Stability conditions And QUIVERS

Tom Bridgeland

Spaces of stability conditions

Associated to any triangulated category D is a complex manifold $\operatorname{Stab}(D)$ whose points are stability conditions on D, i.e. pairs

$$
Z: K_{0}(D) \rightarrow \mathbb{C}, \quad \mathcal{P}=\bigcup_{\phi \in \mathbb{R}} \mathcal{P}(\phi) \subset D
$$

satisfying some axioms.
(A) Do there exist stability conditions on $\mathrm{D}^{\mathrm{b}} \operatorname{Coh}(X)$ when $\operatorname{dim}_{\mathbb{C}}(X) \geqslant 3$?
(B) Given a fixed stability condition on D, can we construct good moduli stacks of semistable objects $E \in \mathcal{P}(\phi)$?
(c) Does the manifold $\operatorname{Stab}(D)$ carry any natural geometric structures (particularly in the CY_{3} case)?

1. Quivers with potential

Quivers with potential

Let (Q, W) be a quiver with potential. Thus
(I) Q is an oriented graph,
(ii) W is a formal sum of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.
Associated to (Q, W) is a triangulated category $D^{b}(Q, W)$
By definition, $D^{b}(Q, W)$ is the subcategory of the derived category of the complete Ginzburg dg-algebra consisting of objects with finite-dimensional total cohomology.

Non-compact Calabi-Yau threefold

Example (Local \mathbb{P}^{2})

Consider the quiver with potential

$$
W=\sum_{i, j, k} \epsilon_{i j k} x_{i} y_{j} z_{k} .
$$

Viewing the total space of the line bundle $\omega_{\mathbb{P}^{2}}$ as a non-compact Calabi-Yau threefold, there is an equivalence

$$
D^{b}(Q, W) \cong D_{\mathbb{P}^{2}}^{b} \operatorname{Coh}\left(\omega_{\mathbb{P}^{2}}\right),
$$

where on the right we consider the subcategory of objects supported on the zero-section.

General properties of $D=D^{b}(Q, W)$

(A) D has the CY_{3} property:

$$
\operatorname{Hom}^{k}(E, F) \cong \operatorname{Hom}^{3-k}(F, E)^{*}
$$

(в) D is generated by objects S_{i} indexed by the vertices of Q, and

$$
\operatorname{Hom}^{*}\left(S_{i}, S_{j}\right)=\mathbb{C}^{\delta_{i j}} \oplus \mathbb{C}^{a_{i j}}[-1] \oplus \mathbb{C}^{a_{j i}}[-2] \oplus \mathbb{C}^{\delta_{i j}}[-3],
$$

with $a_{i j}$ the number of arrows in Q from vertex i to vertex j.
(c) There is a standard heart $\mathcal{A} \subset D$, which is finite-length, and whose simple objects are precisely the S_{i}.

Euler form and Poisson torus

Define $N=K_{0}(D)=\mathbb{Z}^{Q_{0}}$ and set

$$
\mathbb{T}=\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n}
$$

The Euler form of D defines a skew-symmetric form

$$
\begin{gathered}
\langle-,-\rangle: N \times N \rightarrow \mathbb{Z}, \\
\left\langle e_{i}, e_{j}\right\rangle=a_{j i}-a_{i j},
\end{gathered}
$$

which induces an invariant Poisson structure on \mathbb{T}

$$
\left\{x^{\alpha}, x^{\beta}\right\}=\langle\alpha, \beta\rangle \cdot x^{\alpha+\beta} .
$$

Tilting AND MUTATION

Let (Q, W) be a QWP and choose a vertex i of Q. Write $S=S_{i}$.

$$
\langle S\rangle=\left\{S^{\oplus n}: n \geqslant 0\right\} \subset \mathcal{A}, \quad{ }^{\perp}\langle S\rangle=\{E \in \mathcal{A}: \operatorname{Hom}(E, S)=0\} .
$$

There is a mutation $\left(Q^{\prime} W^{\prime}\right)=\mu_{i}(Q, W)$ and an equivalence

Exchange graphs

Let $D=D^{b}(Q, W)$ with W a generic potential.
(A) The heart exchange graph $E G_{\varphi}(D)$ has
(I) vertices the finite-length hearts in D,
(iI) edges connecting hearts related by a simple tilt.
(B) Each simple object S_{i} is spherical and defines an auto-equivalence $T w_{S_{i}}$. The subgroup

$$
\operatorname{Sph}(D)=\left\langle\mathrm{Tw}_{S_{1}}, \cdots, \mathrm{Tw}_{S_{n}}\right\rangle \subset \operatorname{Aut}(D)
$$

is invariant under mutation.
(c) The cluster exchange graph of Q is the quotient

$$
\mathrm{EG}(Q)=\mathrm{EG}_{\odot}(D) / \operatorname{Sph}(D)
$$

Stability space versus cluster variety

(A) For each heart $\mathcal{A} \in \mathrm{EG}_{\varrho}(D)$ there is a cell $\mathbb{H}^{n} \subset \operatorname{Stab}(D)$.

$$
\bigcup_{\mathcal{A} \in \mathrm{EG}_{\mathscr{}}(D)} \mathbb{H}^{n} \subset \operatorname{Stab}(D)
$$

Note that the different cells only meet in their closures.
(в) The cluster variety is a union of tori glued by birational maps

$$
\begin{gathered}
\mathcal{X}(Q)=\bigcup_{\mathcal{A} \in \mathrm{EG}_{\mathscr{O}}(D)} \mathbb{T} . \\
x^{\beta} \mapsto x^{\beta} \cdot\left(1+x^{\alpha}\right)^{\langle\alpha, \beta\rangle} .
\end{gathered}
$$

2. Examples from triangulated surfaces

From triangulations to quivers

Fix a surface S of genus g with a set $M=\left\{p_{1}, \cdots, p_{d}\right\} \subset S$.
Consider triangulations of S with vertices at the points p_{i}. Associated to any such triangulation is a quiver:

FLIPS AND THE EXCHANGE GRAPH

A flip of the triangulation induces a mutation of the quiver:

(A) Fomin, Shapiro and Thurston proved that the cluster exchange graph is the set of (tagged) triangulations, with the edges corresponding to flips.
(B) Labardini-Fragoso dealt with the potentials associated to degenerate triangulations.

Space of stability conditions

Choose a generic potential W and set $D=D^{b}(Q, W)$.

Theorem (-, Ivan Smith)

$$
\operatorname{Stab}(D) / \operatorname{Aut}(D) \cong \operatorname{Quad}(g, d) .
$$

The space $\operatorname{Quad}(g, d)$ parameterizes triples (S, M, ϕ) where
(A) S is a Riemann surface of genus g,
(B) $M=\sum_{i=1}^{d} p_{i}$ is a reduced divisor,
(C) $\phi \in H^{0}\left(S, \omega_{S}(M)^{\otimes 2}\right)$ has simple zeroes.

Horizontal strip decomposition

A quadratic differential defines an unoriented foliation on S

$$
\langle\sqrt{\phi(p)}, X\rangle \in \mathbb{R}, \quad X \in T_{p} S
$$

For a generic point $\phi \in \operatorname{Quad}(g, d)$ the trajectories split the surface into a disjoint union of cells known as horizontal strips.

Generic differentials define quivers

This leads to a triangulation and hence a quiver, together with a central charge function.

$$
Z\left(S_{i}\right)=\int_{\gamma_{i}} \sqrt{\phi} \in \mathbb{C} .
$$

When $Z\left(S_{i}\right)$ becomes real the triangulation degenerates and undergoes a flip. The heart of the corresponding stability condition undergoes a mutation.

Cluster variety

Let (S, M) be a marked surface as above, choose a triangulation and let Q be the corresponding quiver. Set $G=\operatorname{PGL}(2, \mathbb{C})$.

Theorem (Fock and Goncharov)

The cluster variety $\mathcal{X}(Q)$ is a dense open subset of the stack of labelled G-local systems on $S \backslash M$

$$
\mathcal{X}(Q) \subset \operatorname{Loc}_{G}^{*}(S \backslash M) \xrightarrow{2^{d}: 1} \operatorname{Loc}_{G}(S \backslash M) .
$$

The labelling is a choice of a monodromy-invariant section of the associated \mathbb{P}^{1} bundle in a neighborhood of each marked point.
3. Donaldson-Thomas invariants

The ACTIVE RAYS

For each stability condition $\sigma \in \operatorname{Stab}(D)$ there is a countable collection of active rays

$$
\ell=\mathbb{R}_{>0} \exp (i \pi \phi) \subset \mathbb{C}
$$

for which there exist semistable objects of phase ϕ.

As σ varies, the active rays move and may collide and separate.

Encoding DT invariants

To each active ray is associated a formal function on \mathbb{T}

$$
\mathrm{DT}_{\ell}=\sum_{Z(\alpha) \in \ell} \mathrm{DT}_{\sigma}(\alpha) \cdot x^{\alpha} .
$$

Ignoring convergence issues, there is a corresponding automorphism

$$
S_{\ell}=\exp \left(\left\{\mathrm{DT}_{\ell},-\right\}\right) \in \operatorname{Aut}(\mathbb{T})
$$

which is the time 1 Hamiltonian flow of the function $D T_{\ell}$.

Wall-crossing formula

For any convex sector $\Delta \subset \mathbb{C}$, the clockwise product over active rays

$$
\mathcal{S}_{\Delta}=\prod_{\ell \in \Delta} S_{\ell} \in \operatorname{Aut}(\mathbb{T})
$$

remains constant as σ varies, providing no active ray crosses $\partial \Delta$.

This all makes good sense in a suitable completion $\mathbb{C}\left[\left[N_{+}\right]\right]$.

Example: the A_{2} QUIVER

Let \mathcal{A} be the abelian category of representations of the A_{2} quiver. It has 3 indecomposable representations:

$$
0 \longrightarrow S_{2} \longrightarrow E \longrightarrow S_{1} \longrightarrow 0
$$

We have $N=\mathbb{Z}^{\oplus 2}=\mathbb{Z}\left[S_{1}\right] \oplus \mathbb{Z}\left[S_{2}\right]$,

$$
\begin{gathered}
\left\langle\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)\right\rangle=m_{2} n_{1}-m_{1} n_{2}, \\
\mathbb{C}[N]=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right]=\mathbb{C}[\mathbb{T}],
\end{gathered}
$$

and the Poisson structure is

$$
\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2} .
$$

Pentagon identity

The space $\operatorname{Stab}(\mathcal{A})$ is isomorphic to $\overline{\mathbb{H}}^{2}$, and there is a single wall

The wall-crossing formula is the cluster identity

$$
\begin{gathered}
C_{(0,1)} \circ C_{(1,0)}=C_{(1,0)} \circ C_{(1,1)} \circ C_{(0,1)} . \\
C_{\alpha}: x^{\beta} \mapsto x^{\beta} \cdot\left(1+x^{\alpha}\right)^{\langle\alpha, \beta\rangle} \in \operatorname{Aut} \mathbb{C}\left[\left[x_{1}, x_{2}\right]\right] .
\end{gathered}
$$

4. Irregular connections and Stokes data

Stokes matrices and isomonodromy

The wall-crossing formula resembles an isomonodromy condition for an irregular connection with values in the infinite-dimensional group

$$
G=\operatorname{Aut}_{\{-,-\}}(\mathbb{T})
$$

of Poisson automorphisms of the torus $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{n}$.
We first explain such phenomena in the finite-dimensional case, so set

$$
G=\mathrm{GL}(n, \mathbb{C}), \quad \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})
$$

and introduce the decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\text {od }}, \quad \mathfrak{g}^{\text {od }}=\bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}, \quad \Phi=\left\{e_{i}^{*}-e_{j}^{*}\right\} \subset \mathfrak{h}^{*}
$$

A CLASS OF IRREGULAR CONNECTIONS

Consider meromorphic connections on the trivial G-bundle over the Riemann sphere $\mathbb{C P}^{1}$ of the form

$$
\nabla=d-\left(\frac{U}{z^{2}}+\frac{V}{z}\right) d z,
$$

(I) $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right) \in \mathfrak{h}$ is diagonal with distinct eigenvalues,
(ii) $V \in \mathfrak{g}^{\text {od }}$ has zeroes on the diagonal.

Then ∇ has an irregular singularity at 0 and a regular one at ∞.
The gauge equivalence class of a flat meromorphic connection with regular singularities is determined by its monodromy (Riemann-Hilbert correspondence). When irregular singularities are present one also needs to record Stokes data.

Stokes data of the connection

The Stokes rays for the connection ∇ are the rays

$$
\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)=\mathbb{R}_{>0} \cdot U(\alpha), \quad \alpha=e_{i}^{*}-e_{j}^{*}
$$

Associated to each Stokes ray ℓ is a Stokes factor

$$
\mathcal{S}_{\ell}=\exp \left(\sum_{U(\alpha) \in \ell} \epsilon_{\alpha}\right) \in \exp \left(\bigoplus_{U(\alpha) \in \ell} \mathfrak{g}_{\alpha}\right) \subset G .
$$

Canonical solution on a half-Plane

Given a non-Stokes ray r, there is a canonical flat section X_{r} of ∇ on the orthogonal half-plane \mathbb{H}_{r}, uniquely defined by the condition that

$$
X_{r}(t) \cdot e^{U / t} \rightarrow 1 \text { as } t \rightarrow 0 \text { in } \mathbb{H}_{r} .
$$

As the ray r varies, the flat section X_{r} remains unchanged until r crosses a Stokes ray, where it jumps by

$$
X_{r} \mapsto X_{r} \cdot S_{\ell} .
$$

Iso-Stokes Deformations

If we now vary the diagonal matrix U, we can deform the matrix V so that the Stokes factors remain constant. Such deformations are called iso-Stokes. More precisely:

For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise product

$$
S_{\Delta}=\prod_{\ell \in \Sigma} S_{\ell} \in G,
$$

remains constant unless a Stokes ray crosses the boundary of Σ.
Such variations are described by a system of partial differential equations giving the variation of V as a function of U.

5. Putting it together

Poisson vector fields on \mathbb{T}

Consider the group G of Poisson automorphisms of the torus

$$
\mathbb{T} \cong \operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n}
$$

and the corresponding Lie algebra \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$, where
(A) the Cartan subalgebra

$$
\mathfrak{h}=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C})
$$

consists of translation-invariant vector fields on \mathbb{T}.
(B) the subspace $\mathfrak{g}^{\text {od }}$ consists of Hamiltonian vector fields, and is the Poisson algebra of non-constant algebraic functions on \mathbb{T}

$$
\mathfrak{g}^{\mathrm{od}}=\bigoplus_{\alpha \in N^{\times}} \mathfrak{g}_{\alpha}=\bigoplus_{\alpha \in N^{\times}} \mathbb{C} \cdot x^{\alpha}
$$

DT invariants as Stokes data

It is tempting to interpret the elements

$$
S_{\ell}=\exp \left\{\sum_{Z(\alpha) \in \ell} \mathrm{DT}_{\sigma}(\alpha) \cdot x^{\alpha},-\right\} \in G
$$

as defining Stokes factors for a G-valued connection of the form

$$
\nabla=d-\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) d t
$$

for some element $F \in \mathfrak{g}^{\text {od }}$.
The wall-crossing formula is then precisely the condition that this family of connections is iso-Stokes as $\sigma \in \operatorname{Stab}(D)$ varies.

Iso-Stokes connection

Putting the canonical flat sections together should give a map

$$
X: \operatorname{Stab}(D) \times \mathbb{C}^{*} \longrightarrow G
$$

Equivalently, setting $\mathcal{M}=\mathbb{T} \times \operatorname{Stab}(D)$, we expect a map

$$
X: \mathcal{M} \times \mathbb{C}^{*} \longrightarrow \mathbb{T}
$$

The jumping behaviour means that the natural target is $\mathcal{X}(Q)$.
(I) How does this work in the cases coming from marked surfaces?
(ii) Actually two versions (like Frobenius and $t t^{*}$ in the $\mathrm{GL}(n)$ case).

Relating $\operatorname{Stab}(D)$ то $\mathcal{X}(Q)$

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

(2) Holomorphic version ('conformal limit'):

$$
\frac{\operatorname{Stab}(D)}{\operatorname{Aut}(D)} \cong \operatorname{Quad}(g, n) \xrightarrow[\text { non-canon. }]{\cong} \operatorname{Proj}(g, n) \longrightarrow \mathcal{M}_{\text {Betti }} \cong \mathcal{X}(Q)
$$

