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What’s it all about?

(1) Calculating motivic invariants of moduli spaces of coherent
sheaves on Calabi-Yau threefolds, e.g. DT invariants.

(2) Understanding the dependence of these invariants on the
stability parameters.
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1. Introduction



Motivic invariants

The word motivic refers to invariants of varieties which satisfy

�(X ) = �(Y ) + �(U),

whenever Y ⇢ X is closed and U = X \ Y .

Example: the Euler characteristic

e(X ) =
X

i

(�1)i dimC H
i(X an,C) 2 Z.

Definition
The Grothendieck group K (Var/C) is the free abelian group on the
set of isomorphism classes of varieties, modulo the scissor relations

[X ] = [Y ] + [U ],

whenever Y ⇢ X is closed and U = X \ Y .
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Curve counting invariants

Let X be a Calabi-Yau threefold. Fix � 2 H
2

(X ,Z) and n 2 Z.

Hilb(�, n) =

⇢
closed subschemes C ⇢ X of dim 6 1
satisfying [C ] = � and �(OC ) = n

�
,

DTnaive(�, n) = e(Hilb(�, n)) 2 Z.

The genuine DT invariants are a weighted Euler characteristic

DT(�, n) = e(Hilb(�, n); ⌫),

where ⌫ : Hilb(�, n)! Z is Behrend’s constructible function, and

e(Hilb(�, n); ⌫) :=
X

n2Z
n · e(⌫�1(n)) 2 Z.
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Effect of a flop on DT invariants

Consider Calabi-Yau threefolds X± related by a flop:

X
+

f
+ ��

X�

f���

Y

Theorem (Toda)
The expression

P
(�,n) DT

naive(�, n) x�yn

P
(�,n):f⇤(�)=0

DTnaive(�, n) x�yn

is the same on both sides of the flop, under the natural identification

H
2

(X
+

,Z) ⇠= H
2

(X�,Z).
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Definition of Stable pair invariants

Given � 2 H
2

(X ,Z) and n 2 Z, consider maps

f : OX ! E

of coherent sheaves on X such that

(a) E is pure of dimension 1 with ch(E ) = (0, 0, �, n),

(b) dimC supp coker(f ) = 0.

There is a fine moduli scheme Pairs(�, n) for such maps, and we put

PTnaive(�, n) = e(Pairs(�, n)) 2 Z.

Genuine stable pair invariants can be defined by weighting with the
Behrend function as before.
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DT versus stable pair invariants

Let X be a projective Calabi-Yau threefold.

Theorem (Toda)

(i) For each � 2 H
2

(X ,Z) there is an identity

X

n2Z
PTnaive(�, n)yn =

P
n2Z DT

naive(�, n)yn

P
n>0

DTnaive(0, n)yn
.

(ii) This formal power series is the Laurent expansion of a rational
function of y , invariant under y $ y�1.

These results also hold for genuine invariants.
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Overall strategy

(a) Describe the relevant phenomenon via a change of stability
condition in an abelian or triangulated category C.

(b) Write down an appropriate identity in the Hall algebra of C.
(c) Apply a ring homomorphism I : Hall(C)! Cq[K0

(C)] to obtain
an identity of generating functions.

The first two steps are completely general, but the existence of the
integration map I requires either

(i) C has global dimension 6 1: Ext>2(M ,N) = 0,

(ii) C satisfies the CY
3

condition: Exti(M ,N) ⇠= Ext3�i(N ,M)⇤.
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2. Hall algebras



Hall algebras: the basic idea

Let C be an abelian category. For definiteness take C = Coh(X ).

Introduce
(i) The stack M of objects of C.
(ii) The stack M(2) of short exact sequences in C.

0! A! B ! C ! 0

&&
ww

(A,C ) B

M⇥M (a,c) ��� M(2)

b���! M

Applying a suitable ‘cohomology theory’ to our stacks gives

m : H⇤(M)⌦ H⇤(M)! H⇤(M).
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Grothendieck groups of stacks

As ‘cohomology theory’ take a relative Grothendieck group of stacks

H⇤(M) := K (St /M) :=
�M

C · [S f��!M]
�
/ ⇠

where ⇠ denotes the scissor relations

[S f��!M] ⇠ [T f |T���!M] + [U f |U���!M],

for T ⇢ S a closed substack with complement U = S \ T .

(i) All our stacks are Artin stacks, locally of finite type over C, with
a�ne stabilizer groups.

(ii) In the definition of K (St /M), we consider only stacks S of
finite type over C.
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The Motivic Hall algebra

Unwrapping this definition, the motivic Hall algebra is

Hall
mot

(C) := K (St /M),

with product given explicitly by

[S
1

f
1��!M] ⇤ [S

2

f
2��!M] = [T b�h���!M],

where h is defined by the Cartesian square

T h���! M(2)

b���! M
??y

??y(a,c)

S
1

⇥ S
2

f
1

⇥f
2���! M⇥M

14 / 32



Fibres of the correspondence

Consider again the crucial correspondence

M(2)

b���! M
??y(a,c)

M⇥M

(ii) The fibre of b over B 2M is the Quot scheme QuotX (B).

(iii) The fibre of (a, c) over (A,C ) 2M⇥M is the quotient stack

⇥
Ext1(C ,A)/Hom(C ,A)

⇤
.
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Less realistic but more fun ...

We now discuss a much less high-powered class of Hall algebras,
where it is easy to make explicit calculations.

Basic assumption

Suppose that C is an abelian category such that

(i) Every object has only finitely many subobjects.

(ii) All groups Exti(E , F ) are finite.

Example

Let A be a finite dimensional algebra over k = Fq and take

C = mod(A)

to be the category of finite dimensional left A modules.
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Definition of finitary Hall algebras

Definition
We define the finitary Hall algebra as follows

dHall
fty

(C) = �
f : (Obj(C)/⇠

=

)! C
 
,

(f
1

⇤ f
2

)(B) =
X

A⇢B

f
1

(A) · f
2

(B/A).

This is an associative, usually non-commutative, algebra.

We also define a subalgebra

Hall
fty

(C) ⇢dHall
fty

(C),

consisting of functions with finite support.
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Example: category of vector spaces

Let C be the category of finite dim. vector spaces over Fq. Let

�n 2 Hall
fty

(C)
be the characteristic function of vector spaces of dimension n.

�n ⇤ �m = |Grn,n+m(Fq)| · �n+m,

|Grn,n+m(Fq)| = (qn+m � 1) · · · (qm+1 � 1)

(qn � 1) · · · (q � 1)
=

✓
n +m

n

◆

q

.

It follows that there is an isomorphism of algebras

I : Hall
fty

(C)! C[x ], I(�n) = xn

(qn � 1) · · · (q � 1)
.
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The Quantum dilogarithm

There is a distinguished element �C 2dHall
fty

(C) satisfying

�C(E ) = 1 for all E 2 C.

The isomorphism I maps this element �C =
P

�n to the series

�q(x) =
X

n>0

xn

(qn � 1) · · · (q � 1)
2 C[[x ]].

This series is known as the quantum dilogarithm, because as q ! 1

log�q(x) =
1

(q � 1)
·
X

n>1

xn

n2
+ O(1).
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A sample Hall algebra identity

Given a fixed object P 2 C define elements of dHall
fty

(C) by
�PC (E ) = |HomC(P ,E )|, QuotPC (E ) = |Hom⇣

C (P ,E )|,
where Hom⇣

C (P ,E ) ⇢ HomC(P ,E ) is the subset of surjective maps.

Lemma (Reineke)

There is an identity �PC = QuotPC ⇤ �C.

Proof.
Evaluating on an object E 2 C gives

|HomC(P ,E )| =
X

A⇢E

|Hom⇣
C (P ,A)| · 1,

which holds because every map factors uniquely via its image.

20 / 32



Geometric version of the identity

Let us consider the case C = Coh(X ) and P = OX . Define

(a) The stack MO parameterizing sheaves E 2 Coh(X ) equipped
with a section s : OX ! E .

(b) The scheme Hilb parameterizing sheaves E 2 Coh(X ) equipped
with a surjective section s : OX ⇣ E .

Theorem

There is an identity in dHall
mot

(C)

[MO f��!M] = [Hilb
g��!M] ⇤ [M id��!M],

where f and g are the obvious forgetful maps.
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Start of proof of the geometric case

The product on the RHS is defined by the Cartesian square

T h���! M(2)

b���! M
??y

??y(a
1

,a
2

)

Hilb⇥M g⇥id���! M⇥M
The points of the stack T over a scheme S are diagrams

OS⇥X

�

  

�
✏✏

0 // A ↵
// B

�
// C // 0

of S-flat sheaves on S ⇥ X with � surjective.
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3. Integration map



Definition of the Euler form

Let C be an abelian category. From now on we assume

(a) C is linear over a field k ,

(b) C is Ext-finite.

Example
We can take C = Coh(X ) with X smooth and projective.

Definition
The Euler form is the bilinear form

�(�,�) : K
0

(C)⇥ K
0

(C)! Z

�(E , F ) =
X

i2Z
(�1)i dimk Ext

i(E , F ).
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Definition of the charge lattice

It is often convenient to fix a group homomorphism

ch : K
0

(C) �! N

with N ⇠= Z�n a free abelian group of finite rank.

Example
When C = Coh(X ), with X smooth and projective, we can take

ch : K
0

(C)! N = im(ch) ⇢ H⇤(X ,Q),

to be the Chern character.
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We always assume:

(i) The Euler form descends to a bilinear form

(�,�) : N ⇥ N ! Z.

We also consider the skew-symmetrization of this form

h�,�i : N ⇥ N ! Z.

(ii) The character ch(E ) is locally-constant in families. This gives a
decomposition

M =
G

↵2N
M↵,

into open-closed substacks, and induces a grading

Hall
mot

(C) =
M

↵2N
K (St /M↵).
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Definition of the quantum torus

Define a non-commutative algebra over the field C(t) by

Ct [N ] =
M

↵2N
C(t) · x↵ x↵ ⇤ x� = t�(�,↵) · x↵+�.

This is a non-commutative deformation of the ring

C[N ] ⇠= C[x±1

1

, · · · , x±1

n ],

which is the co-ordinate ring of the algebraic torus

T = HomZ(N ,C⇤) ⇠= (C⇤)n.

We use the notation q = t2.
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The virtual Poincaré invariant

There is an algebra homomorphism

�t : K (St /C)! Q(t),

uniquely defined by the following two properties:

(i) If V is a smooth, projective variety then

�t(V ) =
X

dimC H
i(V an,C) · (�t)i 2 Z[t].

(ii) If V is a variety with an action of GL(n) then

�t([V /GL(n)]) = �t(V )/�t(GL(n)).

Note that: �t(GL(n)) = q(
n
2

) · (q � 1) · (q2 � 1) · · · (qn � 1).
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Integration map for curves

Theorem (Joyce)

When C = Coh(X ), with X a curve, there is an algebra map

I : Hall
mot

(C)! Ct2[N ], I�[S !M↵]
�
= �t(S) · x↵.

This works because

dimC Ext
1(C ,A)� dimC Hom(C ,A) = ��(C ,A),

so the fibres of the crucial map

(a, c) : M(2) !M⇥M

over the substack M↵ ⇥M� have Poincaré invariant q�(�,↵).
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Integration map: CY3 case

(a) Kontsevich and Soibelman also construct an algebra map

I : Hall
mot

(C)! Ct [N ]

in the case that X is a Calabi-Yau threefold. There are still some
technical problems, e.g. the existence of orientation data.

(b) It is harder to describe I in this case, but if S is a scheme

lim
t!±1

I�[S f��!M↵]
�
=

(
e(S) · x↵ if t ! +1,

e(S ; f ⇤(⌫)) · x↵ if t ! �1.

The integration map I therefore turns identities in the motivic Hall
algebra into identities involving (naive or genuine) DT invariants.
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Semi-classical limit: the Poisson torus

(a) The semi-classical limit of the algebra Ct [N ] at t = 1 is the
commutative algebra C[N ] equipped with the Poisson bracket

{x↵, x�} = lim
t!1

x↵ ⇤ x� � x� ⇤ x↵
t � 1

= h↵, �i · x↵+�.

(b) One can use the formulae from the last slide to define semi-
classical versions of the map I at t = ±1 that are maps of
Poisson algebras. This works because

(ext1(C ,A)�hom(C ,A))�(ext1(A,C )�hom(A,C )) = �(A,C ).

These Poisson integration maps su�ce for applications to classical
(i.e. non-refined) DT invariants.
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Other applications of wall-crossing

There have been several other important applications of the same
technology. Some, marked (⇤), are still work in progress:

(a) Caldero–Chapoton formula in cluster theory.

(b) Oblomkov–Shende conjecture relating DT invariants of plane
curve singularities to HOMFLY polynomials.

(c) Betti numbers of moduli of sheaves on ruled surfaces.

(d) (⇤) Crepant resolution conjecture.

(e) (⇤) Hausel–Letellier–Rodriguez-Villegas formula on Hodge
polynomials of character varieties.
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