STABILITY AND WALL-CROSSING

Tom Bridgeland

University of Sheffield

1. Hearts and tilting

DEFINITION OF A TORSION PAIR

Let ${\mathcal A}$ be an abelian category.

A torsion pair $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ is a pair of full subcategories such that:

- (A) Hom(T, F) = 0 for $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- (B) for every object $E \in \mathcal{A}$ there is a short exact sequence

$$0 \longrightarrow T \longrightarrow E \longrightarrow F \longrightarrow 0$$

for some pair of objects $T \in \mathcal{T}$ and $F \in \mathcal{F}$.

DEFINITION OF A HEART

Let D be a triangulated category.

A heart $\mathcal{A} \subset D$ is a full subcategory such that:

- (A) Hom(A[j], B[k]) = 0 for all $A, B \in \mathcal{A}$ and j > k.
- (B) for every object $E \in D$ there is a finite filtration

$$0 = E_m \to E_{m+1} \to \cdots \to E_{n-1} \to E_n = E$$

with factors $F_j = \text{Cone}(E_{j-1} \rightarrow E_j) \in \mathcal{A}[-j]$.

$$\cdots$$
 $\mathcal{A}[1]$ \mathcal{A} $\mathcal{A}[-1]$ \cdots

PROPERTIES OF HEARTS

- (I) It would be more standard to say that $\mathcal{A} \subset D$ is the heart of a bounded t-structure on D. But any such t-structure is determined by its heart.
- (II) The basic example is $\mathcal{A} \subset D^b(\mathcal{A})$.
- (III) In analogy with that case we define $H^j_{\mathcal{A}}(E) := F_j[j] \in \mathcal{A}$.
- (IV) \mathcal{A} is automatically an abelian category.
- (v) The short exact sequences in \mathcal{A} are precisely the triangles in D all of whose terms lie in \mathcal{A} .
- (VI) The inclusion functor gives an identification $K_0(\mathcal{A}) \cong K_0(D)$.

THE TILT OF A HEART AT A TORSION PAIR

Suppose $\mathcal{A} \subset D$ is a heart, and $(\mathcal{T}, \mathcal{F}) \subset \mathcal{A}$ a torsion pair.

We can define a new, tilted heart $\mathcal{A}^{\sharp} \subset D$ as in the picture.

An object $E \in D$ lies in $\mathcal{A}^{\sharp} \subset D$ precisely if

 $H^{-1}_{\mathcal{A}}(E)\in \mathcal{F}, \quad H^{0}_{\mathcal{A}}(E)\in \mathcal{T}, \quad H^{i}_{\mathcal{A}}(E)=0 \;\; \text{otherwise}.$

EXAMPLE OF TILTING: THREEFOLD FLOP

$$\mathcal{F}_+ = \langle \mathcal{O}_{C_+}(-i) \rangle_{i \ge 1}, \quad \mathcal{F}_- = \langle \mathcal{O}_{C_-}(-i) \rangle_{i \ge 2}.$$

STABLE PAIRS AS QUOTIENTS IN A TILT

Consider tilting $\mathcal{A} = \operatorname{Coh}(X) \subset D(X)$ with respect to the torsion pair

$$\mathcal{T} = \{E \in \operatorname{Coh}(X) : \dim_{\mathbb{C}} \operatorname{supp}(E) = 0\},\$$

 $\mathcal{F} = \{E \in \operatorname{Coh}(X) : \operatorname{Hom}_X(\mathcal{O}_x, E) = 0 \text{ for all } x \in X\}.$

Note that $\mathcal{O}_X \in \mathcal{F} \subset \mathcal{A}^{\sharp}$. We claim that

$$\mathsf{Pairs}(\beta, n) = \left\{ \begin{array}{l} \mathsf{quotients} \ \mathcal{O}_X \twoheadrightarrow E \ \mathsf{in} \ \mathcal{A}^{\sharp} \\ \mathsf{with} \ \mathrm{ch}(E) = (0, 0, \beta, n) \end{array} \right\}$$

PROOF OF THE CLAIM ABOUT STABLE PAIRS

Given a short exact sequence in the category \mathcal{A}^{\sharp}

$$0 \longrightarrow J \longrightarrow \mathcal{O}_X \xrightarrow{f} E \longrightarrow 0,$$

we take cohomology with respect to the standard heart $\mathcal{A} \subset D$.

$$0 \to H^0_{\mathcal{A}}(J) \to \mathcal{O}_X \xrightarrow{f} H^0_{\mathcal{A}}(E) \to H^1_{\mathcal{A}}(J) \to 0 \to H^1_{\mathcal{A}}(E) \to 0.$$

It follows that $E \in \mathcal{A} \cap \mathcal{A}^{\sharp} = \mathcal{F}$ and $\operatorname{coker}(f) = H^{1}_{\mathcal{A}}(J) \in \mathcal{T}$.

LAST TIME ...

(A) Hall algebras: $Hall_{fty}(\mathcal{C})$, $Hall_{mot}(\mathcal{C})$.

- (B) Character map $\operatorname{ch} \colon K_0(\mathcal{C}) \to N \cong \mathbb{Z}^{\oplus n}.$
- (C) Quantum torus: $\mathbb{C}_q[N] = \bigoplus_{\alpha \in N} \mathbb{C}(t) \cdot x^{\alpha}$ with

$$x^{lpha} * x^{\gamma} = q^{-rac{1}{2}(\gamma, lpha)} \cdot x^{lpha + \gamma}.$$

(D) Integration map: \mathcal{I} : Hall $(\mathcal{C}) \to \mathbb{C}_q[N]$.

POSITIVE CONES AND COMPLETIONS

Choosing a basis (e_1, \cdots, e_n) for the group N gives an identification

$$\mathbb{C}[N] = \mathbb{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}].$$

We often need to use the positive cone

$$N_{+}=\big\{\sum_{i=1}^{n}\lambda_{i}e_{i}:\lambda_{i}\geqslant0\big\}\subset N,$$

and the associated completion

$$\mathbb{C}[[N_+]] \cong \mathbb{C}[[x_1, \cdots, x_n]].$$

We can similarly define the completed quantum torus $\mathbb{C}_q[[N_+]]$.

Sketch proof of the DT/PT identity

- (I) Reineke's identity: $\delta_{\mathcal{A}}^{\mathcal{O}} = \operatorname{Quot}_{\mathcal{A}}^{\mathcal{O}} * \delta_{\mathcal{A}} \text{ and } \delta_{\mathcal{A}^{\sharp}}^{\mathcal{O}} = \operatorname{Quot}_{\mathcal{A}^{\sharp}}^{\mathcal{O}} * \delta_{\mathcal{A}^{\sharp}}.$
- (II) Torsion pair identities: $\delta_{\mathcal{A}} = \delta_{\mathcal{T}} * \delta_{\mathcal{F}}$ and $\delta_{\mathcal{A}^{\sharp}} = \delta_{\mathcal{F}} * \delta_{\mathcal{T}[-1]}$.

(III) Torsion pair identities with sections:

$$\delta_{\mathcal{A}}^{\mathcal{O}} = \delta_{\mathcal{T}}^{\mathcal{O}} * \delta_{\mathcal{F}}^{\mathcal{O}} \text{ and } \delta_{\mathcal{A}^{\sharp}}^{\mathcal{O}} = \delta_{\mathcal{F}}^{\mathcal{O}} * \delta_{\mathcal{T}[-1]}^{\mathcal{O}}.$$

(IV) All maps $\mathcal{O}_X \to \mathcal{T}[-1]$ are zero, so $\delta_{\mathcal{T}[-1]}^{\mathcal{O}} = \delta_{\mathcal{T}[-1]}$.

CONCLUSION OF THE SKETCH PROOF

- (V) Reineke's identity again: $\delta_{\mathcal{T}}^{\mathcal{O}} = \operatorname{Quot}_{\mathcal{T}}^{\mathcal{O}} * \delta_{\mathcal{T}}.$
- (VI) Putting it all together: $\operatorname{Quot}_{\mathcal{A}}^{\mathcal{O}} * \delta_{\mathcal{T}} = \operatorname{Quot}_{\mathcal{T}}^{\mathcal{O}} * \delta_{\mathcal{T}} * \operatorname{Quot}_{\mathcal{A}^{\sharp}}^{\mathcal{O}}$.
- (VII) Restrict to sheaves supported in dimension ≤ 1 . The Euler form is then trivial so the quantum torus is commutative. Thus

$$\mathcal{I}(\mathsf{Quot}^{\mathcal{O}}_{\mathcal{A}}) = \mathcal{I}(\mathsf{Quot}^{\mathcal{O}}_{\mathcal{T}}) * \mathcal{I}(\mathsf{Quot}^{\mathcal{O}}_{\mathcal{A}^{\sharp}}).$$

(VIII) Setting $t = \pm 1$ then gives the required identity

$$\sum_{\beta,n} \mathsf{DT}(\beta,n) x^{\beta} y^{n} = \sum_{n} \mathsf{DT}(0,n) y^{n} \cdot \sum_{\beta,n} \mathsf{PT}(\beta,n) x^{\beta} y^{n}.$$

2. Generalized DT invariants

MODULI SPACES OF FRAMED SHEAVES

Let X be a Calabi-Yau threefold.

So far we have been discussing moduli spaces of objects in the category $D^b \operatorname{Coh}(X)$ equipped with a kind of framing.

EXAMPLE

The Hilbert scheme parameterizes sheaves $E \in Coh(X)$ equipped with a surjective map $f : \mathcal{O}_X \rightarrow E$.

- This framing data eliminates all stabilizer groups, so the moduli space is a scheme, and therefore has a well-defined Euler characteristic.
- (II) In this context wall-crossing can be achieved by varying the t-structure on the derived category $D^b \operatorname{Coh}(X)$.

What about unframed DT invariants?

Fix a polarization of X and a class $\alpha \in N$, and consider the stack

 $\mathcal{M}^{ss}(\alpha) = \{ E \in \operatorname{Coh}(X) : E \text{ is semistable with } \operatorname{ch}(E) = \alpha \}.$

(A) In the case when α is primitive, and the polarization is general, this stack is a \mathbb{C}^* -gerbe over its coarse moduli space $M^{ss}(\alpha)$, and we set

$$\mathsf{DT}^{\mathsf{naive}}(\alpha) = e(M^{\mathsf{ss}}(\alpha)) \in \mathbb{Z}.$$

Genuine DT invariants are defined using virtual cycles or by a weighted Euler characteristic as before.

(B) In the general case, Joyce figured out how to define invariants

 $\mathsf{DT}^{\mathsf{naive}}(\alpha) \in \mathbb{Q}$

with good properties, and showed that they satisfy wall-crossing formulae as the polarization is varied.

QUANTUM AND CLASSICAL DT INVARIANTS

(A) The generating function for the quantum DT invariants is

$$\mathsf{q}\text{-}\mathsf{DT}_{\mu} = \mathcal{I}([\mathcal{M}^{ss}(\mu) \subset \mathcal{M}]) \in \mathbb{C}_{q}[[N_{+}]].$$

(B) The generating function for the classical DT invariants is

$$\mathsf{DT}_{\mu} = \lim_{q o 1} (q-1) \cdot \mathsf{log} \; \mathsf{q} ext{-}\mathsf{DT}_{\mu} \in \mathbb{C}[[\mathsf{N}_+]].$$

A difficult result of Joyce shows that this limit exists in general.

(C) The DT invariants are also encoded by the Poisson automorphism

$$\mathcal{S}_{\mu} = \exp \left\{ \mathsf{DT}_{\mu}, - \right\} \in \mathsf{Aut} \mathbb{C}[[N_{+}]].$$

This coincides with the q = 1 limit of conjugation by q-DT_{μ}.

EXAMPLE: A SINGLE RIGID STABLE BUNDLE

Suppose there is a single rigid stable bundle E of slope μ . Then $\mathcal{M}^{ss}(\mu) = \{E^{\oplus n} : n \ge 0\} = \bigsqcup_{n \ge 0} BGL(n, \mathbb{C}).$ Set $\alpha = ch(E) \in N$. Applying the integration map we calculate

 $({\rm A})~$ The quantum DT generating function is

$$\mathsf{q} ext{-}\mathsf{D}\mathsf{T}_{\mu} = \sum_{n \geqslant 0} rac{x^{nlpha}}{(q^n-1)\cdots(q-1)} \in \mathbb{C}_q[[\mathsf{N}_+]].$$

We recognise the quantum dilogarithm $\Phi_q(x^{\alpha})$.

A SINGLE STABLE BUNDLE CONTINUED

 $(\ensuremath{\scriptscriptstyle B})$ The classical DT generating function is

$$\mathsf{DT}_{\mu} = \lim_{q o 1} (q-1) \cdot \log \Phi_q(x^{lpha}) = \sum_{n \geqslant 1} rac{x^{nlpha}}{n^2}$$

and we conclude that $DT(n\alpha) = 1/n^2$.

 ${\rm (C)}~$ The Poisson automorphism $\mathcal{S}_{\mu}\in \operatorname{\mathsf{Aut}}\mathbb{C}[[\mathit{N}_{+}]]$ is

$$\mathcal{S}_{\mu}(x^{\beta}) = \exp\bigg\{\sum_{n \geqslant 1} \frac{x^{n lpha}}{n^2}, -\bigg\}(x^{\beta}) = x^{\beta} \cdot (1 + x^{lpha})^{\langle lpha, eta
angle}$$

where the RHS should be expanded as a power series.

3. Stability conditions

STABILITY CONDITIONS

Let ${\mathcal A}$ be an abelian category.

DEFINITION

A stability condition on $\mathcal A$ is a map of groups $Z\colon K_0(\mathcal A)\to \mathbb C$ such that

$$0
eq E\in \mathcal{A}\implies Z(E)\in ar{\mathbb{H}},$$

where $\bar{\mathbb{H}}=\mathbb{H}\cup\mathbb{R}_{<0}$ is the semi-closed upper half-plane.

PHASES AND STABILITY

DEFINITIONS

(A) The phase of a nonzero object $E \in \mathcal{A}$ is

$$\phi(E) = rac{1}{\pi} \operatorname{arg} Z(E) \in (0, 1],$$

(B) An object $E \in \mathcal{A}$ is Z-semistable if

$$0 \neq A \subset E \implies \phi(A) \leqslant \phi(E).$$

HARDER-NARASIMHAN FILTRATIONS

DEFINITION

A stability condition Z has the Harder-Narasimhan property if every object $E \in A$ has a filtration

 $0 = E_0 \subset E_1 \subset \cdots \subset E_n \subset E$

such that each factor $F_i = E_i/E_{i-1}$ is Z-semistable and

 $\phi(F_1) > \cdots > \phi(F_n).$

- (I) If \mathcal{A} has finite length this condition is automatic.
- (II) When they exist, HN filtrations are necessarily unique, because the usual argument shows that if F_1 , F_2 are Z-semistable then

$$\phi(F_1) > \phi(F_2) \implies \operatorname{Hom}(F_1, F_2) = 0.$$

ANOTHER REINEKE IDENTITY

Let C be a finitary abelian category equipped with a stability condition Z having the Harder-Narasimhan property. Let

 $\delta^{\mathrm{ss}}(\phi) \in \widehat{\mathsf{Hall}}_{\mathrm{fty}}(\mathcal{A})$

be the characteristic function of Z-semistable objects of phase $\phi \in \mathbb{R}$.

LEMMA (REINEKE) There is an identity $\delta_{\mathcal{C}} = \prod_{\phi \in \mathbb{R}}^{\rightarrow} \delta^{ss}(\phi)$.

Proof.

The product is taken in descending order of phase. The result follows from existence and uniqueness of the HN filtration. $\hfill \Box$

WALL-CROSSING FORMULA

(A) The LHS of the above identity is independent of Z so given two stability conditions we get a wall-crossing formula

$$\prod_{\phi\in\mathbb{R}}^{\longrightarrow}\delta^{\mathrm{ss}}(\phi,Z_1)=\prod_{\phi\in\mathbb{R}}^{\longrightarrow}\delta^{\mathrm{ss}}(\phi,Z_2).$$

- (B) If C has global dimension ≤ 1 we can apply the integration map \mathcal{I} to get an identity in the ring $\mathbb{C}_q[[N_+]]$.
- (C) We can then take the q = 1 limit and obtain an identity in the group of automorphisms of the Poisson algebra $\mathbb{C}[[N^+]]$.

EXAMPLE: THE A_2 QUIVER

Let C be the abelian category of representations of the A_2 quiver. It has 3 indecomposable representations:

$$0 \longrightarrow S_2 \longrightarrow E \longrightarrow S_1 \longrightarrow 0.$$

We have $N = \mathcal{K}_0(\mathcal{A}) = \mathbb{Z}^{\oplus 2} = \mathbb{Z}[S_1] \oplus \mathbb{Z}[S_2]$,

$$\langle (m_1, n_1), (m_2, n_2) \rangle = m_2 n_1 - m_1 n_2,$$

and there are isomorphisms

$$\mathbb{C}_q[[\mathsf{N}_+]] = \mathbb{C}\langle\langle x_1, x_2\rangle\rangle/(x_2 * x_1 - q \cdot x_1 * x_2)$$
$$\mathbb{C}[[\mathsf{N}_+]] = \mathbb{C}[[x_1, x_2]], \quad \{x_1, x_2\} = x_1 \cdot x_2.$$

QUANTUM PENTAGON IDENTITY

The space Stab(A) is isomorphic to $\overline{\mathbb{H}}^2$ and there is a single wall $\mathcal{W} = \{Z \in Stab(A) : \operatorname{Im} Z(S_2)/Z(S_1) \in \mathbb{R}_{>0}\}$ where the object E is strictly semistable.

The wall-crossing formula in $\mathbb{C}_q[[N_+]]$ becomes the pentagon identity

$$\Phi_q(x_2) * \Phi_q(x_1) = \Phi_q(x_1) * \Phi_q(\sqrt{q} \cdot x_1 * x_2) * \Phi_q(x_2).$$

SEMI-CLASSICAL VERSION

The semi-classical version of the wall-crossing formula is the cluster identity

$$egin{aligned} \mathcal{C}_{(0,1)} &\circ \mathcal{C}_{(1,0)} = \mathcal{C}_{(1,0)} \circ \mathcal{C}_{(1,1)} \circ \mathcal{C}_{(0,1)}. \ \mathcal{C}_{lpha} &\colon x^{eta} \mapsto x^{eta} \cdot (1+x^{lpha})^{\langle lpha,eta
angle} \in \operatorname{\mathsf{Aut}} \mathbb{C}[[x_1,x_2]]. \end{aligned}$$

It can be viewed in the group of birational automorphisms of $(\mathbb{C}^*)^2$.

4. Stability in triangulated categories

STABILITY IN TRIANGULATED CATEGORIES

Let D be a triangulated category.

DEFINITION

A stability condition on D is a pair (Z, A) where

- (I) $\mathcal{A} \subset D$ is a heart,
- (II) $Z \colon \mathcal{K}_0(\mathcal{A}) \to \mathbb{C}$ is a group homomorphism,

such that Z defines a stability condition on A with the HN property.

An object $E \in D$ is defined to be semistable if E = A[n] for some Z-semistable $A \in A$. The phase of E is then $\phi(E) := \phi(A) + n$.

SPACE OF STABILITY CONDITIONS

We consider only stability conditions satisfying the extra conditions

(A) The central charge $Z \colon K_0(D) \to \mathbb{C}$ factors via our fixed map

ch: $K_0(D) \longrightarrow N \cong \mathbb{Z}^{\oplus n}$.

(B) There is a K > 0 such that for any semistable object $E \in D$

 $Z(E) \ge K \cdot \|\operatorname{ch}(E)\|.$

The set Stab(D) of such stability conditions has a natural topology.

THEOREM

Sending a stability condition to its central charge defines a local homeomorphism

 $\operatorname{Stab}(D) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}) \cong \mathbb{C}^{n}.$

In particular, Stab(D) is a complex manifold.