the transitions between these health states. For the 

purposes of this TSD the conceptual differences between state transition models and 
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PartSA are therefore the same, regardless of whether state transition models are 

implemented using cohort- or patient-level simulation, or other methods.  

 

 

 
 

Figure 3: A typical state transition model used in advanced and metastatic cancer.  

Arrows indicate allowed transitions including the possibility that individuals will remain in the same state, 

arrow labels denote the probability pij of transitioning from state i to j in a given cycle, c. 

 

In state transition models, OS depends on all three individual transitions and the rate of 

death reflects the evolving proportion of patients in the progressed state and the differences 

in mortality between progression-free and progressed patients. There is therefore a 

structural link between mortality and earlier progression events. In contrast, mortality in a 

PartSA model is only determined by time to death data and is not explicitly linked to 

earlier progression events. This is because in the PartSA approach each modelled endpoint 

is structurally independent of the other modelled endpoints.  

 

In the context of a within-trial analysis or a case in which data have been fully observed, 

PartSA and state transition modelling approaches are expected to produce similar results if 

modelling and fitting have been done appropriately, as relationships between endpoints are 

reflected within the data. However when data are incomplete and parameters derived from 

the observed data are used for extrapolation, the approaches are expected to differ. In the 

PartSA approach, the structural independence between endpoints means that extrapolations 

for a given endpoint reflect within-trial trends in that endpoint alone, unless external 

information on hazard rates beyond the trial period is incorporated. If external information 

is not used, extrapolation of OS depends only upon prior trends in mortality rates, and is 

not explicitly linked to information on non-fatal events (e.g. progression). Non-fatal events 

Progression-
free (1)

Progressed (2)

Dead (3)

𝑝 𝑐 12

𝑝(𝑐)23𝑝(𝑐)13
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only impact upon mortality in the extrapolation period to the extent that they influenced the 

time-trend in mortality in the within-trial period and to the extent that this is reflected by 

the survival model chosen (which is likely to depend in part on its flexibility in 

representing changing hazards over time). In a state transition model, extrapolations of OS 

are influenced by the model structure and the within-trial estimates of each transition 

probability. In the example shown in Figure 3, OS in the extrapolation period will therefore 

be influenced by the state membership at the start of the extrapolation period, the rate of 

progression and how progression status impacts upon mortality. As with PartSA models, 

external information may be used to inform longer term transition rates in state transition 

models. 

 

Within PartSA, differences in state membership between treatments are determined by 

differences in the survival curves between treatments. For the example shown in Figure 1, 

both PFS and OS endpoints could differ between treatments. Differences in survival 

outcomes predicted by the model (e.g. PFS, OS) between treatments simply arise from the 

differences in the survival curves chosen for these independently modelled events for each 

treatment group. 

 

In contrast, in a state transition model the combined effect of treatment effects on 

individual transition probabilities and the structural relationship between events determines 

the treatment effect on PFS and OS. For example, a beneficial treatment effect on OS 

could be observed due to: (i) a beneficial treatment effect on the probability of progression 

[p(c)12] only (implying a surrogacy relationship between progression and mortality), (ii) a 

beneficial treatment effect on both p(c)12 and the probability of death from the progressed 

state [p(c)23] or (iii) a beneficial treatment effect on p(c)12 and a detrimental effect on 

p(c)23.  Treatment effects on earlier transition probabilities may also have indirect effects on 

subsequent transition probabilities. For example, patients who take longer to progress may 

have better outcomes with post-progression treatments as they have a longer rest period 

without anti-cancer therapy. If this is reflected in the model, then patients who take longer 

to progress will experience a lower probability of death from the progressed state [p(c)23]. 

Any treatment exerting a beneficial effect on the probability of progression [p(c)12] will 

therefore indirectly extend time spent in the progressed state (which we call post-

progression survival, PPS). Specification of treatment effects for the extrapolation period 
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in a state transition model therefore requires an estimate of how treatment is expected to 

impact on each individual transition probability during this period.  

 

Finally, the PartSA and state transition modelling approaches differ in the information 

required to parameterise the models. For the context shown in Figure 1, the PartSA 

approach requires estimates of the PFS and OS curves for each treatment, whereas the 

corresponding state transition model shown in Figure 3 requires time-to-event data on each 

individual transition probability, and estimates of the effects of each treatment on each 

transition probability. This is important as cancer trials and other clinical studies typically 

report only PFS and OS i.e. the data required for the PartSA model. These data cannot be 

used to derive the time-to-event data required for state transition modelling in a 

straightforward manner, as PFS describes the combination of progressions and deaths from 

the progression-free state and OS describes the overall probability of death, which is a 

function of all three transition probabilities. We return to the challenges of using available 

data to parameterise alternative model structures in Section 4.2. 

 

3. REVIEW OF NICE CANCER APPRAISALS 

 

As PartSA models were originally proposed as an approach for within-trial analysis, we 

sought to review applications of the PartSA approach in the context of decision modelling 

to inform policy decisions relating to cost-effectiveness. The aim of this review was to 

establish how the PartSA approach is used in this context. Specifically we aimed to 

establish whether the assumptions made in the PartSA approach were recognised and 

critiqued, whether the advantages and disadvantages of the approach compared to 

alternative approaches were recognised and informed the selection of the modelling 

approach, and how the method was being implemented in terms of assumptions made and 

data used. The review focuses on cancer appraisals, as a scoping review suggested that this 

is the indication in which the PartSA method has most commonly been used. We reviewed 

appraisals using both the PartSA approach and alternative methods to establish the nature 

of alternative methods used. 
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3.1. METHODS  

 

We reviewed the 30 most recent published completed NICE TAs of cancer treatments 

covering the period May 2013-February 2016. This review period was pragmatically 

selected to identify a sufficient number of appraisals to provide a representative sample of 

the modelling approaches currently applied to cancer appraisals. A full list of the reviewed 

TAs is presented in Appendix 1.  

 

Company submissions, assessment reports by academic groups (ERGs or AGs) and the 

Final Appraisal Determination documents from the NICE website were reviewed. Models 

were categorised according to the definitions in Box 1. For the PartSA models, we 

extracted data on the description of and justification for the approach, the survival 

endpoints modelled and endpoints for which differences between treatments were 

modelled, the use of data external to the pivotal trial, whether parameter estimates were 

adjusted to model differences between the trial data and modelling context, whether the 

probabilistic sensitivity analysis (PSA) accounted for correlation between modelled 

endpoints, and the main concerns relating to the modelling approach raised by the ERG 

and the Appraisal Committee. For those appraisals using non-PartSA approaches, we 

extracted information on the model type, the justification for using the selected approach, 

the health states modelled, the transitions probabilities assumed to differ by treatment, use 

of data external to the pivotal trial and the main concerns relating to the modelling 

approach raised by the ERG and the Appraisal Committee.  
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Box 1: Definitions of model types.  
Note that the Markov and semi-Markov approaches described are Markov chains rather than Markov 

processes as they are evaluated in discrete time. Note that patient level simulation as described here is 

assumed to be evaluated using discrete event simulation; an alternative would be to use microsimulation in 

discrete time though this is generally considered to be computationally inefficient. 

 

1 Partitioned survival analysis, also referred to as Area Under the Curve approach or model. 

Individuals in the model reside in one of a series of mutually exclusive and jointly exhaustive health 

states. State membership is determined fully by a series of independently modelled non-mutually 

exclusive survival curves. A survival curve must be specified for each alive health state that describes 

time from model start (i.e. patient entry in to the model) to transiting to any health state that is further 

along the sequence. 

2 State transition models  

Individuals in the model reside in one of a series of mutually exclusive and jointly exhaustive health 

states. The method of determining state membership is based on specifying which transitions occur 

and the speed rate at which these occur. There are alternative methods for evaluating state transition 

models: 2A, 2B and 2C. 

2A Markov  

State membership is determined using cohort simulation in discrete time and all transition probabilities 

are constant or depend only on calendar time (i.e. time in model). 

2B Semi-Markov 

State membership is determined using cohort simulation in discrete time and one or more transition 

probabilities depend on time in an intermediate health state. Transition probabilities can also depend 

on calendar time. 

2C Patient level simulation  

Model is evaluated for a series of individual patients, typically by sampling the time spent in a specific 

state from corresponding survival curves. Event rates can depend on calendar time or time in state.   

3 Decision tree 

All patients follow one of a series of mutually exclusive and jointly exhaustive pathways. Each 

pathway is associated with a probability and pathway values.  
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3.2. REVIEW FINDINGS 

 

PartSA was used in 22 (73%) of the 30 appraisals reviewed. Only two of the reviewed TAs 

were Multiple Technology Appraisals (MTAs), while all remaining TAs were Single 

Technology Appraisals (STAs). The TAs reviewed related predominantly to advanced and 

metastatic cancers, though some included locally advanced patients. Two of the TAs using 

non-PartSA approaches related to the adjuvant setting.  

 

The implementation of PartSA within these appraisals is summarised in Table 2 (Appendix 

2 provides further details). The remaining eight TAs that used alternative modelling 

methods are discussed in Section 4.2 where we discuss alternative modelling approaches in 

more detail.  

 

3.2.1. Description of modelling approach 

Despite the frequent use of PartSA, only 12 of the 22 company submissions correctly 

identified the use of PartSA, while the remaining submissions incorrectly described the 

approach used as a Markov or semi-Markov model. The ERG described the use of PartSA 

correctly in 12 of the 22 TAs (though not the same 12 as correctly described by the 

companies), while in four appraisals the ERG only provided a narrative description of the 

model and did not specify a modelling approach. In the remaining six appraisals, the 

method was described incorrectly by the ERG. 

 

3.2.2. Justification for modelling approach 

Limited justification was provided for using PartSA. Although all 22 TAs mentioned 

precedent as a justification, only six companies (and the AG for the MTA) provided any 

additional reasoning for the use of PartSA. The justifications provided were that this type 

of modelling approach aligns with the endpoints of the pivotal trials, allows reflection of 

time-dependency in risks and facilitates the incorporation of external data. In the MTA 

(TA374), the AG mentioned that PartSA was used due to the routine reporting of PFS and 

OS data and that ideally they would have implemented an alternative modelling method if 

PPS data (i.e. time-to-event data describing time from progression to death) were available 

to populate the model.  
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3.2.3. Discussion of model assumptions 

One of the fundamental assumptions made in PartSA models, that the clinical endpoints 

are modelled independently, was only acknowledged in four appraisals (TA299, TA344, 

TA371, TA374) which highlighted only that the approach assumes no correlation between 

survival endpoints in the PSA.   

 

3.2.4. Survival endpoints modelled 

Seventeen of the 22 TAs used two survival endpoints to implement the PartSA model. In 

the majority of TAs, the modelled survival endpoints were PFS and OS, and these were 

used to partition individuals into three health states (progression-free, progressed and 

dead). In two appraisals (TA316, TA377), time to treatment discontinuation or death 

(TTD) was modelled and served as a proxy for disease progression. The remaining five 

TAs used three survival endpoints; TTD, PFS and OS. TTD was included to account for 

the time spent on the initial treatment and patients were partitioned into four states: on-

treatment and progression-free, off-treatment and progression-free, progressed and dead.   

 

Additional non-partitioned analyses were used to capture cost and/or HRQoL changes in 

some of the appraisals, and in particular, to capture the cost and HRQoL implications of 

subsequent lines of treatment (TA344, TA377), palliative care (TA359) and more 

advanced phases of the disease (TA299).  

 

3.2.5. Application of treatment effects 

In all 22 appraisals that used PartSA, every modelled survival endpoint reflected 

differences between treatments. In nineteen of these appraisals, the treatment effect was 

applied for the whole time period modelled, implying that treatment modified the risk of 

each endpoint for the full model time horizon. The remaining three TAs assumed no 

treatment effect for specific periods; TA366 and TA321 assumed equal long-term 

mortality rates between treatments, informed by registry data, while in TA344, OS was 

extrapolated from trial data and mortality rates were assumed to be the same across 

treatments following the trial follow-up period. The assumption of equal mortality rates 

can be applied from a specific time point by applying the same hazards to both trial arms 
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for all subsequent time points, calculating the resulting cumulative hazard and converting 

this to a survival estimate using standard formulae.20  

 

3.2.6. Data sources 

In only five (23%) of the 22 TAs, survival curves from the pivotal trial(s) alone were 

extrapolated to inform the PartSA. The majority of TAs therefore used some form of external 

data i.e. data not collected within the pivotal trial. All of the remaining 17 TAs used some 

form of indirect comparison (naïve or adjusted) to incorporate comparators not included in 

the pivotal trial. Registry data or pooled long-term survival data from multiple trials were 

used to inform mortality event rates in the extrapolation period in four of the appraisals 

(TA321, TA344, TA357, TA366). 

 

3.2.7. Adjustment for treatment switching 

In six TAs, the parameter estimates for OS reflected adjustments to attempt to remove the 

effects of treatment switching, whereby patients who experience disease progression in the 

control arm of a trial receive treatment with the investigational therapy. The adjustment 

attempts to remove the potential confounding effect of this treatment switching on the OS 

estimates for the control therapy. This may be considered appropriate if post-progression 

administration of the investigational product is not expected in clinical practice, and the 

methods for treatment switching adjustment are appropriately applied (i.e. when assumptions 

are considered to be valid).21 

 

3.2.8. Other adjustments to parameter estimates 

In TA295, an adjustment was made to the parameter estimates, to prevent the extrapolated 

PFS curve being higher than the OS curve, as this would lead to a logical inconsistency 

whereby a larger proportion of patients are alive and progression-free than alive. This is 

possible in PartSA models as PFS and OS are estimated and modelled independently and do 

not therefore reflect the structural dependence between endpoints. In TA295, the company 

used a ratio from a published review that translated median PFS benefit into a median OS 

difference. By applying this published ratio to their PFS data, the company generated an 
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adjusted OS estimate. The approach was criticised by the ERG and was not accepted by the 

Committee.   
 

3.2.9. Correlation between endpoints 

Correlation between survival curves in PartSA models occurs because the same events 

contribute to multiple survival curves (e.g. deaths without a prior recorded progression are 

included in both PFS and OS analyses) and time spent in earlier states contributes to the time 

to event data for later states (e.g. time spent progression-free contributes to time to death). 

This correlation was discussed by the company or ERG/AG in only a small number of 

appraisals (TA285, TA299, TA321, TA344, TA371, TA374). Only two TAs (TA285, 

TA321) attempted to incorporate any correlation between survival curves in the PSA, all 

other appraisals modelled the endpoints as being statistically independent. In TA321, a 

bootstrapping approach was used and it appears that parametric survival models for PFS and 

OS were repeatedly fitted to bootstrap re-samples of the IPD to generate a correlated 

distribution of parameters for the PFS and OS models.  In TA285, the company adjusted the 

probabilistic results by assuming that OS is equal to PFS for the probabilistic simulations in 

which PFS exceeded OS. This ERG noted that this approach was inappropriate. 

 

3.2.10. Concerns raised by ERG/NICE committee  

The most commonly raised concerns related to the maturity of the data and the uncertainty 

around the modelled long-term OS projections. In PartSA models, PPS is calculated as the 

difference between the OS and PFS curves. The nature of the extrapolated PFS and OS 

curves for each treatment therefore determines the difference between treatments in PPS. The 

differences across treatments in the PPS predicted by PartSA models were key points of 

criticism raised in five appraisals (TA299, TA307, TA309, TA344, TA359). The ERG noted 

the lack of evidence to support a post-progression treatment benefit in these appraisals.  

 

Specific concerns were raised in TA295 regarding the adjustment that the company used to 

translate the trial PFS benefit into an OS benefit, stressing the importance of the unresolved 

uncertainty in PPS. In three further TAs (TA310, TA316, TA333), the ERG and/or the NICE 

Committee were concerned that the modelled survival results were likely biased by the 
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application of the hazard ratios from the indirect comparisons or by the external data that 

were used. 
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Table 2: Summary of NICE cancer appraisals using the partitioned survival analysis approach 

TA no. 
(STA 
unless 
stated) 

Indication Method 
correctly 
described1 

Justification 
provided1,2  

Survival 
endpoints 
modelled 

Differences 
between 
treatments 
for all 
modelled 
endpoints 

External 
data 

Adjustment to 
overall survival 

PSA  Concerns raised by 
ERG / Committee  
relating to modelling 
method 

TA285 Advanced ovarian 
cancer 

Yes No 2 (PFS, OS) Yes No No Yes Uncertain OS 
extrapolation 

TA295 Advanced or 
metastatic breast 
cancer 

No Yes 2 (PFS, OS) Yes Indirect 
comparison 

Avoid curves 
crossing 

Yes OS adjustment 

TA296 Locally advanced or 
metastatic non-
small-cell lung 
cancer 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

Treatment 
switching 

Yes Uncertain OS 
extrapolation 

TA299 Chronic myeloid 
leukaemia (chronic, 
accelerated and blast 
phase) 

No No 2 (TTD, OS) Yes Indirect 
comparison 

Surrogacy3 Yes Uncertain OS 
extrapolation /  
Treatment effects 
duration 

TA306 Advanced stage 
non-Hodgkin's B‑
cell lymphoma 

No Yes 3 (TTD, PFS, 
OS) 

Yes No No Yes Clinical data 
robustness 

TA307 Metastatic 
colorectal cancer 

No Yes 3 (TTD, PFS, 
OS) 

Yes No No Yes Uncertain OS 
extrapolation / 
Treatment effect 
duration 

TA309 Advanced or 
metastatic non-
small-cell lung 
cancer  

No No 2 (PFS, OS) Yes No No Yes Treatment effect 
duration 
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TA no. 
(STA 
unless 
stated) 

Indication Method 
correctly 
described1 

Justification 
provided1,2  

Survival 
endpoints 
modelled 

Differences 
between 
treatments 
for all 
modelled 
endpoints 

External 
data 

Adjustment to 
overall survival 

PSA  Concerns raised by 
ERG / Committee  
relating to modelling 
method 

TA310 Locally advanced or 
metastatic non-
small-cell lung 
cancer 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

No Yes Uncertain OS 
extrapolation 

TA316 Metastatic prostate 
cancer 

No No 2 (TTD, OS) Yes Indirect 
comparison 

No Yes Uncertain OS 
extrapolation 

TA321 Unresectable or 
metastatic BRAF 
V600 mutation‑
positive melanoma 

Yes Yes 2 (PFS, OS) Yes Indirect 
comparison+ 
Extrapolation 

Treatment 
switching 

Yes OS extrapolation  

TA333 Advanced renal cell 
carcinoma 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

No Yes Indirect comparison 

TA338 Advanced multiple 
myeloma 

Yes No 3 (TTD, PFS, 
OS) 

Yes Indirect 
comparison 

Treatment 
switching 

Yes Uncertain OS 
extrapolation  

TA344 Chronic 
lymphocytic 
leukaemia, all stages  

No No 2 (PFS, OS) Yes Indirect 
comparison+ 
Extrapolation 

No Yes Uncertain OS 
extrapolation /  
Treatment effect 
duration 

TA347 Locally advanced, 
metastatic, or 
locally recurrent 
non-small-cell lung 
cancer 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

No Yes Uncertain OS 
extrapolation 

TA357 Advanced 
melanoma 

Yes Yes 2 (PFS, OS) Yes Indirect 
comparison+ 
Extrapolation  

Treatment 
switching 

Yes Uncertain OS 
extrapolation 
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TA no. 
(STA 
unless 
stated) 

Indication Method 
correctly 
described1 

Justification 
provided1,2  

Survival 
endpoints 
modelled 

Differences 
between 
treatments 
for all 
modelled 
endpoints 

External 
data 

Adjustment to 
overall survival 

PSA  Concerns raised by 
ERG / Committee  
relating to modelling 
method 

TA359 Chronic 
lymphocytic 
leukaemia, all stages 

No No 3 (TTD, PFS, 
OS) 

Yes Indirect 
comparison 

Treatment 
switching 

Yes Treatment effect 
duration 

TA360 Metastatic 
pancreatic cancer 

Yes No 3 (TTD, PFS, 
OS) 

Yes Indirect 
comparison 

No Yes Uncertain OS 
extrapolation 

TA366 Advanced 
melanoma 

Yes Yes 2 (PFS, OS) Yes Indirect 
comparison+ 
Extrapolation 

No Yes Uncertain OS 
extrapolation 

TA371 Locally advanced or 
metastatic breast 
cancer 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

No Yes - 

TA374 
(MTA4) 

Locally advanced or 
metastatic non-
small-cell lung 
cancer 

NR Yes 2 (PFS, OS) Yes No No Yes - 

TA378 Advanced gastric 
cancer 

Yes No 2 (PFS, OS) Yes Indirect 
comparison 

No Yes - 

TA377 Metastatic prostate 
cancer 

No No 2 (TTD, OS) Yes Indirect 
comparison 

Treatment 
switching 

Yes Uncertain OS 
extrapolation 

TA - technology appraisal; STA – single technology appraisal; MTA – multiple technology appraisal; ERG – Evidence Review Group; PSA – probabilistic sensitivity 
analysis; OS – overall survival; PFS - progression-free survival; TTD - time to treatment discontinuation; NR – not reported 
1 As per company submission. 
2 Denotes any justification provided beyond precedent. 
3 In TA299, OS for the appraised treatment in one subgroup was estimated using a surrogate relationship linking treatment response to OS. Although the rest of this model 
follows a PartSA approach, the modelling for this specific treatment in this subgroup is an exception, since survival depends on another endpoint.  
4The review focused on the AG’s model.
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4. CRITIQUE OF PARTITIONED SURVIVAL AS AN AID TO DECISION 

MAKING 

 

Our review of NICE appraisals shows that PartSA is now the most commonly used 

decision modelling approach in advanced or metastatic cancer. PartSA originated as a 

method for generating within-trial estimates of quality-adjusted survival, but is now used 

as a decision modelling approach to provide information about cost-effectiveness to inform 

policy decisions. This entails using the method to synthesise multiple sources of 

information, extrapolate parameter estimates beyond the observed data collection period, 

and quantify the uncertainty around cost-effectiveness estimates. There is therefore a need 

for consideration of the strengths and limitations of the PartSA approach when used in this 

context. 

 

4.1. CRITIQUE OF PARTITIONED SURVIVAL APPROACH 

 

4.1.1. Strengths 

The strengths of the PartSA approach derive from the direct correspondence between 

frequently reported time-to-event endpoints such as PFS and OS and the survival functions 

used within PartSA to derive state membership estimates. This direct correspondence 

makes the models intuitively appealing, easy to communicate and easy to construct. PartSA 

directly models each survival curve as a function of time since model entry. This makes it 

straightforward to reflect any time-dependencies in the event rates (or treatment effects on 

event rates) corresponding to each survival curve. As the PartSA approach directly models 

OS, it generally provides accurate predictions of OS for the within-trial period.  

 

PartSA can be implemented using IPD for these commonly reported endpoints, but also by 

using summary data on these same endpoints. This is an important consideration as 

accessing IPD for data sources other than the pivotal trial may be difficult if these data are 

held by competitor companies or parties not directly linked to the appraisal process.  
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The PartSA approach can be implemented using summary data alone, for example by using 

methods that allow estimation of IPD from published Kaplan Meier curves.14, 15 It can also 

be implemented using a combination of IPD from the pivotal trial alongside external data 

in summary form. Indeed, in the majority of TAs that used the PartSA approach, IPD from 

the pivotal trial were used to estimate the required survival functions for comparators 

included in the pivotal trial. External data in summary form were used to incorporate data 

on additional comparators using parameter estimates from indirect comparisons, or to 

inform long-term clinical event rates. Indirect comparisons of cancer treatments commonly 

provide estimates of hazard ratios for the PFS and OS endpoints. These can be 

incorporated in to a PartSA model by applying the hazard ratios to the hazard (or 

cumulative hazard) corresponding to the relevant reference treatment survival curve. When 

external summary data inform long-term survival functions, the reported statistics may take 

the form of rates, probabilities, or Kaplan Meier curves, all of which can be incorporated 

into the PartSA approach.  

 

The direct modelling of OS is also advantageous as the development of some analytic 

methods has focused on this endpoint. In particular, methods adjusting for treatment 

switching have focused on generating estimates of OS curves or treatment effects on OS 

(e.g. hazard ratios). Adjustment for treatment switching was used in six (27%) of the 22 

TAs using a PartSA approach. Recommended methods for adjusting for treatment 

switching include the Rank Preserving Structural Failure Time (RPSFT) method (and 

related iterative parameter estimation, IPE, method), the Inverse Probability of Censoring 

Weights (IPCW) method and the two-stage method (see TSD 16 for further details 22). All 

methods for adjusting for treatment switching recommended in TSD 16 provide estimates 

of OS that can be directly incorporated into a PartSA model. 

 

4.1.2. Limitations 

 

The limitations of the PartSA approach stem from its fundamental structural assumption, 

that the survival functions modelled are independent. Although the conceptual model 

underpinning PartSA models includes those transitions shown in Figure 3, the implemented 

structure does not use an explicit disease model and transition probabilities are not 
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estimated for each possible transition between health states. It is therefore incorrect for 

applications of the PartSA approach to be described as a form of state transition model as 

this implies a structural link between health states and that transition probabilities are 

estimated for each possible transition.  

 

The assumption that the modelled survival endpoints are structurally independent is 

potentially problematic as there are a number of dependencies between the survival 

endpoints:  

• They include some of the same events (e.g. PFS and OS curves include the same pre-

progression deaths); 

• Events are structurally dependent (e.g. death cannot be followed by progression and time 

spent progression-free contributes to time spent alive); and 

• Intermediate events are often prognostic for later events (e.g. progression is generally 

considered prognostic for mortality). 

For the within-trial period, these dependencies are reflected in the data and should 

therefore be closely reflected in the PartSA results. However, for analyses that model 

beyond the trial period, dependencies between endpoints are ignored with potentially 

important implications for extrapolation. All TAs we reviewed that used the PartSA 

approach included some degree of extrapolation and the validity of the extrapolations and 

the uncertainty they introduced were frequently raised by the ERG and/or Appraisal 

Committee as concerns.  

 

In a PartSA model, OS extrapolation often reflects the within-trial time trend in the rate of 

deaths. External empirical evidence or expert judgements can support selection between 

alternative extrapolation models and evaluation of the plausibility of the extrapolations, or 

can be more formally incorporated within the survival model.23 Information on other 

endpoints, such as the evolving proportion of patients who have progressed, is not 

explicitly reflected in the extrapolation,24 though it will have implicitly impacted upon the 

within-trial mortality trends. This may reduce the validity of the extrapolations produced. 

For example, consider a single trial control arm, and a simple context in which the hazard 

(i.e. rate) corresponding to each transition probability depicted in Figure 3 is constant over 

time. In addition, assume that the risk of death is higher for patients who have progressed 

than for patients who remain progression-free as progression is prognostic of mortality 
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risk. One likely scenario is that the cohort of patients who are alive becomes dominated by 

progressed patients over time. In this context, the hazard of death would initially increase 

as the proportion of the cohort residing in the progressed state increases, but then level off 

once all patients had progressed (the hazard levels off at the hazard of death for progressed 

patients, h23). This is shown in Figure 4(a). In the PartSA approach, extrapolation of the 

hazard is often based only on the time trend in the hazard observed for the within-trial 

period (up until time t*) which is assumed to generalise throughout the extrapolation 

period. In this example, even with careful parametric model fitting, the PartSA approach 

may predict that the within-trial trend for an increasing hazard of death with time continues 

throughout the extrapolation period, as no information on the progression status of patients 

is taken in to account. This is shown in Figure 4(b). This overestimation of the hazard of 

death in the extrapolation period will result in an underestimation of survival, and 

ultimately, an underestimation of mean life years and QALYs. This is shown in Figure 

4(c). This very simple case illustrates that by ignoring information on intermediate 

prognostic endpoints, the PartSA approach can produce inappropriate extrapolations. The 

risk of such inaccurate projections may be mitigated through the use of external 

information on long-term hazard trends.  

 

 

Figure 4: Illustration of potential implications of ignoring information on non-fatal events when 

extrapolating overall survival 

 

All TAs using PartSA reflected differences across treatments for all modelled survival 

endpoints. These treatment effects were generally assumed to be constant on the hazard 

ratio scale or on the acceleration factor scale, for the entire modelled time horizon. 
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Concerns regarding the extrapolation of constant treatment effects and the implications of 

this for estimates of PPS were raised by the committee and ERG in a number of appraisals. 

 

These concerns are relevant as it may not be appropriate to extrapolate the observed 

treatment effect for OS over a lifetime horizon. We consider a case where there is a 

treatment effect on progression, but not beyond progression. We assume that treatment acts 

by reducing the hazard of progression (h12) and that the treatment effect on progression 

conforms to the proportional hazards assumption throughout the model. In our example, 

differences between treatments in mortality rates are therefore driven solely by differences 

between treatments in the distribution of patients across prognostic states (i.e. progression-

free, progressed). In the earlier part of the model, the treatment arm has a higher proportion 

of progression-free patients, and therefore a lower hazard of death. If over time, patients in 

both the treatment and control arms come to reside in the progressed state, the hazard of 

death in both study arms will converge to the hazard of death for progressed patients (h23). 

This is shown in Figure 5(a). As the hazard of death in both treatment and control arms 

becomes similar, the hazard ratio for OS will converge to 1.0. This is shown in Figure 5(b). 

Depending on the trial time horizon a review of these data may lead to the conclusion that 

the hazard ratio is decreasing over the long term, approximately stable (i.e. proportional 

hazards) or increasing over the long term. Ignoring information on the treatment effect 

mechanism (e.g. that treatments differ in terms of the rate of progression, but not in the rate 

of death conditional upon progression) and focusing instead on observed time-trends in 

treatment effects on OS for the within-trial period may therefore result in inappropriate 

extrapolations of treatment effects. For example, application of a constant hazard ratio i.e. 

the proportional hazards assumption (as shown by the dashed line in Figure 5(b)) might be 

deemed plausible based on within-trial trends up to time t* but would result in an over 

estimation of survival for the treatment arm as shown in Figure 5(c).  
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Figure 5: Illustration of implications of ignoring treatment effect mechanism when 

extrapolating treatment effects 

 

One way to address concerns regarding the validity of extrapolations generated by PartSA 

(and other) models is via the use of external data (e.g. longer-term trials, or observational 

data). These data can be used to inform selection of statistical models or can be explicitly 

reflected within the model.16, 23 However, it is often difficult to find external data that are 

directly relevant to the population and treatments under consideration and external data 

will in general not be available to inform long-term treatment effects. 

 

Ultimately for the purposes of cost-effectiveness analysis, the focus of any model is on 

deriving an accurate estimation of differences in mean life years, QALYs and costs 

between treatments. These differences are determined by both baseline risks and treatment 

effects. The simplistic examples provided previously illustrate why trends in the within-

trial period may not continue in the extrapolation period – either for baseline risk, or the 

treatment effect. When this is the case, the PartSA method may provide a poor 

approximation to true incremental survival and QALYs. The true disease process will 

inevitably be more complex than these simple examples and the extent and direction of 

differences between the true incremental survival and QALYs and the predictions from the 

PartSA approach will depend on many factors. These include the number and nature of 

prognostic states, rates of events and how they change over time, how treatment impacts on 

these processes, and the maturity of the trial data. The extent to which the PartSA approach 

over- or under-estimates the true incremental life years and QALYs will be difficult to 

predict for any specific context, although the extent of differences between predicted and 

actual outcomes is expected to be less significant as the maturity of the data increases.  
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The lack of structural relationship between endpoints within the PartSA approach has 

additional important implications for the appropriateness of using this approach to inform 

health care decisions. The NICE methods guidance recommends that the “clinical and 

biological plausibility” of extrapolations should be assessed and that alternative scenarios 

should be routinely considered for the extrapolation period.8 When decision models are 

underpinned by a structure reflecting biological or clinical processes, it is possible to 

carefully consider the mechanisms underpinning extrapolations and to subject these to 

scrutiny and sensitivity analyses. The structural independence of the modelled endpoints 

makes this difficult in the context of PartSA. It is possible to review mean time spent 

within each health state, thus allowing for an assessment of whether extensions to survival 

are accrued in the progression-free and/or progressed health state, for example. However, it 

is not possible to review individual transitions which can make the plausibility of 

extrapolations difficult to assess. For example, if a PartSA model predicts that treatment 

extends PPS as well as PFS (as observed in a number of the appraisals in our review); this 

indicates that treatment is associated with reductions in the rate of post-progression 

mortality. However, as the post-progression mortality transition is not modelled directly in 

the PartSA approach, it is not possible to establish from the model whether this effect was 

supported by the trial data in any way or was generated entirely during extrapolation. 

Within-trial PPS curves could be used to support this assessment (see Section 4.2 for 

further discussion of issues relating to the interpretation of PPS data). It is also not possible 

to assess the impact on model predictions of varying the rates of individual transitions, or 

treatment effects on individual transitions using PartSA models. These sensitivity analyses 

may be insightful, particularly if there is uncertainty around the nature of any direct or 

indirect effects of treatment on outcomes post-progression.  

 

The lack of structural relationship between endpoints means that the PartSA approach can 

predict a PFS curve that lies above the OS curve implying that a higher proportion of 

patients are progression-free than alive. In the deterministic component of the model, this 

is most likely to occur in the extrapolation period, though it can occur in the within-trial 

period if the PFS and OS curves are close to each other and/or the survival models 

represent a poor fit to the Kaplan-Meier survival curves. A PFS curve that lay above the 

OS curve was seen in TA295 and led the company to use a form of adjustment to avoid 

this from happening whereby extensions to PFS were translated to extensions to OS. The 
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methods used to adjust outcomes were subsequently criticised by the ERG and Appraisal 

Committee.  

 

The lack of structural relationship between endpoints also reduces the usefulness of PSA 

results generated using PartSA models. This includes presentations of the distribution of 

incremental costs and QALYs on the cost-effectiveness plane, presentations of the 

probability of an intervention being cost-effective such as Cost-Effectiveness Acceptability 

Curves (CEACs) and estimates of the value of further research. For the within-trial period, 

this can be addressed by bootstrapping the survival data.11 For each bootstrap resample, 

Kaplan-Meier curves or parametric models can then be fitted for all modelled survival 

endpoints (this was done in only one appraisal in our review, TA321). This will produce a 

set of correlated survival curves that reflect the relationships between endpoints in the 

observed data. For the extrapolation period, however, the use of bootstrapping will not 

reflect the structural relationships between endpoints. This will reduce the validity of the 

PSA results for the extrapolation period and may also result in logically inconsistent 

predictions (e.g. PFS higher than OS).  

 

4.1.3. Alternative approaches to specification of survival models for PartSA 

 

There has been some debate about how to specify survival models for the purposes of 

extrapolation within PartSA models. TSD 14 describes a systematic approach for selecting 

appropriate survival models to inform cost-effectiveness analyses.16, 25 The publication of 

this work triggered some debate regarding alternative approaches to survival model 

development and selection in this context. Bagust and Beale 24 argued that the validity of 

extrapolations can be improved by developing statistical models that reflect an 

understanding of the underlying biological and clinical processes, and the way in which 

treatment interacts with these processes. They recommend that these considerations should 

inform the selection of statistical models and that a broad range of models should be 

considered which may include more complex functions for the baseline hazard, or non-

proportional hazards specifications for treatment effects. They advocate using a broader set 

of information to inform extrapolations, for example, the PPS curves for each treatment 

may also be reviewed to inform the extrapolation of OS, alongside a range of information 

on the trial design and anticipated effects of the treatment. One specific approach they 
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suggest is to identify a time point beyond which there is evidence of the hazard stabilizing 

at a constant level, and then to focus on this latter part of the data where transient effects 

are expected to have dissipated. The authors suggest that when such a time point has been 

identified, a parametric model should be fitted to the remaining data after this cut point to 

inform the extrapolation. They suggest that the default parametric function should be an 

exponential (constant hazard) model, unless evidence suggests that this is invalid.  

 

Latimer responded with specific concerns relating to the proposals by Bagust and Beale.26 

Latimer noted that exclusion of data from earlier in the trial represents a loss of 

information and that the focus of curve fitting on the latter part of the Kaplan Meier curve 

may introduce additional uncertainty due to the low number of individuals contributing 

data beyond this point. Latimer also noted the potential for additional subjectivity in the 

proposed analyses due to the need to identify a cut-point beyond which curve fitting should 

occur, and raised concerns about the focus on the exponential model in favour of other 

plausible alternatives. 

 

This debate highlights that there is no single optimal method for extrapolation, and that 

subjective judgements will inevitably be required to reflect broader considerations and 

additional information relating to the extrapolation period. This suggests that modelling 

approaches that are more explicit about the underlying processes and more explicit in the 

way that additional information is reflected may be warranted. 

 

4.2. ALTERNATIVE APPROACHES  

 

In addition to reviewing NICE appraisals using the PartSA approach, we also reviewed 

cancer appraisals using alternative approaches. Only eight (27%) of the 30 TAs reviewed 

used a non-PartSA approach, and all but one of these used a state transition model. The 

exception was an appraisal in a haematological cancer (TA311) which used a hybrid 

modelling approach. A decision tree was used to allocate individuals to a treatment 

response category, and then a PartSA approach was used to determine state membership 

following achievement of each level of response. The remaining state transition models 

identified differed from the PartSA models in that they were not generally used as a 
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vehicle to model the available trial data, but instead to introduce additional assumptions, 

and in particular to introduce a surrogacy relationship between PFS and OS whereby 

extensions to PFS resulted in similar extensions to OS. In most appraisals, the justification 

for this was that the OS data were immature.  

 

The models reviewed tended to make strong assumptions, and frequently assumed that the 

probability of death from the progressed state (p(c)23) was independent of treatment 

allocation, prior patient history and in some cases time in state. In a number of appraisals, 

the use of such strong and untested assumptions meant that the models did not predict the 

within-trial OS satisfactorily. In addition, the analyses that informed the estimation of 

transition probabilities did not in general use established survival analytic methods for 

competing and sequential events, and instead used more ad hoc approaches. The models 

were criticised by the ERG and/or Appraisal Committee on the basis that they did not fully 

utilise available trial data, were not able to predict within-trial data well, used strong 

assumptions without adequate justification or testing, and did not adequately explore 

uncertainty. In two cases, the ERG responded to these concerns by re-modelling the 

decision problem using a PartSA approach, and in these appraisals the Appraisal 

Committees considered that the PartSA model provided an improved basis for decision 

making. Further details on the appraisals using non-PartSA approaches are presented in 

Appendix 3.  

 

The examples and application of alternative approaches (predominantly state transition 

models) identified in our review do not therefore appear to represent a credible alternative 

to the PartSA approach. However, the lack of credibility of these alternatives arises largely 

in terms of their subsequent implementation and specifically the inappropriate exclusion of 

relevant data and incorporation of untested assumptions. The poor implementation of state 

transition models historically in TAs of cancer treatments does not provide sufficient 

grounds for rejecting alternative approaches to PartSA from further consideration.  

 

The predominance of the PartSA approach in cost-effectiveness analyses for cancer 

treatments differs from other clinical contexts where state transition models are the norm. 

The advantages of having an underlying biological or clinical process in a decision model 

are well-established and include that this allows the model to reflect the natural history of a 

condition (the pathways individuals take during their disease), facilitates a careful 
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consideration of which health states/events are prognostic, and allows the impact of 

interventions on that process to be carefully considered.27 Use of an explicit disease model 

allows both the natural history of the disease and treatments effects on this to be reflected 

when extrapolating beyond the trial data, and the assumptions underpinning these 

extrapolations to be made explicit and therefore subject to scrutiny and sensitivity 

analyses.  

 

These theoretical and practical advantages extend to cancer, including those contexts in 

which PartSA models are currently applied. Using a state transition model allows fuller 

and more explicit use of information on prognostic intermediate endpoints, such as 

progression, to inform mortality extrapolations. The PartSA approach will only produce 

reliable predictions to the extent that the OS model used represents changing hazards 

observed within the trial and can predict how changing health state membership will drive 

mortality hazards beyond the trial period for each treatment. The state transition approach 

does this more explicitly by modelling changing health state membership, but will only 

provide reliable OS extrapolations to the extent that the within trial-trends in the hazard of 

each event for each treatment continue beyond the trial period. If data are immature the 

resulting predictions will always be uncertain, regardless of the modelling approach. 

 

State transition modeling allows event rates and treatment effects on these event rates to be 

specified for individual components of the disease process. As a result, the use of state 

transition models can improve transparency around the mechanisms and processes 

underpinning results generated using extrapolation, and facilitate meaningful sensitivity 

analyses. For new technologies, the pivotal trial(s) will generally provide the sole source of 

evidence relating to the treatment effect. Any assessment of how treatment effects will 

evolve beyond the trial period will therefore be subject to considerable uncertainty and is 

likely to rely upon expert judgments. It may be easier to elicit such judgements for specific 

transitions. For example, clinical experts may find it more straightforward to consider the 

effect of treatment on PFS and PPS separately, by reflecting on considerations such as the 

use of treatments at the pre- and post-progression stages, than on long-term OS which is 

influenced by multiple processes and lines of treatment. 
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State transition modelling also avoids logical inconsistencies from occurring which may 

force adjustments to be made to models using the PartSA approach, as required when PFS 

and OS curves cross. 

 

There is an established interest in the oncology clinical literature in better understanding 

the relationships between clinical events to validate surrogate relationships and to more 

appropriately inform clinical trial design and analysis.28, 29 Joint modelling of endpoints has 

been recognised in this context as an important technique to make use of all available 

information and for generating long-term predictions.30, 31 The lack of joint modelling of 

clinical endpoints and predominance of the PartSA approach within existing TAs is 

therefore perhaps surprising given the established clinical interest in the insights provided 

by joint modelling. 

 

4.2.1. Implementation of state transition models 

 

The challenge of implementing state transition models in this context is that a series of 

individual transition probabilities must be appropriately estimated. Where IPD are 

available for some or all transitions, a set of methods called competing risks analysis and 

multi-state modelling can be used for this purpose. Competing risks analysis is used when 

there is a series of “competing” mutually exclusive events (such as progression and pre-

progression death). Multi-state modelling is used when events can also occur sequentially 

(such as progression followed by death). 32 33 A recent tutorial paper by Williams et al. 34 

provides a step-by-step guide to using multi-state modelling to estimate parameters for 

state transition models. The methods are illustrated in the context of a previous NICE 

appraisal in chronic lymphocytic leukemia (TA174), using the model structure outlined in 

Figure 3. 

 

In both competing risks and multi-state models, individual survival analyses are built for 

each possible transition, in Figure 3 three separate survival analyses would therefore be 

necessary. The methods are the same as a standard survival analysis with one adaptation: 

any event which is not the event of interest is treated as a censoring event i.e. “competing” 

events are treated in the same way as loss to follow-up.32 For example, in the analysis 

informing the transition from progression-free to progressed in Figure 3, pre-progression 
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deaths are considered to be censoring events. In the analysis of the transition from 

progression-free to dead, disease progressions are considered to be censoring events. In the 

analysis of the transition from progressed to dead no additional censoring is introduced, as 

death is the only possible event. Once this additional censoring has been included, standard 

survival analysis techniques can be applied using standard software and the full set of 

parametric models. There are a number of applications of this type of analysis in the cost-

effectiveness literature 35 36 37 38 though none that we are aware of in an advanced or 

metastatic cancer setting. In the wider clinical literature multi-state modelling (which when 

used in the context of a three state model is often referred to as “illness-death” modelling) 

has been applied in both early- and late-stage oncology settings to explore the implications 

of intermediate events for long-term prognosis and to improve understanding of the effects 

of treatment.29, 39-42 Further methods are available which allow for different levels of data 

availability.43 44  Methods that address the fact that the exact date of clinical progression is 

often not known (i.e. data are interval censored) may be relevant.  

 

Each transition probability can vary in different ways over time (e.g. via the use of 

different parametric models) and different treatment and covariate effects can be applied to 

each transition. Estimation of the transition probabilities therefore requires careful 

consideration of the survival model for each transition. Guidance regarding survival model 

selection is available for individual and independently modelled survival endpoints, as 

required to parameterise PartSA models.16, 24 However, little guidance is available to 

inform survival model selection in the multi-state setting, particularly in the context of 

cost-effectiveness analysis where extrapolation is the primary purpose of the statistical 

modeling. Assessing model fit is more challenging in this context as the target quantities of 

interest such as proportions of individuals experiencing each event, are no longer 

determined by a single survival model, but are instead determined by a combination of 

survival models. The Williams et al. tutorial provides some guidance and suggests 

comparisons of predicted and observed proportions of patients in each health state over 

time, use of log cumulative hazard plots, use of cumulative hazard plots and use of general 

model fit statistics. Titman and Sharples discuss methods for diagnosing model fit in the 

context of Markov models,45 though they acknowledge that extensions would be required 

to translate these to semi-Markov models. The limited guidance regarding model selection, 

particularly in the context of cost-effectiveness analysis, and wide set of choices available 
40 increases the likelihood that the methods could be used inappropriately. In addition, the 
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validity of the choices made will be difficult to validate for ERGs and AGs who do not 

typically have access to the underlying IPD. 

 

While there are several theoretical and practical advantages of state transition models, 

there also remain some important issues and challenges relating to their implementation 

when data are available on a series of interlinked endpoints, including: (i) the availability 

of data in a format that allows all required parameters to be estimated; (ii) use of methods 

to estimate transition probabilities that provide a plausible basis for extrapolation; and (iii) 

implementation of time-dependent transition probabilities within state transition models.  

 

(i) Data availability. Use of state transition modelling, parameterised by using multi-state 

survival analysis to estimate transition probabilities, is feasible when IPD are available. 

IPD were available for the pivotal trial in almost every reviewed NICE appraisal that used 

PartSA. However, the external data that informs indirect comparisons and long-term 

outcomes is typically only available in summary form.  

 

As shown by the review of cancer appraisals, parameters estimated from indirect 

comparisons are often used to reflect the impact of interventions on progression and 

mortality within cost-effectiveness modelling. If survival curves can be obtained for time 

to progression (pre-progression deaths censored), time to death without prior progression 

(progressions censored) and PPS, then the IPD corresponding to each transition in Figure 3 

can be recovered. Where survival curves are available for PFS, OS and PPS, it is also 

possible to recover this information, though this requires either knowledge of whether PFS 

events were progressions or deaths, or an assumption that events occurring simultaneously 

within the PFS and OS curves were pre-progression deaths (as assumed by Williams et al. 
34). Under these scenarios all transition probabilities can be estimated, although without 

access to the underlying IPD it is not possible to quantify the impact of patient-level 

covariates on PPS which may be important for extrapolation (see issue (ii) below).34   

 

Once time-to-event data corresponding to each transition have been derived, evidence 

synthesis can be conducted. For the model shown in Figure 3, synthesis of relative 

treatment effects would be required for each individual transition. For the PPS transition 

(p(c)23) standard methods could be applied. However, for competing events (e.g. p(c)12 and 

p(c)13) more advanced methods (i.e. competing risks network meta-analysis) are required 



 43 

to capture the negative correlation between outcomes.46 To date, applications of competing 

risks network meta-analysis have assumed constant baseline hazards and proportional 

hazards between treatments and between competing events. Extensions to these methods 

would be required to increase their flexibility. 

 

In many instances, external data are only available for the PFS and OS endpoints. These 

data are not sufficient to allow estimation of individual transition probabilities. A range of 

methods could be applied in this context. For example, an analysis of the pivotal trial could 

provide transition probability estimates for those treatments within the pivotal trial. This 

would allow PFS and OS predictions to be generated for these treatments, to which 

external estimates of treatment effects could be applied. Alternatively, calibration or 

multiple parameter evidence synthesis could be used to effectively calibrate the analysis of 

the pivotal trial to replicate the PFS and OS outcomes for external trials. However, we are 

not aware of any research to date on this issue. 

 

These difficulties could be reduced if data were available on the individual transitions for 

all relevant clinical data sources. In the longer term, trialists and others reporting time-to-

event data should be encouraged to report individual endpoint outcomes and to share IPD.  

 

We have focused on indirect comparisons here as this is the context in which external data 

was most commonly used in the reviewed appraisals; however the considerations outlined 

are similar to those faced when using external data to inform long-term predictions. 

 

(ii) Generalisability of transition probability estimates. A second set of considerations 

relates specifically to estimating transition probabilities from health states other than the 

original entry health state, for example the probability of death from the progressed state, 

p(c)23, in Figure 3. Estimation of these transition probabilities introduces three issues.  

 

The first is a selection issue and can be illustrated by considering estimation of p(c)23.  

Only those patients who have experienced a progression event within the trial follow-up 

will inform estimation of p(c)23. This could introduce bias in the extrapolation period if 

patients who progress within the trial are not representative of those who progress later. To 

illustrate the implications of this we consider an example in which patients who have a 

better prognosis spend a longer period progression-free and a longer period with 
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progression, and treatment delays progression. In this example, a larger proportion of 

people will have progressed in the control arm than in the treatment arm within the trial 

follow-up. Those who have progressed in the control arm will have a better prognosis on 

average than those who have progressed in the treatment arm. A naïve comparison of the 

PPS curves in this instance would suggest that patients in the treatment arm fair worse after 

progression than those in the control arm, despite the fact that there is no effect of 

treatment on PPS. In addition, a naïve analysis of PPS will underestimate PPS in both trial 

arms as the PPS data relates to “early progressors”. These selection effects have been 

recognised in the literature on cancer endpoints.47 Selection effects should be carefully 

considered whenever PPS data are used and naïve comparisons and extrapolations of PPS 

should be viewed with caution. Guidance regarding addressing selection effects is 

available in TSD 17,48 though this focuses on the estimation of treatment effect parameters 

only. Further research is required to consider the appropriate application of such methods 

to estimating transitions from intermediate health states where the primary objective is to 

inform extrapolation, and there may be a desire to preserve some differences in patient 

characteristics across study arms at the point of progression.  

 

The second issue relates to the underlying assumption typically made in survival analysis 

that censoring is “independent” i.e. conditional upon any covariates included in a survival 

analysis, at each time point the censored individuals are representative of those individuals 

remaining at risk of an event.49 In a clinical trial setting patients who progress later will 

tend to be censored earlier for PPS due to administrative censoring associated with the end 

of trial follow. If time taken to progress is prognostic then this will mean that censoring is 

dependent which will bias the estimation of transition probabilities. Again, consider the 

example provided above where patients who take longer to progress also have a lower risk 

of death post-progression. Towards the tail of the PPS curve early progressors will be over-

represented amongst the at-risk population which will result in an overestimation of the 

rate of death. The potential for dependent censoring to bias results has been discussed in 

the statistical literature on multi-state modelling/event history analysis.50 The potential for 

this bias to occur should be considered and where appropriate, adjusted for.  

 

A third set of challenges relate to the ability of the survival analyses underpinning state 

transition models to provide a reasonable fit to the observed within-trial data. Achieving a 

satisfactory fit to the observed data is more challenging within state transition models than 
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within PartSA models. This is because the target quantities of interest (e.g. OS) are no 

longer determined by a single survival model, but are instead determined by a combination 

of survival models which may also be related to each other (e.g. PPS may depend on time 

taken to progress), and transition probabilities may be subject to selection biases and 

dependent censoring.  

  

Further research is required to develop methods for estimating transition probabilities that 

appropriately account for selection issues and dependent censoring, and credibly represent 

the within-trial data.  

 

In addition, depending on the nature of the decision problem and the characteristics of the 

available clinical data, there may be other estimation challenges. For example, one of the 

methods for adjusting for treatment switching recommended in TSD 16 21 – the IPCW 

method - currently produces outputs in formats which cannot be readily used to derive 

transition probabilities for a state transition model – though RPSFT and two-stage methods 

could be used to inform transition probability estimates.  

 

(iii) Implementing time-dependent transition probabilities. Finally, where the transition 

probability estimates depend on time spent in an intermediate health state or time in 

previous states, appropriate methods are required to implement the state transition model. 

These include use of tunnel states,27  semi-Markov approaches,51 and patient level 

simulation.19  

 

It may also be possible to retain a simple structure and a cohort simulation approach whilst 

incorporating time-dependency in transition rates from intermediate states, via the use of a 

“payoff” approach. This has been explored in an applied setting52 and involves modelling 

transitions from the entry state (e.g. p(c)12, p(c)13) in a standard way, but then, rather than 

explicitly modelling the transitions experienced by patients from the progressed state via 

p(c)23, instead assigning these individuals a “payoff” representing their total post-

progression costs and QALYs. This payoff can be calculated using the area under the PPS 

curve to estimate time spent in the progressed state and then applying costs, utilities and 

discounting to this time period. Care must be taken to discount costs and QALYs at the 

time point at which they actually accrue. Although the “payoff” approach uses the AUC 

method to estimate state membership for the progressed state, it does not represent a 



 46 

PartSA method because it involves survival curves that are mutually exclusive. Instead it is 

a method that makes exactly the same assumptions as a standard state transition model, but 

uses AUC calculations to simplify implementation. This allows p(c)23 to be time-dependent 

whilst avoiding the need to track the time patients have spent in an intermediate health 

state via tunnel states or simulation methods. The drawback of this approach is that it does 

not allow model predictions, such as OS curves, to be generated. This method could 

potentially be used to improve computation (e.g. for probabilistic and other sensitivity 

analyses) alongside a patient-level simulation or complex state transition model which 

would allow projected survival to be produced for the base case and other key scenarios.  

 

Even where probabilities of transitioning from an intermediate state appear to be constant 

over time, if it is considered important to explore the sensitivity of the model to alternative 

parametric survival functions, then increased flexibility and complexity will need to be 

built in to models from the outset.  

 

Care needs to be taken to select between these alternative methods for implementing state 

transition models, further guidance on this issue is available in TSD 15.19 This will result 

in decision models that are more complex than the PartSA models, and that take longer to 

develop, validate and review.  
 

4.3. EMPIRICAL COMPARISONS OF PARTSA AND STATE TRANSITION MODELLING 

 

Four studies have attempted to compare PartSA and state transition models empirically. 

These are the published work by Goeree et al.53 and Williams et al.38 and conference 

presentations by Coyle and Coyle 54 and Briggs et al.55 

 

The work by Goeree et al. compares a PartSA model to a Markov model in an advanced 

cancer setting.  The approach used for the Markov model is unclear and does not appear to 

include any conditional transition probabilities (e.g. there is no reported estimate of 

mortality from the progressed state). We do not therefore consider that this study 

represents a comparison of state transition and PartSA models.  
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The work by Williams et al. compares the PartSA approach to a state transition model in 

which transition probabilities were estimated using multi-state modelling in the context of 

a cost-effectiveness analysis of rituximab for chronic lymphocytic leukaemia. The model 

structure was as shown in Figure 1 for the PartSA approach and Figure 3 for the state 

transition model. The authors found that in this example, the approaches differed 

substantively in their state membership predictions in the extrapolation period, and that the 

state transition model predicted a lower incremental QALY gain than the PartSA approach. 

The drivers of this difference are not entirely clear, and it is possible that different 

approaches to the selection of the survival models may have influenced the results. 

Nonetheless, one important driver is likely to have been the nature of the treatment effects 

estimated and applied within each model. In the PartSA model constant hazard ratios of 0.6 

and 0.8 were applied throughout the model time horizon to PFS and OS respectively. In the 

state transition model, constant hazard ratios of 0.6, 0.7 and 1.4 were applied to transition 

probabilities p(c)12, p(c)13, and p(c)23 respectively. As the alive cohort in the state transition 

model became more dominated by progressed patients, the negative treatment effect on 

PPS (as indicated by the hazard ratio exceeding 1.0 for p(c)23) resulted in convergence of 

the OS curves. This was not observed within the PartSA model due to the proportional 

hazards assumption on the OS endpoint. This resulted in incremental life year estimates for 

the state transition model that were approximately half those predicted for the PartSA 

model. This example shows that the different modelling approaches may produce markedly 

different results, though it is not clear which is more reliable, particularly as the analysis of 

PPS in Williams et al. did not discuss or address the potential for selection effects or 

dependent censoring.  

 

Limited details were available for the other studies. The work by Coyle and Coyle uses a 

simulated dataset to evaluate the predictions made by the PartSA approach. The authors 

conclude that the PartSA method is subject to bias based on their simulation though few 

details were available. Finally, the work by Briggs et al. compared a partitioned survival 

model to a state transition model in an advanced cancer setting.  The approaches were 

reported to give similar results though again, few details were available.  

 

5. SUMMARY  
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PartSA represents a specific type of decision model with the defining feature that state 

membership is determined by a set of independently modelled non-mutually exclusive 

survival curves, that model – for each alive health state - time from model start (i.e. patient 

entry in to the model) to transiting to any health state that is further along the sequence.. 

This distinguishes PartSA from state transition models, which explicitly link the modelled 

clinical events. In the context of a within-trial analysis or a case in which data have been 

fully observed, PartSA and state transition modelling are expected to produce similar 

results as relationships between endpoints are reflected within the data. When there is a 

need to extrapolate parameter estimates beyond the observed data collection period, the 

approaches make different assumptions and use different information, and are therefore 

expected to produce different results. In particular, extrapolated mortality in a PartSA 

model is determined by prior trends in mortality rates whereas extrapolated mortality in a 

state transition model is determined by a structural link between mortality and earlier 

disease-related events such as cancer progression. The effects of treatments on disease 

processes are also specified differently. In PartSA treatment effects act directly on the 

survival curves (e.g. PFS, OS) whereas in state transition models treatment effects can act 

on different parts of the disease process and the interaction of these effects will determine 

the overall impact on the estimated survival curves. PartSA models can be directly 

parameterised using commonly reported survival endpoints (e.g. PFS, OS) whereas state 

transition models require estimates of individual transition probabilities. A summary of the 

attributes of PartSA in contrast to state transition models is provided as Table 3. 
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 Partitioned survival analysis  State transition modelling 

Basis for estimating state 
membership 

Set of survival curves describing 
state membership across non-
mutually exclusive groups of health 
states. Basic manipulations used to 
derive health state membership for 
individual health states 

Transition probabilities for each possible 
transition used to describe disease progression. 
Simulation methods (cohort or patient-level) 
used to derive state membership 
 

Data inputs Time to event data for routinely 
reported clinical endpoints (e.g. 
PFS, OS), derived from summary or 
IPD 

Time to event data on individual transitions  
This may not be available, particularly for 
external data required to inform indirect 
comparisons* 
Difficult to validate or verify without access to 
IPD 

Methods for reflecting time-
dependency in event risks 

Time-dependency in risks 
underlying survival curves can be 
reflected directly  

Implementation of time-dependent transition 
probabilities may require use of tunnel states, 
semi-Markov models, patient level simulation 
or “payoff” approaches 

Basis for extrapolation of 
overall survival 

Time trends in OS risk Rate of progression between health states and 
mortality risk conditional upon health states  

Basis for extrapolation of 
treatment effects on overall 
survival 

Time trends in the treatment effect 
on overall survival 

Treatment effects on individual transitions 
jointly determine treatment effect on overall 
survival 

Risks to validity of 
extrapolations of OS 

Trends in rates of death, and 
treatment effects on rates of death 
may not translate to extrapolation 
period 

Naive estimation of outcomes from intermediate 
health states (e.g. PPS) may not be reliable.*  
Clearer link between health state membership 
mix and long-term event trends, but the risk 
remains that trends in rates of individual 
transitions, and treatment effects on rates of 
individual transitions may not translate to 
extrapolation period 

Considerations for use within 
decision making process 

More difficult to assess plausibility 
of extrapolations  
More difficult to subject to 
meaningful sensitivity analyses 

Easier to assess plausibility of extrapolations 
Easier to conduct meaningful sensitivity 
analyses 

Table 3: Comparison of attributes of partitioned survival analysis and state transition models  

* Denotes areas in which further methods research is warranted. IPD – Individual patient data; OS – Overall 

survival; PFS – Progression-free survival; PPS – Post-progression survival. 
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5.1. USE OF PARTSA IN NICE TECHNOLOGY APPRAISALS 

 

Our review of 30 recent oncology TAs found that PartSA was used in 73% of the 

appraisals. The method was generally described poorly and inaccurately in these 

appraisals, and little attention has been paid to its underlying assumptions or relative merits 

compared to alternative approaches. The most common PartSA structure used two survival 

endpoints (OS, and either PFS or TTD) to partition individuals into three health states and 

almost all appraisals applied continuous treatment effects to each modelled survival 

endpoint for the full model time horizon. The majority of the appraisals included a naïve or 

adjusted indirect comparison within the modelling to facilitate inclusion of additional 

comparators. This generally required use of data external to the pivotal trial. The most 

common concerns raised by ERGs and committees during the appraisals related to the 

uncertainty around modelled long-term OS projections. These included concerns relating 

to implausible predictions (e.g. where PFS was observed to exceed OS at specific time 

points) and model predictions that suggested that the appraised treatment extended PPS.  

 

 

5.2. ADVANTAGES AND DISADVANTAGES OF PARTSA 

 

The direct correspondence between frequently reported time-to-event endpoints such as 

PFS and OS and the survival functions that inform state membership estimates in PartSA 

makes the models intuitively appealing, easy to communicate and construct, allows 

replication of the within-trial data with relative ease, and means that PartSA models can be 

constructed using either summary data or IPD for these endpoints. This is particularly 

important as for data sources other than the pivotal trial access to IPD may not be possible. 

 

The limitations of the PartSA approach stem from its fundamental structural assumption, 

that the survival endpoints are independent. This has a number of implications. In general, 

extrapolations for a given endpoint reflect within-trial trends in that endpoint alone. Using 

simple scenarios, it is possible to show that extrapolating within trial trends in baseline risk 

and treatment effect in this way, without considering the underlying disease process, may 

not produce appropriate extrapolations. Some work has attempted to overcome this 

limitation via more considered development of statistical models for extrapolation; 
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however the proposed methods increase the role of subjective decisions and only 

informally reflect the full set of available information. The lack of a link between clinical 

endpoints also limits the degree to which the biological and clinical plausibility of 

extrapolations generated by the PartSA approach can be subject to scrutiny and sensitivity 

analyses. Finally, assuming independence between endpoints reduces the value of PSA as a 

means of quantifying decision uncertainty.  

 

5.3. ALTERNATIVES TO PARTSA 

 

Almost all of the appraisals reviewed that did not use the PartSA approach used a state 

transition modeling approach. The state transition models reviewed made strong 

assumptions without adequate justification and often excluded relevant data. This poor 

implementation of state transitions models does not provide sufficient grounds for rejecting 

alternative approaches to PartSA from consideration.  

 

State transition models incorporate an explicit link between clinical endpoints. This means 

that extrapolations depend upon state membership at the end of trial follow-up, the model 

structure, and within-trial estimates of each transition probability. This allows the 

prognostic nature of intermediate health states to be reflected in the extrapolation period, 

and differential treatment effects to be applied to different components of the disease 

process. It also allows the processes driving extrapolated results to be reviewed and subject 

to sensitivity analysis.  

 

The main challenge in the use of state transition models relates to the estimation of the 

required transition probabilities. A set of survival analytic methods is available for this 

purpose called competing risks and multi-state modelling. However, there remain a series 

of challenges in applying these methods to develop cost-effectiveness models in cancer. 

Summary data play an important role in many cancer appraisals in informing indirect 

comparisons and long-term extrapolations. In many cases, the available summary data may 

not be sufficient to facilitate estimation of individual transition probabilities using existing 

methods. Simple analyses of time-to-event data from non-entry health states (e.g. PPS) 

may be subject to biases due to selection effects and informative censoring. Achieving a 

satisfactory fit to the observed within-trial data may be challenging as the target quantities 
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of interest (e.g. OS) are no longer determined by a single survival model, but are instead 

determined by the combined effect of all transition probability estimates. In addition, 

whilst the state transition approach allows a clearer link between the health state 

membership and trends in rates of death and treatment effects on rates of death, the risk 

remains that trends observed in the trial period for individual transitions may not translate 

to the extrapolation period and that extrapolations may therefore be unreliable. Finally, the 

application of state transition models to the settings in which PartSA is currently used may 

necessitate the use of more complex approaches to model implementation (e.g. semi-

Markov models or individual-level models) to appropriately reflect time-dependencies in 

event rates. 

 

5.4. AREAS FOR FURTHER RESEARCH 

 

There is a need for research focused on the practical application of state transition 

modelling to the settings in which PartSA is currently used. The first set of research relates 

to the estimation of transition probabilities using appropriate statistical modelling that 

takes in to account the competing and sequential nature of the events modelled, the need 

for careful model selection, and the need for careful consideration of, and adjustment for, 

potential biases introduced by selection effects and dependent censoring. The second set of 

research relates to the challenge of estimating individual transition probabilities when only 

summary data are available, as summary data are typically reported for the survival 

endpoints modelled by PartSA rather than the individual transition probabilities required 

by state transition models. Further research to understand the conditions under which the 

PartSA and state transition modelling approaches perform well is also warranted. 
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6. RECOMMENDATIONS  

 

6.1. SELECTING, DOCUMENTING AND JUSTIFYING THE MODELLING APPROACH  

 

In the NICE TAs using the PartSA approach, the rationale for selecting the modelling 

approach, and an explicit summary and justification of the main structural assumptions 

were not routinely reported.  

 

Recommendation 1: The model conceptualisation process should be routinely 

reported and the rationale for the chosen modelling approach explicitly justified on 

the basis of theoretical and practical considerations. A summary of the model 

conceptualisation process should be routinely reported in submissions (see TSD 13 for 

further discussion of the model conceptualisation process).56 This should document the 

theoretical and practical considerations which support the chosen modelling approach and 

structure. The justification for choice of modelling approach and structure should be more 

closely aligned to the key features of the disease/technology. These include: the health-

related events that occur over time, whether and how the risks of events change with time 

and with the occurrence of other health-related events, and how treatment modifies these 

events and over what period.27, 57 Given the need for extrapolation, and the potential 

significance of extrapolations in determining cost-effectiveness, clearer consideration of 

how the modelling approach may support appropriate extrapolations is required. The 

choice of modelling approach may be constrained by the available evidence. In these 

circumstances, this restriction should be formally stated and any limitations should be 

clearly acknowledged. The PartSA approach is intuitive, easy to implement and generally 

predicts trial endpoints well for the within-trial period. However, this does not provide a 

sufficient basis for justifying the PartSA as an appropriate modelling approach for 

informing decisions relating to cost-effectiveness. It is important to recognise that PartSA 

may not provide the ideal modelling approach to inform extrapolation  due to the lack of 

structural relationship between modelled endpoints. 

 

Recommendation 2: Consistent and appropriate terminology should be applied in 

future appraisals when describing the PartSA approach (e.g. use of the term 
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“Partitioned survival analysis”). PartSA is often described inaccurately. The terminology 

and associated description of the PartSA approach should be more clearly distinguished 

from state transition modelling (e.g. Markov and semi-Markov approaches) and references 

to these should be avoided to prevent potential confusion e.g. the PartSA approach should 

not be described as similar to a Markov approach or as ‘Markov like’. 

 

Recommendation 3: A summary of the main structural assumptions should be 

routinely reported and justified as required by the NICE guide to the methods of 

technology appraisal.8  For PartSA models this should include a clear statement of and 

justification for, the following structural assumptions (if applicable): (i) all endpoints - 

including OS - are modelled and extrapolated independently; and (ii) trends in the hazard 

of each endpoint and treatment effects on these hazards observed within the trial period are 

assumed to generalise to the extrapolation period. For state transition models this should 

cover allowed transitions, the transitions on which differences between treatments are 

assumed to occur due to direct or indirect effects of treatment, any assumptions about the 

(in)dependence of post-baseline transitions on prior patient history, and any surrogacy 

relationships implied by the nature of the treatment effects.  

 

6.2. REPRESENTING UNCERTAINTIES ASSOCIATED WITH EXTRAPOLATION 

 

The structural independence between endpoints in the PartSA approach means that 

extrapolations for a given endpoint will in general reflect within-trial trends in that 

endpoint alone. Extrapolating within-trial trends without considering the underlying 

disease process may not produce appropriate extrapolations. 

 

Recommendation 4: All stakeholders should recognise the specific limitations of 

PartSA for the purposes of extrapolation. All methods of extrapolation are subject to 

uncertainty, whether using a PartSA approach or a state transition approach. However, the 

failure to take account of information on intermediate endpoints in the PartSA approach 

may increase the uncertainty associated with the extrapolations generated using this 

method. The lack of explicit disease processes underpinning the extrapolations from 

PartSA models also limits the possibilities for assessing their credibility. In addition, whilst 

it is straightforward to explore some scenarios in a PartSA framework (for instance, using 
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different parametric survival functions, or applying equal hazard rates between treatment 

groups after a set time-point), others are more difficult to explore – such as the relationship 

between the treatment effect and specific health states. 

 

Recommendation 5: Modelling choices that influence outcomes in the extrapolation 

period should reflect all relevant evidence. All relevant evidence should be considered 

and reported when informing the specification of models for the extrapolation period, and 

this should not be based solely on statistical considerations. Relevant evidence may include 

data external to the pivotal trial and further information from within the pivotal trial (see 

Recommendation 6). External data can be used to assess the plausibility of the extrapolated 

portions of parametric survival models. These data may provide information on outcomes 

for untreated patients or patients treated with established interventions. It is unlikely that 

empirical data will be available with which to assess the plausibility of long-term outcomes 

for newer therapies, and assessment of plausible trajectories for treatment effects beyond 

the trial period is likely to rely heavily upon expert reasoning and judgements.  

Recommendation 6: Within-trial survival curves corresponding to individual clinical 

events should be supplied alongside PartSA models. Submissions typically report 

survival curves for commonly reported endpoints such as PFS and OS for the pivotal trial. 

These should be accompanied by hazard plots to demonstrate whether changing trends 

over time can be observed, both with respect to survival and with respect to the treatment 

effect. This may provide useful information on whether hazards and treatment effects 

appear to be changing as health state membership changes. In addition, survival curves for 

individual clinical events should be generated and reported, to provide additional 

information on the underlying processes. For example, for a three-state progression-free, 

progressed, dead model, information should be provided on time to progression (with 

deaths censored); time to death without prior progression (with progressions censored) and 

PPS. This information should be provided in the form of Kaplan-Meier curves (including 

numbers at risk) for each treatment. Considerations when interpreting these data are 

discussed in Recommendation 7.  

Recommendation 7: When extrapolation of the trial evidence is required to 

appropriately inform cost-effectiveness, PartSA models should easily facilitate the 

investigation of alternative assumptions in accordance with current NICE methods 
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guidance.8 This should include reflection of uncertainty in baseline risk and treatment 

effects over the extrapolation period. Scenarios for the extrapolation period should reflect 

the range of outcomes deemed plausible based on all relevant data, including data external 

to the pivotal trial, and data on individual clinical events within the trial (see 

Recommendations 5 and 6).  In addition, for treatment effects, scenarios suggested by the 

NICE methods guidance for the treatment benefit in the extrapolated phase should be 

explored, namely: (i) nil; (ii) the same as during the treatment phase and continues at the 

same level; or (iii) diminishes in the long term. The reliance of conclusions relating to cost-

effectiveness on specific extrapolation assumptions should be clearly acknowledged by all 

stakeholders.  

 

6.3. USE OF ALTERNATIVE MODELLING APPROACHES  

 

The lack of structural link between endpoints in PartSA models may increase the potential 

for inappropriate extrapolation, and may make it difficult to understand the mechanisms 

underpinning extrapolations and therefore to assess their clinical and biological 

plausibility. In addition, within a PartSA framework it is difficult to explore informative 

alternative scenarios around the relationship between event rates and specific health states, 

and between the treatment effect and specific health states. In circumstances where 

intermediate health states are known to be prognostic or indicative of a change in treatment 

effect, and extrapolation is required, state transition models may overcome these issues and 

therefore confer theoretical and practical advantages over PartSA approaches.  

 

State transition modelling has been implemented poorly in the past – making strong and 

untested assumptions that may not have credibly represented the observed data, nor 

generated credible extrapolations. There is an emerging literature that aims to apply these 

methods in a more robust way.  

 

Recommendation 8: Transition probabilities within state transition models should be 

estimated using appropriate statistical methods and reflect all relevant evidence. State 

transition models should use established multi-state modelling techniques to estimate 

transition probabilities where possible, clearly justify and evaluate any assumptions made, 

and carefully consider the generalisability of parameter estimates to the extrapolation 
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period. Biases caused by selection effects and informative censoring should be considered 

and where possible adjusted for when estimating transition probabilities. Predictions 

generated by state transition models should be verified against the observed endpoint data 

for the within-trial period. In addition, there should be some consideration of how external 

data may support the specification of models of the individual transitions. Given the lack 

of examples and established methodology for incorporating the results of indirect 

comparisons based upon summary data in state transition models, any analyses attempting 

to do this should be examined carefully and any assumptions required made clear. ERGs 

and AGs may require access to additional summary data and potentially IPD in order to 

validate state transition models. In addition to any statistical modelling, the Kaplan Meier 

curves corresponding to each transition should also be presented, as outlined in 

Recommendation 6. 

 

Recommendation 9: Further research and guidance is required to support 

appropriate specification of state transition models using multi-state survival 

analysis. Some recent work has shown the feasibility of using multi-state survival analysis 

to inform state transition models in this setting, however there remain a number of 

fundamental questions regarding how to specify the required survival models. The first 

relates to how post-baseline transition probabilities, and treatment effects, can be robustly 

estimated in the presence of censoring.  This is a critical issue as such post-baseline 

transitions (e.g. PPS) are often key drivers of OS  extrapolations. The second relates to 

how model fit should be assessed given that typical model outputs to which a good fit is 

expected (e.g. OS) are a function of multiple fitted survival functions. Thirdly, further 

research is required to support the development of credible model structures, and in 

particular to support the selection of intermediate endpoints that represent credible markers 

for changes in prognosis and/or treatment effects.  

 

Recommendation 10: Further research is required to support incorporation of data 

external to the pivotal trial, and in particular data used to inform indirect 

comparisons, in to state transition models. This research should focus on the typical 

situation faced in TAs whereby IPD is available for the pivotal trial(s) but not for 

comparator trials, for which data is most likely to be available in the form of aggregate 

survival curves for key endpoints (e.g. PFS, OS). 
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Recommendation 11: State transition modelling should be used alongside the PartSA 

approach to assist in verifying the plausibility of PartSA’s extrapolations and to 

address uncertainties in the extrapolation period, even if this is only plausible for the 

pivotal trial. A strong recommendation in favour of completely replacing PartSA with 

state transition models cannot be made, given the need for further research (see 

Recommendations 9 and 10). This recommendation should be reviewed as further research 

on this topic emerges.  Whilst conferring some advantages over PartSA with respect to 

extrapolation because the changing health state occupancy mix is explicitly modelled, 

stakeholders should note that the validity of the extrapolation remains dependent upon 

within trial trends in individual transition rates being representative of post-trial trends. 

 

Recommendation 13: Presentation of results from all PartSA and state transition 

models should include tabulations showing the states in which life year and QALY 

differences between interventions accrue and a justification of why these differences 

should be considered plausible. The NICE STA evidence submission template requires 

these tabulations. These tabulations should be accompanied by both an explanation of the 

mechanism by which the model generated the observed differences, and a justification for 

why they are plausible based upon available evidence. 

 

Recommendation 14: Further research is required to identify the extent of possible 

biases associated with PartSA and state transition models, and how this varies 

according to the context in which the approaches are used. This could comprise a 

simulation exploring a variety of different scenarios about how the risks of events vary 

over time, how they relate to intermediate states and patient history; how treatment impacts 

upon the event rates; and the degree of censoring in the empirical time-to-event data.  This 

research should explore the extent to which implementation of PartSA using more flexible 

parametric survival models could impact upon the reliability of the resulting 

extrapolations.  
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APPENDICES  

 

A.1 NICE Technology Appraisals (TAs) included in the review 

TA Title Date 
Issued 

Available from 

TA284 Bevacizumab in combination with paclitaxel and 
carboplatin for first-line treatment of advanced ovarian 
cancer  

May-13 https://www.nice.org.uk/guidance/ta284 

TA285 Bevacizumab in combination with gemcitabine and 
carboplatin for treating the first recurrence of platinum-
sensitive advanced ovarian cancer  

May-13 https://www.nice.org.uk/guidance/ta285 

TA295 Everolimus in combination with exemestane for 
treating advanced HER2-negative hormone-receptor-
positive breast cancer after endocrine therapy  

Aug-13 https://www.nice.org.uk/guidance/ta295 

TA296 Crizotinib for previously treated non-small-cell lung 
cancer associated with an anaplastic lymphoma kinase 
fusion gene  

Sep-13 https://www.nice.org.uk/guidance/ta296 

TA299 Bosutinib for previously treated chronic myeloid 
leukaemia  

Nov-13 https://www.nice.org.uk/guidance/ta299 

TA306 Pixantrone monotherapy for treating multiply relapsed 
or refractory aggressive non-Hodgkin's B‑cell 
lymphoma  

Feb-14 https://www.nice.org.uk/guidance/ta306 

TA307 Aflibercept in combination with irinotecan and 
fluorouracil-based therapy for treating metastatic 
colorectal cancer that has progressed following prior 
oxaliplatin-based chemotherapy [TA307] 

Mar-14 https://www.nice.org.uk/guidance/ta307 

TA309 Pemetrexed maintenance treatment following induction 
therapy with pemetrexed and cisplatin for non-
squamous non-small-cell lung cancer   

Apr-14 https://www.nice.org.uk/guidance/ta309 

TA310 Afatinib for treating epidermal growth factor receptor 
mutation-positive locally advanced or metastatic non-
small-cell lung cancer  

Apr-14 
 

https://www.nice.org.uk/guidance/ta310 

TA311 Bortezomib for induction therapy in multiple myeloma 
before high-dose chemotherapy and autologous stem 
cell transplantation  

Apr-14 https://www.nice.org.uk/guidance/ta311 

TA316 Enzalutamide for metastatic hormone‑relapsed prostate 
cancer previously treated with a docetaxel‑containing 
regimen  

Jul-14 https://www.nice.org.uk/guidance/ta316 

TA319 Ipilimumab for previously untreated advanced 
(unresectable or metastatic) melanoma 

Jul-14 https://www.nice.org.uk/guidance/ta319 

TA321 Dabrafenib for treating unresectable or metastatic 
BRAF V600 mutation‑positive melanoma 

Oct-14 https://www.nice.org.uk/guidance/ta321 

TA326 Imatinib for the adjuvant treatment of gastrointestinal 
stromal tumours (review of NICE technology appraisal 
guidance 196)   

Nov-14 https://www.nice.org.uk/guidance/ta326 

TA333 Axitinib for treating advanced renal cell carcinoma 
after failure of prior systemic treatment  

Feb-15 https://www.nice.org.uk/guidance/ta333 

TA338 Pomalidomide for relapsed and refractory multiple Mar-15 https://www.nice.org.uk/guidance/ta338 
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TA Title Date 
Issued 

Available from 

myeloma previously treated with lenalidomide and 
bortezomib  

TA343 Obinutuzumab in combination with chlorambucil for 
untreated chronic lymphocytic leukaemia 

Jun-15 https://www.nice.org.uk/guidance/ta343 

TA344 Ofatumumab in combination with chlorambucil or 
bendamustine for untreated chronic lymphocytic 
leukaemia  

Jun-15 https://www.nice.org.uk/guidance/ta344 

TA347 Nintedanib for previously treated locally advanced, 
metastatic, or locally recurrent non‑small‑cell lung 
cancer  

Jul-15 https://www.nice.org.uk/guidance/ta347 

TA357 Pembrolizumab for treating advanced melanoma after 
disease progression with ipilimumab  

Nov-15 https://www.nice.org.uk/guidance/ta357 

TA359 Idelalisib for treating chronic lymphocytic leukaemia  Oct-15 https://www.nice.org.uk/guidance/ta359 
TA360 Paclitaxel as albumin-bound nanoparticles in 

combination with gemcitabine for previously untreated 
metastatic pancreatic cancer  

Oct-15 https://www.nice.org.uk/guidance/ta360 

TA366 Pembrolizumab for advanced melanoma not previously 
treated with ipilimumab  

Nov-15 https://www.nice.org.uk/guidance/ta366 

TA370 Bortezomib for previously untreated mantle cell 
lymphoma 

 https://www.nice.org.uk/guidance/ta370 

TA371 Breast cancer (HER2 positive, unresectable) - 
trastuzumab emtansine (after trastuzumab & taxane)  

Dec-15 https://www.nice.org.uk/guidance/ta371 

TA374 Erlotinib and gefitinib for treating non-small-cell lung 
cancer that has progressed after prior chemotherapy  

Dec-15 https://www.nice.org.uk/guidance/ta374 

TA377 Enzalutamide for treating metastatic hormone-relapsed 
prostate cancer before chemotherapy is indicated  

Jan-16 https://www.nice.org.uk/guidance/ta377 

TA378 Ramucirumab for treating advanced gastric cancer or 
gastro–oesophageal junction adenocarcinoma 
previously treated with chemotherapy  

Jan-16 https://www.nice.org.uk/guidance/ta378 

TA381 Olaparib for maintenance treatment of relapsed, 
platinum-sensitive, BRCA mutation-positive ovarian, 
fallopian tube and peritoneal cancer after response to 
second-line or subsequent platinum-based 
chemotherapy  

Jan-16 https://www.nice.org.uk/guidance/ta381 

TA384 Melanoma (advanced, unresectable, metastatic) - 
nivolumab  

Feb-16 https://www.nice.org.uk/guidance/ta384 
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A.2 Additional details on TAs using the partitioned survival approach 
 

TA no. (STA unless 
stated otherwise) TA285 TA295 TA296 TA299 TA306 

Indication Advanced ovarian cancer Advanced or metastatic 
breast cancer 

Locally advanced or 
metastatic non-small-cell 
lung cancer 

Chronic myeloid leukaemia 
(chronic, accelerated and 
blast phase) 

Advanced stage non-
Hodgkin's B‑cell lymphoma 

Method correctly 
described1 Yes No – described as Markov 

model Yes No – described as semi-
Markov model 

No – described as semi-
Markov model 

Justification provided1 *  No – only use in previous 
appraisals as justification 

Yes – PartSA allows time-
dependency of transitions 

No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

Survival endpoints 
modelled 2 (PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 2 (TTD, OS) 3 (TTD, PFS, OS) 

Treatment effects on all 
transitions? Yes Yes Yes Yes Yes 

External data No external data Treatment effects - MTC + 
naïve indirect comparison Treatment effects - MTC Treatment effects - naïve 

indirect comparison No external data 

Adjustment to endpoint 
data No 

Avoid curves crossing – PFS 
benefit translated to OS 
benefit based on published 
ratio 

Treatment switching 
Surrogacy – OS based on 
treatment response for a 
subgroup of population 

No 

PSA  

Yes - ERG commented that 
for PSA simulations where 
PFS was estimated to be 
greater than OS, the company 
assumed OS equal to PFS  

Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes – issue of OS and PFS 
correlation being ignored is 
mentioned 

Yes - Independent 
simulations 

Concerns raised by 
ERG / Committee 

Uncertain OS extrapolation – 
OS data used not from latest 
data cut-off 

OS adjustment - ERG 
criticised and  Committee 
disregarded OS adjustment  

Uncertain OS extrapolation - 
Due to immaturity and  
treatment switching 
adjustment 

Uncertain OS extrapolation / 
TE duration - Critique of OS 
methods, validity of 
surrogate relationship and 
post-treatment benefit  

Clinical data robustness – 
such that introduced 
uncertainty in validity and 
robustness of OS results 
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TA no. (STA unless 
stated otherwise) TA307 TA309 TA310 TA316 TA321 

Indication Metastatic colorectal 
cancer 

Non-small-cell lung 
cancer maintenance 
treatment 

Locally advanced or 
metastatic non-small-
cell lung cancer 

Metastatic prostate 
cancer 

Unresectable or metastatic BRAF 
V600 mutation-positive melanoma 

Method correctly 
described1 

No – described as 
Markov model 

No – described as 
Markov model Yes No – described as 

Markov model Yes  

Justification 
provided1 *  

Yes - structure  aligned 
with endpoints of 
pivotal trial 

No – only use in 
previous appraisals as 
justification 

No – only use in 
previous appraisals as 
justification 

No – only use in 
previous appraisals as 
justification 

Yes - Reflects  trial endpoints and 
facilitates incorporation of external 
data 

Survival endpoints 
modelled 3 (TTD, PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 2 (TTD, OS) 2 (PFS, OS) 

Treatment effects on 
all transitions? Yes Yes Yes Yes Yes 

External data No external data No external data Treatment effects - 
MTC 

Treatment effects - 
indirect comparison 

Treatment effects + Extrapolation: 
indirect comparison + registry data + 
general population mortality 

Adjustment to 
endpoint data No No No No Treatment switching 

PSA  Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes - Independent 
simulations Yes 

Concerns raised by 
ERG / Committee 

Uncertain OS 
extrapolation / TE 
duration - uncertain 
assumption that 
treatment benefit 
continues beyond trial 
period 

TE duration - no 
evidence to support a 
post-progression 
benefit were provided. 

Uncertain OS 
extrapolation – 
concern for assumption 
of proportional hazards 

OS extrapolation – 
issue of constant vs. 
time-dependent OS HR 
versus BSC 

OS extrapolation – the most recent 
data cut-off was not used 
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TA no. (STA unless 
stated otherwise) TA333 TA338 TA344 TA347 TA357 

Indication Advanced renal cell 
carcinoma 

Advanced multiple 
myeloma 

Chronic lymphocytic 
leukaemia, all stages 

Locally advanced, 
metastatic, or locally 
recurrent non-small-cell 
lung cancer 

Advanced melanoma 

Method correctly 
described1 Yes Yes No – described as semi-

Markov model Yes Yes 

Justification 
provided1 *  

No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

Yes - in line with clinical 
endpoints in pivotal trial 

Survival endpoints 
modelled 2 (PFS, OS) 3 (TTD, PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 

Treatment effects on 
all transitions? Yes Yes Yes Yes Yes 

External data 

Treatment effects - 
indirect comparison  or 
simulated treatment 
comparison (STC) for 
different patient 
subgroups 

Treatment effects - 
observational study for 
comparator therapy 

Treatment effects + 
Extrapolation – published 
study for comparator 
therapy 

Treatment effects - MTC 

Treatment effects + 
Extrapolation - registry 
data and pooled long-term 
survival curves inform OS 
in extrapolation period / 
HR for comparator 
therapy 

Adjustment to 
endpoint data No Treatment switching No No Treatment switching 

PSA  Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes – company mentioned 
that in some PSA 
iterations OS crossed over 
PFS 

Yes - Independent 
simulations 

Yes - Independent 
simulations 

Concerns raised by 
ERG / Committee 

Indirect comparison – 
STC method is likely to 
bias OS and PFS results 
for BSC  

Uncertain OS 
extrapolation  - Due to 
small observational study 
used to inform comparator 

Uncertain OS 
extrapolation / TE 
duration – Survival after 
progression unknown and 
company provides no 
evidence for assumption 
that OS HR=1 after trial 
follow-up 

Uncertain OS 
extrapolation - Limited 
trial data / Committee 
suggested use of registry 
data 

Uncertain OS 
extrapolation – Critique 
on use of published 
pooled long-term OS data 
and not trial OS data 
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TA no. (STA unless 
stated otherwise) TA359 TA360 TA366 TA371 TA374 (MTA) 

Indication Chronic lymphocytic 
leukaemia, all stages 

Previously untreated 
metastatic pancreatic 
cancer 

Advanced melanoma Locally advanced or 
metastatic breast cancer 

Locally advanced or 
metastatic non-small-cell 
lung cancer 

Method correctly 
described1 

No – described as Markov 
model Yes Yes Yes NR**– no method stated 

Justification provided1 *  No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

Yes – approach  aligned 
with clinical endpoints 
assessed in pivotal trial 

No – only use in previous 
appraisals mentioned as 
justification 

Yes – PartSA used due to 
data availability; PFS and 
OS routinely reported 

Survival endpoints 
modelled 3 (TTD, PFS, OS) 3 (TTD, PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 2 (PFS, OS) 

Treatment effects on all 
transitions? Yes Yes 

Yes – long-term OS 
assumed equal across 
treatments when registry 
data applied  

Yes Yes 

External data 

Treatment effects - 
median survival estimates 
calibrated  in pivotal trial 
to provide estimates for 
additional comparators 

Treatment effects - MTC 

Treatment effects+ 
Extrapolation - Published 
pooled long-term survival 
curve + registry data 

Treatment effects - MTC No external data 

Adjustment to endpoint 
data Treatment switching No No No No 

PSA  Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes - Independent 
simulations 

Yes - Independent 
simulations – mention of  
lack of accounting for 
PFS and OS correlation 

Yes - Independent 
simulations – issue of OS 
and PFS correlation 
mentioned 

Concerns raised by 
ERG / Committee 

TE duration - Treatment 
benefit assumed to 
continue after treatment 
discontinuation and trial 
follow-up, despite trial 
being terminated early for 
benefit 

Uncertain OS 
extrapolation - ERG used 
data only from the period 
towards the end of the 
KM survival curve to 
extrapolate 

Uncertain OS 
extrapolation - Limited 
trial follow-up (12m) 
 

- 
Evidence availability - 
Not all patient subgroups 
assessed 
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TA no. (STA unless 
stated otherwise) TA377 TA378 

Indication Metastatic prostate cancer Advanced gastric cancer 

Method correctly 
described1 

No – described as Markov 
model Yes 

Justification provided1 *  No – only use in previous 
appraisals as justification 

No – only use in previous 
appraisals as justification 

Survival endpoints 
modelled 2 (TTD, OS) 2 (PFS, OS) 

Treatment effects on all 
transitions? Yes Yes 

External data Treatment effects - naïve 
indirect comparison Treatment effects - NMA 

Adjustment to endpoint 
data Treatment switching No 

PSA  Yes - Independent 
simulations 

Yes - Independent 
simulations 

Concerns raised by ERG 
/ Committee 

Uncertain OS extrapolation 
– Due to immature trial data - 
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TA - technology appraisal; STA – single technology appraisal; MTA – multiple technology appraisal; ERG – Evidence Review Group; PSA – probabilistic sensitivity 

analysis; PartSA  - partitioned survival analysis; OS – overall survival; PFS - progression-free survival; TTD - time to treatment discontinuation; TE - treatment effect; NR 

– not reported; HR – hazard ratio; NMA – network meta-analysis; MTC – mixed treatment comparison; KM – Kaplan-Meier; BSC - Best supportive care; STC – 

simulated treatment comparison;  

 
1 As per company submission 

* Denotes any justification provided beyond precedent appraisals ** Not reported 
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A.3 Summary of NICE cancer TAs using non-Part-SA approaches 

 

TA no. 
(STA 
unless 
stated  
otherwise) 

Indication Model type Justification 
Provided 

States Treatment 
effects 
applied to 
endpoints 

External data Concerns raised by ERG/committee 

TA284 Advanced 
ovarian cancer 

Markov Treatment 
switching* 

PF 
PP 
Death 

PFS** No No attempt to adjust for  treatment 
switching or use observed OS 

TA311 Multiple 
myeloma, all 
stages, adjuvant  
treatment 

Decision tree 
and PartSA 

Immature PFS 
and OS so 
model uses 
response as  a 
surrogate 

CR-PF 
PR-PF 
NR-PF 
CR-PP 
PR-PP 
NR-PP 

Response External trial for long-
term OS 
 

Assumption that response is the sole 
determinant of OS 
Use of response rather than other 
surrogates 

TA319 Advanced  
melanoma 

semi- Markov To reflect 
subsequent 
lines of 
treatment 

PP 
FST 
SST 
TST 
PC 
(Palliative 
care) 
Death 

PFS (proxy for 
change of 
therapy) 
OS 
Second-line 
OS 

External trials to 
inform effectiveness of 
comparator therapies. 
Registry data for long-
term OS (for all 
treatments). Previous 
TA to inform OS 
adjustment for 
subsequent lines of 
therapy. 

OS assumptions applied to subsequent 
therapy lines 
Relative efficacy assumptions 

TA326 Gastrointestinal 
stromal tumours,  
adjuvant 
treatment 

Markov Immature OS RF 
PR 
Death 

RFS** External trials for PPS Uncertain OS extrapolation 
Methods for adjustment for  treatment 
switching 
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* Company stated that due to large proportion of patients switching from placebo to active treatment in the trial, they assumed an equal rate of death post-

progression for both treatments. 
** These studies modelled time to first endpoint as a composite of progression/recurrence and death. It is not clear how the proportion of these events that 
were deaths or progressions was determined in TA284 or TA343, or whether a difference in this proportion across treatments was modelled. 
 
TA - technology appraisal; STA – single technology appraisal; MTA – multiple technology appraisal; ERG – Evidence Review Group; PF – progression-free; 
PP – post-progression;  PC - palliative care; TTP – time to progression; PrePS – pre-progression survival; PPS – post-progression survival; CR – complete 
response; PR – partial response; NR – no response; OS – overall survival; PFS - progression-free survival; RFS – recurrence-free survival; TTD - time to 
treatment discontinuation; IPD – individual patient data; FST – first subsequent therapy; SST – second subsequent therapy; TST – third subsequent therapy.  

 

 

TA343 Chronic 
lymphocytic 
leukaemia, all 
stages 

Markov Immature OS PF 
PP 
Death 

PFS 
PrePS 
 

External trial for PPS - 

TA370 Mantle cell 
lymphoma, stage 
II, III or IV 

semi- Markov Immature OS  
Implausible 
OS 
predictions 

PF 
PP 
Dead 

TTP 
PrePS 

No (efficacy 
assumptions for 
additional 
comparators) 

Uncertain OS 
Separate modelling prePS, PPS 
Treatment independent PPS 

TA381 Advanced 
ovarian cancer 

semi- Markov Immature OS 
Represent 
maintenance  
cancer 
treatments 

PF 
FST 
SST 
Death 

PFS (time to 
event, 
proportion 
death events) 

No Exclusion of direct PFS and OS trial data 
Questionable assumptions regarding 
mortality for subsequent therapies 

TA384 Advanced 
melanoma 

semi- Markov Immature OS PF 
PP 
Death 

IPD available:  
TTP 
PrePS 
PPS 
External data:  
PFS 
OS 

Treatment effects + 
External trial and 
registry for 
extrapolation 
 

Uncertain OS extrapolation 
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