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1. Hearts and tilting



Definition of a Torsion pair

Let A be an abelian category.

A torsion pair (T ,F) ⇢ A is a pair of full subcategories such that:

(a) Hom(T , F ) = 0 for T 2 T and F 2 F .

(b) for every object E 2 A there is a short exact sequence

0 �! T �! E �! F �! 0

for some pair of objects T 2 T and F 2 F .

T F

A
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Definition of a heart

Let D be a triangulated category.

A heart A ⇢ D is a full subcategory such that:

(a) Hom(A[j ],B[k]) = 0 for all A,B 2 A and j > k .

(b) for every object E 2 D there is a finite filtration

0 = E
m

! E
m+1

! · · ·! E
n�1

! E
n

= E

with factors F
j

= Cone(E
j�1

! E
j

) 2 A[�j ].

· · · · · ·A[1] A A[�1]

D
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Properties of hearts

(i) It would be more standard to say that A ⇢ D is the heart of a
bounded t-structure on D. But any such t-structure is
determined by its heart.

(ii) The basic example is A ⇢ Db(A).

(iii) In analogy with that case we define H j

A(E ) := F
j

[j ] 2 A.

(iv) A is automatically an abelian category.

(v) The short exact sequences in A are precisely the triangles in D
all of whose terms lie in A.

(vi) The inclusion functor gives an identification K
0

(A) ⇠= K
0

(D).
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The tilt of a heart at a torsion pair

Suppose A ⇢ D is a heart, and (T ,F) ⇢ A a torsion pair.

We can define a new, tilted heart A] ⇢ D as in the picture.

F [1] T FT [1] T [�1] · · ·· · ·

A

A]

An object E 2 D lies in A] ⇢ D precisely if

H�1

A (E ) 2 F , H0

A(E ) 2 T , H i

A(E ) = 0 otherwise.
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Example of tilting: threefold flop

F
+

[1]

T
+

F
+

· · ·· · · Db

(X
+

)

Coh(X
+

)

Per

+

(X
+

/Y )

F�[1] T� F�

⇠
=

· · ·· · · Db

(X�)

⇠
=

Per

�
(X�/Y )

Coh(X�)

X�

Y

X
+

F
+

= hO
C

+

(�i)i
i>1

, F� = hO
C�(�i)ii>2

.
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Stable pairs as quotients in a tilt

Consider tilting A = Coh(X ) ⇢ D(X ) with respect to the torsion pair

T = {E 2 Coh(X ) : dimC supp(E ) = 0},
F = {E 2 Coh(X ) : Hom

X

(O
x

,E ) = 0 for all x 2 X}.

T F T [�1] · · ·· · ·

A]

A

Note that O
X

2 F ⇢ A]. We claim that

Pairs(�, n) =

⇢
quotients O

X

⇣ E in A]

with ch(E ) = (0, 0, �, n)

�
.
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Proof of the claim about stable pairs

Given a short exact sequence in the category A]

0 �! J �! O
X

f��! E �! 0,

we take cohomology with respect to the standard heart A ⇢ D.

0! H0

A(J)! O
X

f��! H0

A(E )! H1

A(J)! 0! H1

A(E )! 0.

T F T [�1] · · ·· · ·

A]

A

It follows that E 2 A \A] = F and coker(f ) = H1

A(J) 2 T .
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Last time ...

(a) Hall algebras: Hall
fty

(C), Hall
mot

(C).

0! A! B ! C ! 0

&&
ww

(A,C ) B

M⇥M (a,c) ��� M(2)

b���! M

(b) Character map ch : K
0

(C)! N ⇠= Z�n.

(c) Quantum torus: C
q

[N ] =
L

↵2N C(t) · x↵ with

x↵ ⇤ x� = q� 1

2

(�,↵) · x↵+�.

(d) Integration map: I : Hall(C)! C
q

[N ].
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Positive cones and completions

Choosing a basis (e
1

, · · · , e
n

) for the group N gives an identification

C[N ] = C[x±1

1

, · · · , x±1

n

].

We often need to use the positive cone

N
+

=
� nX

i=1

�
i

e
i

: �
i

> 0
 ⇢ N ,

and the associated completion

C[[N
+

]] ⇠= C[[x
1

, · · · , x
n

]].

We can similarly define the completed quantum torus C
q

[[N
+

]].
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Sketch proof of the DT/PT identity

(i) Reineke’s identity: �OA = QuotOA ⇤�A and �OA] = QuotOA] ⇤�A] .

(ii) Torsion pair identities: �A = �T ⇤ �F and �A] = �F ⇤ �T [�1]

.

T F T [�1] · · ·· · ·

A]

A

(iii) Torsion pair identities with sections:

�OA = �OT ⇤ �OF and �OA] = �OF ⇤ �OT [�1]

.

(iv) All maps O
X

! T [�1] are zero, so �OT [�1]

= �T [�1]

.
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Conclusion of the sketch proof

(v) Reineke’s identity again: �OT = QuotOT ⇤�T .
(vi) Putting it all together: QuotOA ⇤�T = QuotOT ⇤�T ⇤ QuotOA] .

(vii) Restrict to sheaves supported in dimension 6 1. The Euler form
is then trivial so the quantum torus is commutative. Thus

I(QuotOA) = I(QuotOT ) ⇤ I(QuotOA]).

(viii) Setting t = ±1 then gives the required identity

X

�,n

DT(�, n)x�yn =
X

n

DT(0, n)yn ·
X

�,n

PT(�, n)x�yn.
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2. Generalized DT invariants



Moduli spaces of framed sheaves

Let X be a Calabi-Yau threefold.

So far we have been discussing moduli spaces of objects in the
category Db Coh(X ) equipped with a kind of framing.

Example
The Hilbert scheme parameterizes sheaves E 2 Coh(X ) equipped
with a surjective map f : O

X

⇣ E .

(i) This framing data eliminates all stabilizer groups, so the moduli
space is a scheme, and therefore has a well-defined Euler
characteristic.

(ii) In this context wall-crossing can be achieved by varying the
t-structure on the derived category Db Coh(X ).
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What about unframed DT invariants?

Fix a polarization of X and a class ↵ 2 N , and consider the stack

Mss(↵) =
�
E 2 Coh(X ) : E is semistable with ch(E ) = ↵

 
.

(a) In the case when ↵ is primitive, and the polarization is general,
this stack is a C⇤-gerbe over its coarse moduli space M ss(↵),
and we set

DTnaive(↵) = e(M ss(↵)) 2 Z.
Genuine DT invariants are defined using virtual cycles or by a
weighted Euler characteristic as before.

(b) In the general case, Joyce figured out how to define invariants

DTnaive(↵) 2 Q

with good properties, and showed that they satisfy wall-crossing
formulae as the polarization is varied.
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Quantum and classical DT invariants

(a) The generating function for the quantum DT invariants is

q-DTµ = I�[Mss(µ) ⇢M]
� 2 C

q

[[N
+

]].

(b) The generating function for the classical DT invariants is

DTµ = lim
q!1

(q � 1) · log q-DTµ 2 C[[N
+

]].

A di�cult result of Joyce shows that this limit exists in general.

(c) The DT invariants are also encoded by the Poisson
automorphism

Sµ = exp
�
DTµ,�

 2 AutC[[N
+

]].

This coincides with the q = 1 limit of conjugation by q-DTµ.
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Example: a single rigid stable bundle

Suppose there is a single rigid stable bundle E of slope µ. Then

Mss(µ) = {E�n : n > 0} =
G

n>0

BGL(n,C).

Set ↵ = ch(E ) 2 N . Applying the integration map we calculate

(a) The quantum DT generating function is

q-DTµ =
X

n>0

xn↵

(qn � 1) · · · (q � 1)
2 C

q

[[N
+

]].

We recognise the quantum dilogarithm �
q

(x↵).
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A single stable bundle continued

(b) The classical DT generating function is

DTµ = lim
q!1

(q � 1) · log�
q

(x↵) =
X

n>1

xn↵

n2

and we conclude that DT(n↵) = 1/n2.

(c) The Poisson automorphism Sµ 2 AutC[[N
+

]] is

Sµ(x
�) = exp

⇢X

n>1

xn↵

n2
,�

�
(x�) = x� · (1 + x↵)h↵,�i

where the RHS should be expanded as a power series.
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3. Stability conditions



Stability conditions

Let A be an abelian category.

Definition
A stability condition on A is a map of groups Z : K

0

(A)! C such
that

0 6= E 2 A =) Z (E ) 2 H̄,

where H̄ = H [ R<0

is the semi-closed upper half-plane.

H̄
Z (M

1

)

Z (M
2

)
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Phases and stability

Definitions
(a) The phase of a nonzero object E 2 A is

�(E ) =
1

⇡
arg Z (E ) 2 (0, 1],

(b) An object E 2 A is Z -semistable if

0 6= A ⇢ E =) �(A) 6 �(E ).

Z (A)

Z (E )

�(A)
�(E )
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Harder-Narasimhan filtrations

Definition
A stability condition Z has the Harder-Narasimhan property if every
object E 2 A has a filtration

0 = E
0

⇢ E
1

⇢ · · · ⇢ E
n

⇢ E

such that each factor F
i

= E
i

/E
i�1

is Z -semistable and

�(F
1

) > · · · > �(F
n

).

(i) If A has finite length this condition is automatic.

(ii) When they exist, HN filtrations are necessarily unique, because
the usual argument shows that if F

1

, F
2

are Z -semistable then

�(F
1

) > �(F
2

) =) Hom(F
1

, F
2

) = 0.
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Another Reineke identity

Let C be a finitary abelian category equipped with a stability
condition Z having the Harder-Narasimhan property. Let

�ss(�) 2dHall
fty

(A)

be the characteristic function of Z -semistable objects of phase � 2 R.

Lemma (Reineke)

There is an identity �C =
Q!

�2R �
ss(�).

Proof.
The product is taken in descending order of phase. The result follows
from existence and uniqueness of the HN filtration.
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Wall-crossing formula

(a) The LHS of the above identity is independent of Z so given two
stability conditions we get a wall-crossing formula

�!Y

�2R
�ss(�,Z

1

) =
�!Y

�2R
�ss(�,Z

2

).

(b) If C has global dimension 6 1 we can apply the integration map
I to get an identity in the ring C

q

[[N
+

]].

(c) We can then take the q = 1 limit and obtain an identity in the
group of automorphisms of the Poisson algebra C[[N+]].
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Example: the A2 quiver

Let C be the abelian category of representations of the A
2

quiver. It
has 3 indecomposable representations:

0 �! S
2

�! E �! S
1

�! 0.

We have N = K
0

(A) = Z�2 = Z[S
1

]� Z[S
2

],

h(m
1

, n
1

), (m
2

, n
2

)i = m
2

n
1

�m
1

n
2

,

and there are isomorphisms

C
q

[[N
+

]] = Chhx
1

, x
2

ii/(x
2

⇤ x
1

� q · x
1

⇤ x
2

)

C[[N
+

]] = C[[x
1

, x
2

]], {x
1

, x
2

} = x
1

· x
2

.
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Quantum pentagon identity

The space Stab(A) is isomorphic to H̄2 and there is a single wall

W = {Z 2 Stab(A) : ImZ (S
2

)/Z (S
1

) 2 R>0

}

where the object E is strictly semistable.

Z(S

1

)Z(S

2

)

Z(E)

W

E unstable E stable

Z(S

2

)Z(S

1

)

Z(E)

The wall-crossing formula in C
q

[[N
+

]] becomes the pentagon identity

�
q

(x
2

) ⇤ �
q

(x
1

) = �
q

(x
1

) ⇤ �
q

(
p
q · x

1

⇤ x
2

) ⇤ �
q

(x
2

).
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Semi-classical version

Z(S

1

)Z(S

2

)

Z(E)

W

E unstable E stable

Z(S

2

)Z(S

1

)

Z(E)

The semi-classical version of the wall-crossing formula is the cluster
identity

C
(0,1) � C(1,0) = C

(1,0) � C(1,1) � C(0,1).

C↵ : x
� 7! x� · (1 + x↵)h↵,�i 2 AutC[[x

1

, x
2

]].

It can be viewed in the group of birational automorphisms of (C⇤)2.
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4. Stability in triangulated
categories



Stability in triangulated categories

Let D be a triangulated category.

Definition
A stability condition on D is a pair (Z ,A) where

(i) A ⇢ D is a heart,

(ii) Z : K
0

(A)! C is a group homomorphism,

such that Z defines a stability condition on A with the HN property.

An object E 2 D is defined to be semistable if E = A[n] for some
Z -semistable A 2 A. The phase of E is then �(E ) := �(A) + n.

A[1] A A[�1] · · ·· · · D

R

�=0 �=�1�=1�=2
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Space of stability conditions

We consider only stability conditions satisfying the extra conditions

(a) The central charge Z : K
0

(D)! C factors via our fixed map

ch : K
0

(D) �! N ⇠= Z�n.

(b) There is a K > 0 such that for any semistable object E 2 D

Z (E ) > K · kch(E )k.
The set Stab(D) of such stability conditions has a natural topology.

Theorem
Sending a stability condition to its central charge defines a local
homeomorphism

Stab(D) �! HomZ(N ,C) ⇠= Cn.

In particular, Stab(D) is a complex manifold.
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