WALL-CROSSING FOR Donaldson-Thomas invariants

Tom Bridgeland

University of Sheffield

1. Stability conditions and wall-crossing

Generalized DT Theory

Let (X, L) be a smooth, polarized projective CY_{3} over \mathbb{C}.
Generalized (unrefined) DT theory (Joyce, Kontsevich-Soibelman) produces numbers $\mathrm{DT}_{X, L}(\gamma) \in \mathbb{Q}$ for classes $\gamma \in K_{\text {num }}(X)$.
They can be thought of as virtual Euler characteristics of the stack $\mathcal{M}_{X, L}(\gamma)$ of Gieseker semistable sheaves.
When there are no strictly semistables and $\mathcal{M}_{X, L}(\gamma)$ is smooth

$$
\mathrm{DT}_{x, L}(\gamma)=(-1)^{\operatorname{dim}_{\mathbb{C}} M_{X, L}(\gamma)} \cdot e\left(M_{X, L}(\gamma)\right),
$$

but in general the definition is much more complicated.
These numbers are invariant under deformations of (X, L), and satisfy an interesting wall-crossing formula as L is varied.

Stability conditions

A different context in which to study wall-crossing behaviour is provided by stability conditions on triangulated categories.
Let \mathcal{D} be a triangulated category. A stability condition consists of
(I) A map of abelian groups $Z: K_{0}(\mathcal{D}) \rightarrow \mathbb{C}$,
(iI) An \mathbb{R}-graded full subcategory $\mathcal{P}=\cup_{\phi \in \mathbb{R}} \mathcal{P}(\phi) \subset \mathcal{D}$, together satisfying some axioms.
The map Z is called the central charge, and the objects of the subcategory $\mathcal{P}(\phi)$ are said to be semistable of phase ϕ.

Axioms for a stability condition

(A) if $0 \neq E \in \mathcal{P}(\phi)$ then $Z(E) \in \mathbb{R}_{>0} \cdot \exp (i \pi \phi)$,
(в) $\mathcal{P}(\phi+1)=\mathcal{P}(\phi)[1]$ for all $\phi \in \mathbb{R}$,
(C) if $\phi_{1}>\phi_{2}$ and $A_{j} \in \mathcal{P}\left(\phi_{j}\right)$ then $\operatorname{Hom}_{\mathcal{D}}\left(A_{1}, A_{2}\right)=0$,
(D) for each $0 \neq E \in \mathcal{D}$ there is a finite collection of triangles

with $0 \neq A_{j} \in \mathcal{P}\left(\phi_{j}\right)$ and $\phi_{1}>\phi_{2}>\cdots>\phi_{n}$.

STABILITY MANIFOLD

Fix an abelian group homomorphism

$$
\text { ch: } K_{0}(\mathcal{D}) \rightarrow \Gamma \cong \mathbb{Z}^{\oplus n},
$$

and insist that all central charges factor through ch.
Consider only stability conditions satisfying the support property:

$$
\exists C>0 \text { such that } 0 \neq E \in \mathcal{P}(\phi) \Longrightarrow|Z(E)|>C \cdot\|\operatorname{ch}(E)\|,
$$

where $\|\cdot\|$ is a fixed norm on $\Gamma \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{n}$.

Theorem

There is a complex manifold $\operatorname{Stab}(\mathcal{D})$ whose points are the stability conditions on \mathcal{D}. The forgetful map defines a local homeomorphism

$$
\operatorname{Stab}(\mathcal{D}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \cong \mathbb{C}^{n}
$$

Active RAYs

For each stability condition $\sigma \in \operatorname{Stab}(D)$ there is a countable collection of active rays

$$
\ell=\mathbb{R}_{>0} \exp (i \pi \phi) \subset \mathbb{C}
$$

for which there exist semistable objects of phase ϕ.

As σ varies, the active rays move and may collide and separate.

WALL-AND-CHAMBER STRUCTURE

For a fixed class $\gamma \in \Gamma$, there is a locally-finite collection of real codimension one submanifolds

$$
\mathcal{W}=\cup_{\alpha} \mathcal{W}_{\alpha} \subset \operatorname{Stab}(D)
$$

such that the subcategory of semistable objects of class γ is constant in each connected component of the complement of \mathcal{W}.

DT INVARIANTS AND WALL-CROSSING

Assume that our triangulated category \mathcal{D} satisfies the CY_{3} property:

$$
\operatorname{Hom}_{\mathcal{D}}^{i}(A, B) \cong \operatorname{Hom}_{\mathcal{D}}^{3-i}(B, A)^{*} .
$$

In many examples there then exist generalized DT invariants

$$
\mathrm{DT}_{\sigma}(\gamma) \in \mathbb{Q}, \quad \gamma \in \Gamma \text { and } \sigma \in \operatorname{Stab}(\mathcal{D})
$$

associated to moduli spaces of σ-semistable objects of class γ.

Amazing FACT (Joyce)

Knowing the full collection of invariants $\mathrm{DT}_{\sigma}(\gamma)$ at one point $\sigma \in \operatorname{Stab}(\mathcal{D})$ completely determines them at all other points.

Quivers with potential

When $\mathcal{D}=\mathcal{D}^{b} \operatorname{Coh}(X)$ with X a smooth projective Calabi-Yau threefold it is expected that Gieseker stability arises as a large volume limit of points in $\operatorname{Stab}(\mathcal{D})$.

But constructing stability conditions on \mathcal{D} is very difficult.
A more tractable class of examples is provided by quivers with potential (Q, W). Recall
(I) Q is an oriented graph,
(ii) W is a \mathbb{C}-linear combination of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.
Associated to (Q, W) is a triangulated category $D^{b}(Q, W)$

LOCAL $\mathbb{P}^{2}:$ A NON-COMPACT CY_{3}

Consider the quiver with potential

$$
W=\sum_{i, j, k} \epsilon_{i j k} x_{i} y_{j} z_{k}
$$

Viewing the total space of the line bundle $\omega_{\mathbb{P}^{2}}$ as a non-compact Calabi-Yau threefold, there is an equivalence

$$
D^{b}(Q, W) \cong D_{\mathbb{P}^{2}}^{b} \operatorname{Coh}\left(\omega_{\mathbb{P}^{2}}\right)
$$

where on the right we consider the subcategory of objects supported on the zero-section.

Quivers from triangulations

Fix a surface S of genus g with a set $M=\left\{p_{1}, \cdots, p_{d}\right\} \subset S$.
Consider triangulations of S with vertices at the points p_{i}.
Associated to any such triangulation is a quiver:

Choose a generic potential W and set $\mathcal{D}=\mathcal{D}^{b}(Q, W)$.

QuADRATIC DIFFERENTIALS

Theorem (-, Ivan Smith)

$\operatorname{Stab}(\mathcal{D}) / \operatorname{Aut}(\mathcal{D}) \cong \operatorname{Quad}(g, d)$.
The space $\operatorname{Quad}(g, d)$ parameterizes pairs (S, ϕ) with
(A) S is a Riemann surface of genus g,
(B) $D=\sum_{i=1}^{d} p_{i}$ is a reduced divisor,
(C) $\phi \in H^{0}\left(S, \omega_{S}(D)^{\otimes 2}\right)$ has simple zeroes.

One can calculate DT invariants in these examples in terms of counts of finite-length trajectories of the corresponding quadratic differential.
2. BPS structures and the wall-crossing formula.

The output of (unrefined) DT Theory

A BPS structure (Γ, Z, Ω) consists of
(A) An abelian group $\Gamma \cong \mathbb{Z}^{\oplus n}$ with a skew-symmetric form

$$
\langle-,-\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z}
$$

(в) A homomorphism of abelian groups $Z: \Gamma \rightarrow \mathbb{C}$,
(C) A map of sets $\Omega: \Gamma \rightarrow \mathbb{Q}$.
satisfying the conditions:
(I) Symmetry: $\Omega(-\gamma)=\Omega(\gamma)$ for all $\gamma \in \Gamma$,
(ii) Support property: fixing a norm $\|\cdot\|$ on the finite-dimensional vector space $\Gamma \otimes_{\mathbb{Z}} \mathbb{R}$, there is a $C>0$ such that

$$
\Omega(\gamma) \neq 0 \Longrightarrow|Z(\gamma)|>C \cdot\|\gamma\| .
$$

Poisson algebraic torus

Consider the algebraic torus with character lattice Γ :

$$
\begin{gathered}
\mathbb{T}_{+}=\operatorname{Hom}_{\mathbb{Z}}\left(\Gamma, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n} \\
\mathbb{C}\left[\mathbb{T}_{+}\right]=\bigoplus_{\gamma \in \Gamma} \mathbb{C} \cdot x_{\gamma} \cong \mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm n}\right] .
\end{gathered}
$$

The form $\langle-,-\rangle$ induces an invariant Poisson structure on \mathbb{T}_{+}:

$$
\left\{x_{\alpha}, x_{\beta}\right\}=\langle\alpha, \beta\rangle \cdot x_{\alpha} \cdot x_{\beta} .
$$

More precisely we should work with an associated torsor

$$
\mathbb{T}_{-}=\left\{g: \Gamma \rightarrow \mathbb{C}^{*}: g\left(\gamma_{1}+\gamma_{2}\right)=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle} g\left(\gamma_{1}\right) \cdot g\left(\gamma_{2}\right)\right\},
$$

which we call the twisted torus.

DT HAMILTONIANS

The DT invariants $\operatorname{DT}(\gamma) \in \mathbb{Q}$ of a BPS structure are defined by

$$
\operatorname{DT}(\gamma)=\sum_{\gamma=n \alpha} \frac{\Omega(\alpha)}{n^{2}} .
$$

For any ray $\ell=\mathbb{R}_{>0} \cdot z \subset \mathbb{C}^{*}$ we consider the generating function

$$
\mathrm{DT}(\ell)=\sum_{Z(\gamma) \in \ell} \mathrm{DT}(\gamma) \cdot x_{\gamma} .
$$

A ray $\ell \subset \mathbb{C}^{*}$ is called active if this expression is nonzero.
We would like to think of the time 1 Hamiltonian flow of the function DT (ℓ) as defining a Poisson automorphism $S(\ell)$ of the torus \mathbb{T}.

Making sense of $S(\ell)$

FORMAL APPROACH

Restrict to classes γ lying in a positive cone $\Gamma^{+} \subset \Gamma$, consider

$$
\mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right] \supset \mathbb{C}\left[x_{1}, \cdots, x_{n}\right] \subset \mathbb{C}\left[\left[x_{1}, \cdots, x_{n}\right]\right],
$$

and the automorphism $\mathrm{S}(\ell)^{*}=\exp \{\mathrm{DT}(\ell),-\}$ of this completion.

Analytic approach

Restrict attention to BPS structures which are convergent:

$$
\exists R>0 \text { such that } \sum_{\gamma \in \Gamma}|\Omega(\gamma)| \cdot e^{-R|Z(\gamma)|}<\infty .
$$

Then on suitable analytic open subsets of \mathbb{T} the sum $\mathrm{DT}(\ell)$ is absolutely convergent and its time 1 Hamiltonian flow $S(\ell)$ exists.

Birational transformations

Often the maps $S(\ell)$ are birational automorphisms of \mathbb{T}. Note

$$
\exp \left\{\sum_{n \geq 1} \frac{x_{n \gamma}}{n^{2}},-\right\}\left(x_{\beta}\right)=x_{\beta} \cdot\left(1-x_{\gamma}\right)^{\langle\beta, \gamma\rangle} .
$$

Whenever a ray $\ell \subset \mathbb{C}^{*}$ satisfies
(I) only finitely many active classes have $Z\left(\gamma_{i}\right) \in \ell$,
(II) these classes are mutually orthogonal $\left\langle\gamma_{i}, \gamma_{j}\right\rangle=0$,
(iII) the corresponding BPS invariants $\Omega\left(\gamma_{i}\right) \in \mathbb{Z}$.
there is a formula

$$
\mathrm{S}(\ell)^{*}\left(x_{\beta}\right)=\prod_{Z(\gamma) \in \ell}\left(1-x_{\gamma}\right)^{\Omega(\gamma) \cdot\langle\beta, \gamma\rangle} .
$$

Variation of BPS structures

A framed variation of BPS structures over a complex manifold S is a collection of BPS structures ($\Gamma, Z_{s}, \Omega_{s}$) indexed by $s \in S$ such that
(I) The numbers $Z_{s}(\gamma) \in \mathbb{C}$ vary holomorphically.
(iI) For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise ordered product

$$
S_{s}(\Delta)=\prod_{\ell \in \Delta} S_{s}(\ell) \in \operatorname{Aut}(\mathbb{T})
$$

is constant whenever the boundary of Δ remains non-active.
Part (ii) is the Kontsevich-Soibelman wall-crossing formula.
The complete set of numbers $\Omega_{s}(\gamma)$ at some point $s \in S$ determines them for all other points $s \in S$.

ExAmple: THE A_{2} CASE

Let $\Gamma=\mathbb{Z}^{\oplus 2}=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}$ with $\left\langle e_{1}, e_{2}\right\rangle=1$. Then

$$
\mathbb{C}[\mathbb{T}]=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right], \quad\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2} .
$$

A central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z_{i}=Z\left(e_{i}\right)$. Take

$$
S=\mathfrak{h}^{2}=\left\{\left(z_{1}, z_{2}\right): z_{i} \in \mathfrak{h}\right\} .
$$

Define BPS invariants as follows:
(A) $\operatorname{Im}\left(z_{2} / z_{1}\right)>0$. Set $\Omega\left(\pm e_{1}\right)=\Omega\left(\pm e_{2}\right)=1$, all others zero.
(в) $\operatorname{Im}\left(z_{2} / z_{1}\right)<0$. Set $\Omega\left(\pm e_{1}\right)=\Omega\left(\pm\left(e_{1}+e_{2}\right)\right)=\Omega\left(\pm e_{2}\right)=1$.

Wall-crossing formula: A_{2} case

Two types of BPS structures appear, as illustrated below

2 active rays

3 active rays

The wall-crossing formula is the cluster pentagon identity

$$
\begin{gathered}
C_{(0,1)} \circ C_{(1,0)}=C_{(1,0)} \circ C_{(1,1)} \circ C_{(0,1)} . \\
C_{\alpha}: x_{\beta} \mapsto x_{\beta} \cdot\left(1-x_{\alpha}\right)^{\langle\alpha, \beta\rangle} .
\end{gathered}
$$

3. An analogy: iso-Stokes deformations of differential equations.

STOKES MATRICES AND ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for an irregular connection with values in the infinite-dimensional group

$$
G=\operatorname{Aut}_{\{-,-\}}(\mathbb{T})
$$

of Poisson automorphisms of the torus $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{n}$.
We first explain such phenomena in the finite-dimensional case, so set

$$
G=\mathrm{GL}(n, \mathbb{C}), \quad \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C}) .
$$

As a warm-up we start with the case of regular singularities.

A Fuchsian CONNECTION

We will consider meromorphic connections on the trivial G-bundle over the Riemann sphere $\mathbb{C P}^{1}$.

Consider a connection of the form

$$
\nabla=d-\sum_{i=1}^{k} \frac{A_{i} d z}{z-a_{i}}
$$

(I) $a_{i} \in \mathbb{C}$ are a set of k distinct points,
(iI) $A_{i} \in \mathfrak{g}$ are corresponding residue matrices.

Then ∇ has regular singularities at the points a_{i}, and also at ∞.

Isomonodromic Deformations

For each based loop

$$
\gamma: S^{1} \rightarrow \mathbb{C} \backslash\left\{a_{1}, \cdots, a_{k}\right\}
$$

there is a corresponding monodromy matrix $\operatorname{Mon}_{\gamma}(\nabla) \in G$.
If we move the pole positions $a_{i} \in \mathbb{C}$, we can deform the residue matrices A_{i} so that all monodromy matrices remain constant. Such deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial differential equations: the Schlessinger equations.

A CLASS OF IRREGULAR CONNECTIONS

Introduce the decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\text {od }}, \quad \mathfrak{g}^{\text {od }}=\bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}, \quad \Phi=\left\{e_{i}^{*}-e_{j}^{*}\right\} \subset \mathfrak{h}^{*} .
$$

Consider a connection of the form

$$
\nabla=d-\left(\frac{U}{z^{2}}+\frac{V}{z}\right) d z,
$$

(I) $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right) \in \mathfrak{h}$ is diagonal with distinct eigenvalues,
(ii) $V \in \mathfrak{g}^{\text {od }}$ has zeroes on the diagonal.

Then ∇ has an irregular singularity at 0 and a regular one at ∞.

Stokes data of the connection

The Stokes rays for the connection ∇ are the rays

$$
\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)=\mathbb{R}_{>0} \cdot U(\alpha), \quad \alpha=e_{i}^{*}-e_{j}^{*} .
$$

We will associate to each Stokes ray ℓ a Stokes factor

$$
\mathrm{S}(\ell)=\exp \left(\sum_{U(\alpha) \in \ell} \epsilon_{\alpha}\right) \in \exp \left(\bigoplus_{U(\alpha) \in \ell} \mathfrak{g}_{\alpha}\right) \subset G .
$$

CANONICAL SOLUTION ON A HALF-PLANE

Theorem (Balser, Jurkat, Lutz)

Given a non-Stokes ray r, there is a unique flat section X_{r} of ∇ on the half-plane $\mathbb{H}_{r} \subset \mathbb{C}$ it spans, with the limiting property

$$
X_{r}(t) \cdot e^{U / t} \rightarrow 1 \text { as } t \rightarrow 0 \text { in } \mathbb{H}_{r} .
$$

Definition of Stokes factors

 Suppose given two non-Stokes rays r_{1}, r_{2} forming the boundary of a convex sector $\Delta \subset \mathbb{C}$. There is a unique $S(\Delta) \in G$ with$$
X_{r_{1}}(t)=X_{r_{2}}(t) \cdot \mathrm{S}(\Delta), \quad t \in \mathbb{H}_{r_{1}} \cap \mathbb{H}_{r_{2}}
$$

The defining property of $X_{r_{i}}(t)$ easily gives

$$
\mathrm{S}(\Delta) \in \exp \left(\bigoplus_{U(\alpha) \in \Delta} \mathfrak{g}_{\alpha}\right) \subset G
$$

In particular $S(\Delta)=1$ if Δ contains no Stokes rays.
As the ray r varies, the canonical section X_{r} remains unchanged until r crosses a Stokes ray. The section then jumps by the Stokes factor

$$
\mathrm{S}(\ell)=\exp \left(\sum_{U(\alpha) \in \ell} \epsilon_{\alpha}\right) \in \exp \left(\bigoplus_{U(\alpha) \in \ell} \mathfrak{g}_{\alpha}\right) \subset G
$$

IsOMONODROMY IN THE IRREGULAR CASE

If we now vary the diagonal matrix U, we can deform the matrix V so that the Stokes factors remain constant. Such deformations are called isomonodromic. More precisely:

For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise product

$$
S(\Delta)=\prod_{\ell \in \Delta} S(\ell) \in G
$$

remains constant unless a Stokes ray crosses the boundary of Δ.
Isomonodromic variations are again described by a system of partial differential equations.

Poisson vector fields on \mathbb{T}

Consider the group G of Poisson automorphisms of the torus

$$
\mathbb{T} \cong \operatorname{Hom}_{\mathbb{Z}}\left(\Gamma, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n},
$$

and the corresponding Lie algebra \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$, where
(A) the Cartan subalgebra

$$
\mathfrak{h}=\operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}),
$$

consists of translation-invariant vector fields on \mathbb{T}.
(B) the subspace $\mathfrak{g}^{\text {od }}$ consists of Hamiltonian vector fields, and is the Poisson algebra of non-constant algebraic functions on \mathbb{T}

$$
\mathfrak{g}^{\mathrm{od}}=\bigoplus_{\gamma \in \Gamma \backslash\{0\}} \mathfrak{g}_{\gamma}=\bigoplus_{\gamma \in \Gamma \backslash\{0\}} \mathbb{C} \cdot x_{\gamma}
$$

DT invariants as Stokes data

It is tempting to interpret the elements

$$
\mathrm{S}(\ell)=\exp \left(\sum_{z(\gamma) \in \ell} \mathrm{DT}_{\sigma}(\gamma) \cdot x_{\gamma}\right) \in G
$$

as defining Stokes factors for a G-valued connection of the form

$$
\nabla=d-\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) d t
$$

where $F \in \mathfrak{g}^{\text {od }}$ depends holomorphically on Z, or equivalently σ.
The wall-crossing formula is precisely the condition that this family of connections is isomonodromic as $\sigma \in \operatorname{Stab}(\mathcal{D})$ varies.

How to calculate F?

We know the Stokes factors $\mathrm{S}(\ell)$ and would like to find $F=F(Z)$.
To do this we should first find the canonical solutions $X_{r}(t)$.
We can assemble these to make a piecewise holomorphic function

$$
X: \mathbb{C}^{*} \rightarrow G=\operatorname{Aut}_{\{-,-\}}(\mathbb{T})
$$

This satisfies a Riemann-Hilbert problem: it has known behaviour as $t \rightarrow 0$ and $t \rightarrow \infty$, and prescribed jumps as t crosses a Stokes ray. Rather than working with the infinite-dimensional group G, we fix a point $\xi \in \mathbb{T}$ and compose X_{r} with the map eval ${ }_{\xi}: G \rightarrow \mathbb{T}$ to get

$$
\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}
$$

4. The Riemann-Hilbert problem.

The Riemann-Hilbert problem

Fix a BPS structure (Γ, Z, Ω) and a point $\xi \in \mathbb{T}$.
Find a piecewise holomorphic function $\Phi: \mathbb{C}^{*} \rightarrow \mathbb{T}$ satisfying:
(I) (Jumping): When t crosses an active ray ℓ clockwise,

$$
\Phi(t) \mapsto \mathrm{S}(\ell)(\Phi(t)) .
$$

(II) (Limit at 0): Write $\left.\Phi_{\gamma}(t)\right)=x_{\gamma}(\Phi(t))$. As $t \rightarrow 0$,

$$
\Phi_{\gamma}(t) \cdot e^{Z(\gamma) / t} \rightarrow x_{\gamma}(\xi) .
$$

(iii) (Growth at ∞): For any $\gamma \in \Gamma$ there exists $k>0$ with

$$
|t|^{-k}<\left|\Phi_{\gamma}(t)\right|<|t|^{k} \text { as } t \rightarrow \infty .
$$

The A_{1} ExAMPLE

Consider the following BPS structure
(I) The lattice $\Gamma=\mathbb{Z} \cdot \gamma$ is one-dimensional. Thus $\langle-,-\rangle=0$.
(ii) The central charge $Z: \Gamma \rightarrow \mathbb{C}$ is determined by $z=Z(\gamma) \in \mathbb{C}^{*}$,
(iii) The only non-vanishing BPS invariants are $\Omega(\pm \gamma)=1$.

Then $\mathbb{T}=\mathbb{C}^{*}$ and all automorphisms $S(\ell)$ are the identity.

$$
\Phi_{\gamma}(t)=\xi \cdot \exp (-z / t) \in \mathbb{T}=\mathbb{C}^{*}
$$

Now double the BPS structure: take the lattice $\Gamma \oplus \Gamma^{\vee}$ with canonical skew form, and extend Z and Ω by zero. Consider

$$
y(t)=\Phi_{\gamma^{\vee}}(t): \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}
$$

Doubled A_{1} CASE

Consider the case $\xi=1$. The map $y: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ should satisfy
(I) y is holomorphic away from the rays $\mathbb{R}_{>0} \cdot(\pm z)$ and has jumps

$$
y(t) \mapsto y(t) \cdot\left(1-x(t)^{ \pm 1}\right)^{ \pm 1}, \quad x(t)=\exp (-z / t),
$$

as t moves clockwise across them.
(II) $y(t) \rightarrow 1$ as $t \rightarrow 0$.
(iii) there exists $k>0$ such that

$$
|t|^{-k}<|y(t)|<|t|^{k} \text { as } t \rightarrow \infty .
$$

Solution: the Gamma function

The doubled A_{1} problem has the unique solution

$$
y(t)=\Delta\left(\frac{ \pm z}{2 \pi i t}\right)^{\mp 1} \quad \text { where } \quad \Delta(w)=\frac{e^{w} \cdot \Gamma(w)}{\sqrt{2 \pi} \cdot w^{w-\frac{1}{2}}}
$$

in the half-planes $\pm \operatorname{Im}(t / z)>0$.
This is elementary: all you need is

$$
\begin{gathered}
\Gamma(w) \cdot \Gamma(1-w)=\frac{\pi}{\sin (\pi w)}, \quad \Gamma(w+1)=w \cdot \Gamma(w) \\
\log \Delta(w) \sim \sum_{g=1}^{\infty} \frac{B_{2 g}}{2 g(2 g-1)} w^{1-2 g} .
\end{gathered}
$$

The TAU FUNCTION

Suppose given a framed variation of BPS structures ($\Gamma, Z_{p}, \Omega_{p}$) over a complex manifold S such that

$$
\pi: S \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C})=\mathbb{C}^{n}, \quad s \mapsto Z_{s}
$$

is a local isomorphism. Taking a basis $\left(\gamma_{1}, \cdots, \gamma_{n}\right) \subset \Gamma$ we get local co-ordinates $z_{i}=Z_{s}\left(\gamma_{i}\right)$ on S.
Suppose we are given analytically varying solutions $\Phi_{\gamma}\left(z_{i}, t\right)$ to the Riemann-Hilbert problems associated to ($\Gamma, Z_{s}, \Omega_{s}$).
Define a function $\tau=\tau\left(z_{i}, t\right)$ by the relation

$$
\frac{\partial}{\partial t} \log \Phi_{\gamma_{k}}\left(z_{i}, t\right)=\sum_{j=1}^{n} \epsilon_{j k} \frac{\partial}{\partial z_{j}} \log \tau\left(z_{i}, t\right), \quad \epsilon_{j k}=\left\langle\gamma_{j}, \gamma_{k}\right\rangle .
$$

SOLUTION IN UNCOUPLED CASE

In the A_{1} case the τ-function is essentially the Barnes G -function.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \frac{B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{z}\right)^{2 g-2} .
$$

Whenever our BPS structures are uncoupled

$$
\Omega\left(\gamma_{i}\right) \neq 0 \Longrightarrow\left\langle\gamma_{1}, \gamma_{2}\right\rangle=0,
$$

we can try to solve the RH problem by superposition of A_{1} solutions. This works precisely if only finitely many $\Omega(\gamma) \neq 0$.

$$
\log \tau(z, t) \sim \sum_{g \geq 1} \sum_{\gamma \in \Gamma} \frac{\Omega(\gamma) \cdot B_{2 g}}{2 g(2 g-2)}\left(\frac{2 \pi i t}{Z(\gamma)}\right)^{2 g-2}
$$

Geometric case: curves on a CY_{3}

Can apply this to coherent sheaves on a compact Calabi-Yau threefold supported in dimension ≤ 1. We have

$$
\begin{gathered}
\Gamma=H_{2}(X, \mathbb{Z}) \oplus \mathbb{Z}, \quad Z(\beta, n)=2 \pi\left(\beta \cdot \omega_{\mathbb{C}}-n\right) . \\
\Omega(\beta, n)=\operatorname{GV}_{0}(\beta), \quad \Omega(0, n)=-\chi(X) .
\end{gathered}
$$

Since $\chi(-,-)=0$ these BPS structures are uncoupled.

$$
\begin{gathered}
\tau\left(\omega_{\mathbb{C}}, t\right) \stackrel{\text { pos. deg }}{\sim} \sum_{g \geq 2} \frac{\chi(X) B_{2 g} B_{2 g-2}}{4 g(2 g-2)(2 g-2)!} \cdot(2 \pi t)^{2 g-2} \\
\quad+\sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{k \geq 1} \mathrm{GV}_{0}(\beta) \frac{e^{2 \pi i \omega \cdot k \beta}}{4 k} \sin ^{-2}(i \pi t k) .
\end{gathered}
$$

This matches the contribution to the topological string partition function of the genus 0 GV invariants.

Example: conifold BPS structure

Applying DT theory to the resolved conifold gives a variation of BPS structures over the space

$$
\left\{(v, w) \in \mathbb{C}^{2}: w \neq 0 \text { and } v+d w \neq 0 \text { for all } d \in \mathbb{Z}\right\} \subset \mathbb{C}^{2}
$$

It is given by $\Gamma=\mathbb{Z}^{\oplus 2}$ with $\langle-,-\rangle=0, Z(r, d)=r v+d w$ and

$$
\Omega(\gamma)= \begin{cases}1 & \text { if } \gamma= \pm(1, d) \text { for some } d \in \mathbb{Z} \\ -2 & \text { if } \gamma=(0, d) \text { for some } 0 \neq d \in \mathbb{Z} \\ 0 & \text { otherwise. }\end{cases}
$$

Non-PERTURBATIVE PARTITION FUNCTION

The corresponding RH problems have unique solutions, which can be written explicitly in terms of Barnes double and triple sine functions.

$$
\begin{gathered}
\tau(v, w, t)=H(v, w, t) \cdot \exp (R(v, w, t)), \\
H(v, w, t)=\exp \left(\int_{\mathbb{R}+i \epsilon} \frac{e^{v s}-1}{e^{w s}-1} \cdot \frac{e^{t s}}{\left(e^{t s}-1\right)^{2}} \cdot \frac{d s}{s}\right), \\
R(v, w, t)=\left(\frac{w}{2 \pi i t}\right)^{2}\left(\operatorname{Li}_{3}\left(e^{2 \pi i v / w}\right)-\zeta(3)\right)+\frac{i \pi}{12} \cdot \frac{v}{w} .
\end{gathered}
$$

The function H is a non-perturbative closed-string partition function.

