STABILITY AND WALL-CROSSING

Tom Bridgeland

University of Sheffield

1. Hearts and tilting

Definition of a Torsion Pair

Let \mathcal{A} be an abelian category.
A torsion pair $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ is a pair of full subcategories such that:
(A) $\operatorname{Hom}(T, F)=0$ for $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
(B) for every object $E \in \mathcal{A}$ there is a short exact sequence

$$
0 \longrightarrow T \longrightarrow E \longrightarrow F \longrightarrow 0
$$

for some pair of objects $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

Definition of a heart

Let D be a triangulated category.
A heart $\mathcal{A} \subset D$ is a full subcategory such that:
(A) $\operatorname{Hom}(A[j], B[k])=0$ for all $A, B \in \mathcal{A}$ and $j>k$.
(B) for every object $E \in D$ there is a finite filtration

$$
0=E_{m} \rightarrow E_{m+1} \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_{n}=E
$$

with factors $F_{j}=\operatorname{Cone}\left(E_{j-1} \rightarrow E_{j}\right) \in \mathcal{A}[-j]$.

Properties of hearts

(I) It would be more standard to say that $\mathcal{A} \subset D$ is the heart of a bounded t -structure on D. But any such t -structure is determined by its heart.
(iI) The basic example is $\mathcal{A} \subset D^{b}(\mathcal{A})$.
(III) In analogy with that case we define $H_{\mathcal{A}}^{j}(E):=F_{j}[j] \in \mathcal{A}$.
(IV) \mathcal{A} is automatically an abelian category.
(v) The short exact sequences in \mathcal{A} are precisely the triangles in D all of whose terms lie in \mathcal{A}.
(vi) The inclusion functor gives an identification $K_{0}(\mathcal{A}) \cong K_{0}(D)$.

The tilt of A heart at a torsion pair

Suppose $\mathcal{A} \subset D$ is a heart, and $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ a torsion pair.
We can define a new, tilted heart $\mathcal{A}^{\sharp} \subset D$ as in the picture.

An object $E \in D$ lies in $\mathcal{A}^{\sharp} \subset D$ precisely if

$$
H_{\mathcal{A}}^{-1}(E) \in \mathcal{F}, \quad H_{\mathcal{A}}^{0}(E) \in \mathcal{T}, \quad H_{\mathcal{A}}^{i}(E)=0 \quad \text { otherwise. }
$$

Example of tilting: Threefold flop

Stable pairs as quotients in a tilt

Consider tilting $\mathcal{A}=\operatorname{Coh}(X) \subset D(X)$ with respect to the torsion pair

$$
\begin{gathered}
\mathcal{T}=\left\{E \in \operatorname{Coh}(X): \operatorname{dim}_{\mathbb{C}} \operatorname{supp}(E)=0\right\} \\
\mathcal{F}=\left\{E \in \operatorname{Coh}(X): \operatorname{Hom}_{X}\left(\mathcal{O}_{x}, E\right)=0 \text { for all } x \in X\right\}
\end{gathered}
$$

Note that $\mathcal{O}_{x} \in \mathcal{F} \subset \mathcal{A}^{\sharp}$. We claim that

$$
\operatorname{Pairs}(\beta, n)=\left\{\begin{array}{l}
\text { quotients } \mathcal{O}_{x} \rightarrow E \text { in } \mathcal{A}^{\sharp} \\
\text { with } \operatorname{ch}(E)=(0,0, \beta, n)
\end{array}\right\} .
$$

Proof of the claim about stable pairs

Given a short exact sequence in the category \mathcal{A}^{\sharp}

$$
0 \longrightarrow J \longrightarrow \mathcal{O}_{x} \xrightarrow{f} E \longrightarrow 0
$$

we take cohomology with respect to the standard heart $\mathcal{A} \subset D$.

$$
0 \rightarrow H_{\mathcal{A}}^{0}(J) \rightarrow \mathcal{O}_{x} \xrightarrow{f} H_{\mathcal{A}}^{0}(E) \rightarrow H_{\mathcal{A}}^{1}(J) \rightarrow 0 \rightarrow H_{\mathcal{A}}^{1}(E) \rightarrow 0 .
$$

It follows that $E \in \mathcal{A} \cap \mathcal{A}^{\sharp}=\mathcal{F}$ and $\operatorname{coker}(f)=H_{\mathcal{A}}^{1}(J) \in \mathcal{T}$.

LAST TIME ...

(A) Hall algebras: $\mathrm{Hall}_{\mathrm{fty}}(\mathcal{C}), \mathrm{Hall}_{\operatorname{mot}}(\mathcal{C})$.

$$
\mathcal{M} \times \mathcal{M} \stackrel{(a, c)}{\leftrightarrows} \mathcal{M}^{(2)} \xrightarrow{b} \mathcal{M}
$$

(B) Character map ch: $K_{0}(\mathcal{C}) \rightarrow N \cong \mathbb{Z}^{\oplus n}$.
(C) Quantum torus: $\mathbb{C}_{q}[N]=\bigoplus_{\alpha \in N} \mathbb{C}(t) \cdot x^{\alpha}$ with

$$
x^{\alpha} * x^{\gamma}=q^{-\frac{1}{2}(\gamma, \alpha)} \cdot x^{\alpha+\gamma} .
$$

(D) Integration map: $\mathcal{I}: \operatorname{Hall}(\mathcal{C}) \rightarrow \mathbb{C}_{q}[N]$.

Positive cones and completions

Choosing a basis $\left(e_{1}, \cdots, e_{n}\right)$ for the group N gives an identification

$$
\mathbb{C}[N]=\mathbb{C}\left[x_{1}^{ \pm 1}, \cdots, x_{n}^{ \pm 1}\right] .
$$

We often need to use the positive cone

$$
N_{+}=\left\{\sum_{i=1}^{n} \lambda_{i} e_{i}: \lambda_{i} \geqslant 0\right\} \subset N
$$

and the associated completion

$$
\mathbb{C}\left[\left[N_{+}\right]\right] \cong \mathbb{C}\left[\left[x_{1}, \cdots, x_{n}\right]\right] .
$$

We can similarly define the completed quantum torus $\mathbb{C}_{q}\left[\left[N_{+}\right]\right]$.

Sketch proof of the DT/PT identity

(I) Reineke's identity: $\delta_{\mathcal{A}}^{\mathcal{O}}=\operatorname{Quot}_{\mathcal{A}}^{\mathcal{O}} * \delta_{\mathcal{A}}$ and $\delta_{\mathcal{A}^{\sharp}}^{\mathcal{O}}=$ Quot $_{\mathcal{A}^{\sharp}}^{\mathcal{O}} * \delta_{\mathcal{A}^{\sharp}}$.
(II) Torsion pair identities: $\delta_{\mathcal{A}}=\delta_{\mathcal{T}} * \delta_{\mathcal{F}}$ and $\delta_{\mathcal{A}^{\sharp}}=\delta_{\mathcal{F}} * \delta_{\mathcal{T}[-1]}$.

(III) Torsion pair identities with sections:

$$
\delta_{\mathcal{A}}^{\mathcal{O}}=\delta_{\mathcal{T}}^{\mathcal{O}} * \delta_{\mathcal{F}}^{\mathcal{O}} \text { and } \delta_{\mathcal{A}^{\sharp}}^{\mathcal{O}}=\delta_{\mathcal{F}}^{\mathcal{O}} * \delta_{\mathcal{T}[-1]}^{\mathcal{O}} .
$$

(IV) All maps $\mathcal{O}_{X} \rightarrow T[-1]$ are zero, so $\delta_{\mathcal{T}[-1]}^{\mathcal{O}}=\delta_{\mathcal{T}[-1]}$.

Conclusion of The sketch proof

(v) Reineke's identity again: $\delta_{\mathcal{T}}^{\mathcal{O}}=\operatorname{Quot}_{\mathcal{T}}^{\mathcal{O}} * \delta_{\mathcal{T}}$.
(vi) Putting it all together: $\operatorname{Quot}_{\mathcal{A}}^{\mathcal{O}} * \delta_{\mathcal{T}}=\operatorname{Quot}_{\mathcal{T}}^{\mathcal{O}} * \delta_{T} *$ Quot $_{\mathcal{A}^{\sharp}}^{\mathcal{O}}$.
(VII) Restrict to sheaves supported in dimension $\leqslant 1$. The Euler form is then trivial so the quantum torus is commutative. Thus

$$
\mathcal{I}\left(\text { Quot }_{\mathcal{A}}^{\mathcal{O}}\right)=\mathcal{I}\left(\text { Quot }_{\mathcal{T}}^{\mathcal{O}}\right) * \mathcal{I}\left(\operatorname{Quot}_{\mathcal{A}^{\sharp}}^{\mathcal{O}}\right) .
$$

(viii) Setting $t= \pm 1$ then gives the required identity

$$
\sum_{\beta, n} \operatorname{DT}(\beta, n) x^{\beta} y^{n}=\sum_{n} \operatorname{DT}(0, n) y^{n} \cdot \sum_{\beta, n} \operatorname{PT}(\beta, n) x^{\beta} y^{n} .
$$

2. Generalized DT invariants

Moduli spaces of framed sheaves

Let X be a Calabi-Yau threefold.
So far we have been discussing moduli spaces of objects in the category $D^{b} \operatorname{Coh}(X)$ equipped with a kind of framing.

Example

The Hilbert scheme parameterizes sheaves $E \in \operatorname{Coh}(X)$ equipped with a surjective map $f: \mathcal{O}_{X} \rightarrow E$.
(I) This framing data eliminates all stabilizer groups, so the moduli space is a scheme, and therefore has a well-defined Euler characteristic.
(II) In this context wall-crossing can be achieved by varying the t-structure on the derived category $D^{b} \operatorname{Coh}(X)$.

What about unframed DT invariants?

Fix a polarization of X and a class $\alpha \in N$, and consider the stack

$$
\mathcal{M}^{s s}(\alpha)=\{E \in \operatorname{Coh}(X): E \text { is semistable with } \operatorname{ch}(E)=\alpha\} .
$$

(A) In the case when α is primitive, and the polarization is general, this stack is a \mathbb{C}^{*}-gerbe over its coarse moduli space $M^{s s}(\alpha)$, and we set

$$
\mathrm{DT}^{\text {naive }}(\alpha)=e\left(M^{s 5}(\alpha)\right) \in \mathbb{Z}
$$

Genuine DT invariants are defined using virtual cycles or by a weighted Euler characteristic as before.
(B) In the general case, Joyce figured out how to define invariants

$$
\mathrm{DT}^{\text {naive }}(\alpha) \in \mathbb{Q}
$$

with good properties, and showed that they satisfy wall-crossing formulae as the polarization is varied.

Quantum and classical DT invariants

(A) The generating function for the quantum DT invariants is

$$
\mathrm{q}-\mathrm{DT} T_{\mu}=\mathcal{I}\left(\left[\mathcal{M}^{s s}(\mu) \subset \mathcal{M}\right]\right) \in \mathbb{C}_{q}\left[\left[N_{+}\right]\right] .
$$

(B) The generating function for the classical DT invariants is

$$
\mathrm{DT}_{\mu}=\lim _{q \rightarrow 1}(q-1) \cdot \log \mathrm{q}-\mathrm{DT}_{\mu} \in \mathbb{C}\left[\left[N_{+}\right]\right] .
$$

A difficult result of Joyce shows that this limit exists in general.
(c) The DT invariants are also encoded by the Poisson automorphism

$$
\mathcal{S}_{\mu}=\exp \left\{\mathrm{DT}_{\mu},-\right\} \in \operatorname{Aut} \mathbb{C}\left[\left[N_{+}\right]\right] .
$$

This coincides with the $q=1$ limit of conjugation by $q-D T_{\mu}$.

Example: A Single Rigid stable bundle

Suppose there is a single rigid stable bundle E of slope μ. Then

$$
\mathcal{M}^{s 5}(\mu)=\left\{E^{\oplus n}: n \geqslant 0\right\}=\bigsqcup_{n \geqslant 0} \operatorname{BGL}(n, \mathbb{C}) .
$$

Set $\alpha=\operatorname{ch}(E) \in N$. Applying the integration map we calculate
(A) The quantum DT generating function is

$$
\mathrm{q}^{-D T_{\mu}}=\sum_{n \geqslant 0} \frac{x^{n \alpha}}{\left(q^{n}-1\right) \cdots(q-1)} \in \mathbb{C}_{q}\left[\left[N_{+}\right]\right] .
$$

We recognise the quantum dilogarithm $\Phi_{q}\left(x^{\alpha}\right)$.

A single stable bundle continued

(B) The classical DT generating function is

$$
\mathrm{DT}_{\mu}=\lim _{q \rightarrow 1}(q-1) \cdot \log \Phi_{q}\left(x^{\alpha}\right)=\sum_{n \geqslant 1} \frac{x^{n \alpha}}{n^{2}}
$$

and we conclude that $\operatorname{DT}(n \alpha)=1 / n^{2}$.
(C) The Poisson automorphism $\mathcal{S}_{\mu} \in$ Aut $\mathbb{C}\left[\left[N_{+}\right]\right]$is

$$
\mathcal{S}_{\mu}\left(x^{\beta}\right)=\exp \left\{\sum_{n \geqslant 1} \frac{x^{n \alpha}}{n^{2}},-\right\}\left(x^{\beta}\right)=x^{\beta} \cdot\left(1+x^{\alpha}\right)^{\langle\alpha, \beta\rangle}
$$

where the RHS should be expanded as a power series.
3. Stability conditions

Stability conditions

Let \mathcal{A} be an abelian category.

DEFinition

A stability condition on \mathcal{A} is a map of groups $Z: K_{0}(\mathcal{A}) \rightarrow \mathbb{C}$ such that

$$
0 \neq E \in \mathcal{A} \Longrightarrow Z(E) \in \overline{\mathbb{H}}
$$

where $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{R}_{<0}$ is the semi-closed upper half-plane.
$\overline{\mathbb{H}}$

Phases and stability

DEfinitions

(A) The phase of a nonzero object $E \in \mathcal{A}$ is

$$
\phi(E)=\frac{1}{\pi} \arg Z(E) \in(0,1]
$$

(B) An object $E \in \mathcal{A}$ is Z-semistable if

$$
0 \neq A \subset E \Longrightarrow \phi(A) \leqslant \phi(E)
$$

Harder-Narasimhan filtrations

Definition

A stability condition Z has the Harder-Narasimhan property if every object $E \in \mathcal{A}$ has a filtration

$$
0=E_{0} \subset E_{1} \subset \cdots \subset E_{n} \subset E
$$

such that each factor $F_{i}=E_{i} / E_{i-1}$ is Z-semistable and

$$
\phi\left(F_{1}\right)>\cdots>\phi\left(F_{n}\right) .
$$

(I) If \mathcal{A} has finite length this condition is automatic.
(iI) When they exist, HN filtrations are necessarily unique, because the usual argument shows that if F_{1}, F_{2} are Z-semistable then

$$
\phi\left(F_{1}\right)>\phi\left(F_{2}\right) \Longrightarrow \operatorname{Hom}\left(F_{1}, F_{2}\right)=0
$$

Another Reineke identity

Let \mathcal{C} be a finitary abelian category equipped with a stability condition Z having the Harder-Narasimhan property. Let

$$
\delta^{\mathrm{ss}}(\phi) \in \widehat{\mathrm{Hall}}_{\mathrm{fty}}(\mathcal{A})
$$

be the characteristic function of Z-semistable objects of phase $\phi \in \mathbb{R}$.

Lemma (Reineke)

There is an identity $\delta_{\mathcal{C}}=\prod_{\phi \in \mathbb{R}}^{\rightarrow} \delta^{\text {ss }}(\phi)$.

PROOF.

The product is taken in descending order of phase. The result follows from existence and uniqueness of the HN filtration.

WALL-CROSSING FORMULA

(A) The LHS of the above identity is independent of Z so given two stability conditions we get a wall-crossing formula

$$
\overrightarrow{\prod_{\phi \in \mathbb{R}}} \delta^{\mathrm{ss}}\left(\phi, Z_{1}\right)=\overrightarrow{\prod_{\phi \in \mathbb{R}}} \delta^{\mathrm{ss}}\left(\phi, Z_{2}\right)
$$

(B) If \mathcal{C} has global dimension $\leqslant 1$ we can apply the integration map \mathcal{I} to get an identity in the ring $\mathbb{C}_{q}\left[\left[N_{+}\right]\right]$.
(c) We can then take the $q=1$ limit and obtain an identity in the group of automorphisms of the Poisson algebra $\mathbb{C}\left[\left[N^{+}\right]\right]$.

ExAMPLE: THE A_{2} QUIVER

Let \mathcal{C} be the abelian category of representations of the A_{2} quiver. It has 3 indecomposable representations:

$$
0 \longrightarrow S_{2} \longrightarrow E \longrightarrow S_{1} \longrightarrow 0
$$

We have $N=K_{0}(\mathcal{A})=\mathbb{Z}^{\oplus 2}=\mathbb{Z}\left[S_{1}\right] \oplus \mathbb{Z}\left[S_{2}\right]$,

$$
\left\langle\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right)\right\rangle=m_{2} n_{1}-m_{1} n_{2},
$$

and there are isomorphisms

$$
\begin{aligned}
\mathbb{C}_{q}\left[\left[N_{+}\right]\right] & =\mathbb{C}\left\langle\left\langle x_{1}, x_{2}\right\rangle\right\rangle /\left(x_{2} * x_{1}-q \cdot x_{1} * x_{2}\right) \\
\mathbb{C}\left[\left[N_{+}\right]\right] & =\mathbb{C}\left[\left[x_{1}, x_{2}\right]\right], \quad\left\{x_{1}, x_{2}\right\}=x_{1} \cdot x_{2} .
\end{aligned}
$$

Quantum pentagon identity

The space $\operatorname{Stab}(\mathcal{A})$ is isomorphic to $\overline{\mathbb{H}}^{2}$ and there is a single wall

$$
\mathcal{W}=\left\{Z \in \operatorname{Stab}(\mathcal{A}): \operatorname{Im} Z\left(S_{2}\right) / Z\left(S_{1}\right) \in \mathbb{R}_{>0}\right\}
$$

where the object E is strictly semistable.

The wall-crossing formula in $\mathbb{C}_{q}\left[\left[N_{+}\right]\right]$becomes the pentagon identity $\Phi_{q}\left(x_{2}\right) * \Phi_{q}\left(x_{1}\right)=\Phi_{q}\left(x_{1}\right) * \Phi_{q}\left(\sqrt{q} \cdot x_{1} * x_{2}\right) * \Phi_{q}\left(x_{2}\right)$.

Semi-classical version

The semi-classical version of the wall-crossing formula is the cluster identity

$$
\begin{gathered}
C_{(0,1)} \circ C_{(1,0)}=C_{(1,0)} \circ C_{(1,1)} \circ C_{(0,1)} . \\
C_{\alpha}: x^{\beta} \mapsto x^{\beta} \cdot\left(1+x^{\alpha}\right)^{\langle\alpha, \beta\rangle} \in \operatorname{Aut} \mathbb{C}\left[\left[x_{1}, x_{2}\right]\right] .
\end{gathered}
$$

It can be viewed in the group of birational automorphisms of $\left(\mathbb{C}^{*}\right)^{2}$.

4. Stability in triangulated categories

Stability in triangulated categories

Let D be a triangulated category.

DEFINITION

A stability condition on D is a pair (Z, \mathcal{A}) where
(I) $\mathcal{A} \subset D$ is a heart,
(ii) $Z: K_{0}(\mathcal{A}) \rightarrow \mathbb{C}$ is a group homomorphism,
such that Z defines a stability condition on \mathcal{A} with the HN property.
An object $E \in D$ is defined to be semistable if $E=A[n]$ for some Z-semistable $A \in \mathcal{A}$. The phase of E is then $\phi(E):=\phi(A)+n$.

Space of stability conditions

We consider only stability conditions satisfying the extra conditions
(A) The central charge $Z: K_{0}(D) \rightarrow \mathbb{C}$ factors via our fixed map

$$
\text { ch: } K_{0}(D) \longrightarrow N \cong \mathbb{Z}^{\oplus n} .
$$

(B) There is a $K>0$ such that for any semistable object $E \in D$

$$
Z(E) \geqslant K \cdot\|\operatorname{ch}(E)\| .
$$

The set $\operatorname{Stab}(D)$ of such stability conditions has a natural topology.

Theorem

Sending a stability condition to its central charge defines a local homeomorphism

$$
\operatorname{Stab}(D) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}) \cong \mathbb{C}^{n}
$$

In particular, $\operatorname{Stab}(D)$ is a complex manifold.

