$\begin{array}{c} {\rm Stability \ and} \\ {\rm Wall-crossing \ } 3 \end{array}$

Tom Bridgeland

1. Stability in triangulated categories

STABILITY IN TRIANGULATED CATEGORIES

DEFINITION

A stability condition on a tri. cat. D is a pair (Z, A) where

- (I) $\mathcal{A} \subset D$ is a heart,
- (II) $Z \colon K_0(\mathcal{A}) \to \mathbb{C}$ is a group homomorphism,

such that Z defines a stability condition on A with the HN property.

An object $E \in D$ is defined to be semistable if E = A[n] for some Z-semistable $A \in A$. The phase of E is then $\phi(E) := \phi(A) + n$.

SPACE OF STABILITY CONDITIONS

We consider only stability conditions satisfying the extra conditions

(A) The central charge $Z \colon K_0(D) \to \mathbb{C}$ factors via our fixed map

ch: $K_0(D) \longrightarrow N \cong \mathbb{Z}^{\oplus n}$.

(B) There is a K > 0 such that for any semistable object $E \in D$

 $Z(E) \ge K \cdot \|\operatorname{ch}(E)\|.$

The set Stab(D) of such stability conditions has a natural topology.

THEOREM

Sending a stability condition to its central charge defines a local homeomorphism

 $\operatorname{Stab}(D) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}) \cong \mathbb{C}^{n}.$

In particular, Stab(D) is a complex manifold.

CHARGE LATTICE AND ASSOCIATED TORUS

(A) Consider a smooth projective Calabi-Yau threefold X and set

$$D = D^b \operatorname{Coh}(X).$$

(B) Define the charge lattice

$$N = \operatorname{\mathsf{im}} \left(\operatorname{ch} \colon K_0(D) \to H^*(X, \mathbb{Q}) \right) \cong \mathbb{Z}^{\oplus n}.$$

The Euler form $\langle -, - \rangle$ gives a skew-symmetric form on N.

(C) Introduce the algebraic torus

$$\mathbb{T} = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}^*) \cong (\mathbb{C}^*)^n,$$

with its Poisson structure

$$\{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}\} = \langle \alpha, \beta \rangle \cdot \mathbf{x}^{\alpha + \beta}$$

WHAT WE EXPECT

- (A) The space of stability conditions Stab(D) is non-empty.
- (B) For each stability condition $\sigma \in \text{Stab}(D)$ there are stacks $\mathcal{M}^{ss}(\alpha) = \{E \in D : E \text{ is } \sigma \text{-semistable with } ch(E) = \alpha\}$

of finite type, and corresponding DT invariants $\mathsf{DT}_{\sigma}(\alpha) \in \mathbb{Q}$.

(C) As we vary $\sigma \in \text{Stab}(D)$ the invariants $\text{DT}_{\sigma}(\alpha) \in \mathbb{Q}$ undergo discontinuous changes governed by the Kontsevich-Soibelman wall-crossing formula.

THE ACTIVE RAYS

For each stability condition $\sigma \in \text{Stab}(D)$ there is a countable collection of active rays

$$\ell = \mathbb{R}_{>0} \exp(i\pi\phi) \subset \mathbb{C}$$

for which there exist semistable objects of phase ϕ .

As σ varies, the active rays move and may collide and separate.

Encoding DT invariants

To each active ray is associated a formal function on $\ensuremath{\mathbb{T}}$

$$\mathsf{DT}_{\ell} = \sum_{Z(\alpha) \in \ell} \mathsf{DT}_{\sigma}(\alpha) x^{\alpha}.$$

Ignoring convergence issues, there is a corresponding automorphism

$$S_{\ell} = \exp(\{\mathsf{DT}_{\ell}, -\}) \in \mathsf{Aut}(\mathbb{T}).$$

WALL-CROSSING FORMULA

For any convex sector $\Delta \subset \mathbb{C},$ the clockwise product over active rays

$$\mathcal{S}_\Delta = \prod_{\ell \in \Delta} \mathcal{S}_\ell \in \mathsf{Aut}(\mathbb{T})$$

remains constant as σ varies, providing no active ray crosses $\partial \Delta$.

This all makes good sense in a suitable completion $\mathbb{C}[[N_+]]$.

2. Irregular connections and Stokes data

STOKES MATRICES AND ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for an irregular connection with values in the infinite-dimensional group

$$G = \operatorname{Aut}_{\{-,-\}}(\mathbb{T})$$

of Poisson automorphisms of the torus $\mathbb{T} \cong (\mathbb{C}^*)^n$.

We first explain such phenomena in the finite-dimensional case, so set

$$G = \mathsf{GL}(n,\mathbb{C}), \quad \mathfrak{g} = \mathfrak{gl}(n,\mathbb{C}).$$

As a warm-up we start with the case of regular singularities.

A FUCHSIAN CONNECTION

We will consider meromorphic connections on the trivial *G*-bundle over the Riemann sphere \mathbb{CP}^1 .

Consider a connection of the form

$$\nabla = d - \sum_{i=1}^{k} \frac{A_i \, dz}{z - a_i}$$

(I) $a_i \in \mathbb{C}$ are a set of k distinct points,

(II) $A_i \in \mathfrak{g}$ are corresponding residue matrices.

Then ∇ has regular singularities at the points a_i , and also at ∞ .

ISOMONODROMIC DEFORMATIONS

For each based loop

$$\gamma\colon S^1\to\mathbb{C}\setminus\{a_1,\cdots,a_k\}$$

there is a corresponding monodromy matrix $\operatorname{Mon}_{\gamma}(
abla)\in G$.

If we move the pole positions $a_i \in \mathbb{C}$, we can deform the residue matrices A_i so that all monodromy matrices remain constant. Such deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial differential equations called the Schlessinger equations.

A CLASS OF IRREGULAR CONNECTIONS

Introduce the decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}^{\mathrm{od}}, \quad \mathfrak{g}^{\mathrm{od}} = \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}, \quad \Phi = \{e_i^* - e_j^*\} \subset \mathfrak{h}^*.$$

Consider a connection of the form

$$\nabla = d - \left(\frac{U}{z^2} + \frac{V}{z}\right) dz,$$

(I) $U = \text{diag}(u_1, \dots, u_n) \in \mathfrak{h}$ is diagonal with distinct eigenvalues, (II) $V \in \mathfrak{g}^{\text{od}}$ has zeroes on the diagonal.

Then ∇ has an irregular singularity at 0 and a regular one at $\infty.$

STOKES DATA OF THE CONNECTION

The Stokes rays for the connection ∇ are the rays

$$\mathbb{R}_{>0} \cdot (u_i - u_j) = \mathbb{R}_{>0} \cdot U(\alpha), \quad \alpha = e_i^* - e_j^*.$$

Associated to each Stokes ray ℓ is a Stokes factor

$$\mathcal{S}_\ell = \expig(\sum_{U(lpha)\in\ell}\epsilon_lphaig)\in \expig(igoplus_{U(lpha)\in\ell}\mathfrak{g}_lphaig)\subset \mathcal{G}.$$

CANONICAL SOLUTION ON A HALF-PLANE

Given a non-Stokes ray r, there is a canonical flat section X_r of ∇ on the orthogonal half-plane \mathbb{H}_r , uniquely defined by the condition that

As the ray r varies, the flat section X_r remains unchanged until r crosses a Stokes ray, where it jumps by

$$X_r\mapsto X_r\cdot S_\ell.$$

ISOMONODROMY IN THE IRREGULAR CASE

If we now vary the diagonal matrix U, we can deform the matrix V so that the Stokes factors remain constant. Such deformations are called isomonodromic. More precisely:

For any convex sector $\Delta \subset \mathbb{C}^*$ the clockwise product

$$S_{\Delta} = \prod_{\ell \in \Sigma} S_{\ell} \in G,$$

remains constant unless a Stokes ray crosses the boundary of Σ .

Isomonodromic variations are again described by a system of partial differential equations.

Poisson vector fields on $\mathbb T$

Consider the group G of Poisson automorphisms of the torus

$$\mathbb{T}\cong \operatorname{Hom}_{\mathbb{Z}}(N,\mathbb{C}^*)\cong (\mathbb{C}^*)^n,$$

and the corresponding Lie algebra \mathfrak{g} . Then $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{g}^{od}$, where (A) the Cartan subalgebra

$$\mathfrak{h} = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}),$$

consists of translation-invariant vector fields on \mathbb{T} .

(B) the subspace \mathfrak{g}^{od} consists of Hamiltonian vector fields, and is the Poisson algebra of non-constant algebraic functions on \mathbb{T}

$$\mathfrak{g}^{\mathrm{od}} = \bigoplus_{\alpha \in \mathbf{N}^{ imes}} \mathfrak{g}_{\alpha} = \bigoplus_{\alpha \in \mathbf{N}^{ imes}} \mathbb{C} \cdot \mathbf{x}^{\alpha}.$$

DT INVARIANTS AS STOKES DATA

It is tempting to interpret the elements

$$S_{\ell} = \exp\left(\sum_{Z(\alpha) \in \ell} \mathsf{DT}_{\sigma}(\alpha) \cdot x^{lpha}\right) \in G$$

as defining Stokes factors for a G-valued connection of the form

$$abla = d - \left(rac{Z}{t^2} + rac{F}{t}
ight)dt,$$

for some element $F \in \mathfrak{g}^{\mathrm{od}}$.

The wall-crossing formula is precisely the condition that this family of connections is isomonodromic as $\sigma \in \text{Stab}(D)$ varies.

3. Quivers with potential

QUIVERS WITH POTENTIAL

Let (Q, W) be a quiver with potential. Thus

- (I) Q is an oriented graph,
- (II) W is a formal sum of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.

Associated to (Q, W) is a triangulated category $D^{b}(Q, W)$

By definition, $D^b(Q, W)$ is the subcategory of the derived category of the complete Ginzburg dg-algebra $\Pi(Q, W)$ consisting of objects with finite-dimensional total cohomology.

GENERAL PROPERTIES OF $D^{b}(Q, W)$

Let (Q, W) be a QWP as before, and set $D = D^b(Q, W)$.

(A) D has the CY₃ property:

 $\operatorname{Hom}^{k}(E,F) \cong \operatorname{Hom}^{3-k}(F,E)^{*}.$

(B) D is generated by objects S_i indexed by the vertices of Q, and

 $\mathsf{Hom}^*(S_i, S_j) = \mathbb{C}^{\delta_{ij}} \oplus \mathbb{C}^{a_{ij}}[-1] \oplus \mathbb{C}^{a_{ji}}[-2] \oplus \mathbb{C}^{\delta_{ij}}[-3],$

with a_{ii} the number of arrows in Q from vertex i to vertex j.

(C) There is a standard heart $\mathcal{A} \subset D$, which is finite-length, and whose simple objects are precisely the S_i .

TILTING AND MUTATION

Let (Q, W) be a QWP and choose a vertex *i* of *Q*. Write $S = S_i$.

$$^{\perp}S = \{E \in \mathcal{A} : \operatorname{Hom}(E,S) = 0\}, \quad \langle S \rangle = \{S^{\oplus n} : n \ge 0\}.$$

Keller and Yang proved that there is an equivalence

where (Q', W') is a new QWP obtained by a process called mutation.

EXCHANGE GRAPHS

Let (Q, W) be a quiver with a generic potential.

- (A) The heart exchange graph $EG_{\heartsuit}(Q, W)$ has
 - vertices the finite-length hearts in $D^b(Q, W)$,
 - edges connecting hearts related by a simple tilt.
- (B) The cluster exchange graph is the quotient $EG(Q) = EG_{\heartsuit}(Q, W) / Sph(D)$ where $Sph(D) = \langle Tw_{S_1}, \cdots, Tw_{S_n} \rangle \subset Aut(D)$.

STABILITY SPACE VERSUS CLUSTER VARIETY

(A) For each heart $\mathcal{A} \in \mathsf{EG}_\heartsuit(Q, W)$ there is a cell $\mathbb{H}^n \subset \mathsf{Stab}(D)$.

$$\operatorname{Stab}(D)/\operatorname{Sph}(D)\supset \bigcup_{\mathcal{A}\in\operatorname{\mathsf{EG}}(Q)}\mathbb{H}^n.$$

Note that the different cells only meet in their closures.

(B) The cluster variety is a union of tori glued by birational maps

$$\mathcal{X}(Q) = igcup_{\mathcal{A}\in\mathsf{EG}(Q)} (\mathbb{C}^*)^n.$$
 $x^eta\mapsto x^eta\cdot (1+x^lpha)^{\langlelpha,eta
angle}.$

4. Examples from triangulated surfaces

FROM TRIANGULATIONS TO QUIVERS

Fix a surface S of genus g with a set $M = \{p_1, \dots, p_d\} \subset S$. Consider triangulations of S with vertices at the points p_i . Associated to any such triangulation is a quiver:

FLIPS AND THE EXCHANGE GRAPH

A flip of the triangulation induces a mutation of the quiver:

- (A) Fomin, Shapiro and Thurston proved that the exchange graph is the set of (tagged) triangulations, with the edges being flips.
- (B) Labardini-Fragoso dealt with the potentials associated to degenerate triangulations.

CLUSTER VARIETY

Let (S, M) be a marked surface as above, choose a triangulation and let Q be the corresponding quiver. Set $G = PGL(2, \mathbb{C})$.

THEOREM (FOCK AND GONCHAROV)

The cluster variety $\mathcal{X}(Q)$ is a dense open subset of the stack of labelled G-local systems on $S \setminus M$

$$\mathcal{X}(Q) \subset \operatorname{Loc}_{G}^{*}(S \setminus M) \xrightarrow{2^{d}:1} \operatorname{Loc}_{G}(S \setminus M).$$

SPACE OF STABILITY CONDITIONS

Choose a generic potential W and set $D = D^b(Q, W)$.

THEOREM (-, IVAN SMITH)

 $\operatorname{Stab}(D)/\operatorname{Aut}(D) \cong \operatorname{Quad}(g, d).$

The space Quad(g, d) parameterizes pairs (S, ϕ) with

- (A) S is a Riemann surface of genus g,
- (B) $D = \sum_{i=1}^{d} p_i$ is a reduced divisor,
- (C) $\phi \in H^0(S, \omega_S(D)^{\otimes 2})$ has simple zeroes.

HORIZONTAL STRIP DECOMPOSITION

A quadratic differential defines a foliation

$$\langle \sqrt{\phi(p)}, X \rangle \in \mathbb{R}, \qquad X \in T_p S.$$

For a generic point $\phi \in \text{Quad}(g, d)$ the trajectories split the surface into a disjoint union of horizontal strips.

RELATING Stab(D) TO $\mathcal{X}(Q)$

Two stories (like Frobenius versus tt^* in GL(n) case):

(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

$$\mathcal{M}^{0}_{Higgs} \hookrightarrow \mathcal{M}_{Betti} \cong \mathcal{X}(Q)$$

$$(S^{1})^{n} \downarrow$$

$$\overset{(S^{1})^{n}}{\downarrow}$$

$$B_{0} \subset H^{0}(S, K_{S}(D)^{2})$$

(2) Holomorphic version ('conformal limit'):

$$\frac{\operatorname{Stab}(D)}{\operatorname{Aut}(D)} \cong \operatorname{Quad}(g, n) \xrightarrow{\cong} \operatorname{Proj}(g, n) \longrightarrow \mathcal{M}_{Betti} \cong \mathcal{X}(Q)$$

$$\mathcal{M}(g, n)$$