Stability and WALL-CROSSING 3

Tom Bridgeland

1. Stability in triangulated categories

Stability in triangulated categories

Definition

A stability condition on a tri. cat. D is a pair (Z, \mathcal{A}) where
(I) $\mathcal{A} \subset D$ is a heart,
(iI) $Z: K_{0}(\mathcal{A}) \rightarrow \mathbb{C}$ is a group homomorphism,
such that Z defines a stability condition on \mathcal{A} with the HN property.
An object $E \in D$ is defined to be semistable if $E=A[n]$ for some Z-semistable $A \in \mathcal{A}$. The phase of E is then $\phi(E):=\phi(A)+n$.

Space of stability conditions

We consider only stability conditions satisfying the extra conditions
(A) The central charge $Z: K_{0}(D) \rightarrow \mathbb{C}$ factors via our fixed map

$$
\text { ch: } K_{0}(D) \longrightarrow N \cong \mathbb{Z}^{\oplus n}
$$

(B) There is a $K>0$ such that for any semistable object $E \in D$

$$
Z(E) \geqslant K \cdot\|\operatorname{ch}(E)\| .
$$

The set $\operatorname{Stab}(D)$ of such stability conditions has a natural topology.

Theorem

Sending a stability condition to its central charge defines a local homeomorphism

$$
\operatorname{Stab}(D) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}) \cong \mathbb{C}^{n}
$$

In particular, $\operatorname{Stab}(D)$ is a complex manifold.

Charge lattice and associated torus

(A) Consider a smooth projective Calabi-Yau threefold X and set

$$
D=D^{b} \operatorname{Coh}(X)
$$

(B) Define the charge lattice

$$
N=\operatorname{im}\left(\operatorname{ch}: K_{0}(D) \rightarrow H^{*}(X, \mathbb{Q})\right) \cong \mathbb{Z}^{\oplus n} .
$$

The Euler form $\langle-,-\rangle$ gives a skew-symmetric form on N.
(c) Introduce the algebraic torus

$$
\mathbb{T}=\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n}
$$

with its Poisson structure

$$
\left\{x^{\alpha}, x^{\beta}\right\}=\langle\alpha, \beta\rangle \cdot x^{\alpha+\beta} .
$$

What we Expect

(A) The space of stability conditions $\operatorname{Stab}(D)$ is non-empty.
(B) For each stability condition $\sigma \in \operatorname{Stab}(D)$ there are stacks

$$
\mathcal{M}^{s s}(\alpha)=\{E \in D: E \text { is } \sigma \text {-semistable with } \operatorname{ch}(E)=\alpha\}
$$

of finite type, and corresponding DT invariants $\mathrm{DT}_{\sigma}(\alpha) \in \mathbb{Q}$.
(C) As we vary $\sigma \in \operatorname{Stab}(D)$ the invariants $\mathrm{DT}_{\sigma}(\alpha) \in \mathbb{Q}$ undergo discontinuous changes governed by the Kontsevich-Soibelman wall-crossing formula.

The active Rays

For each stability condition $\sigma \in \operatorname{Stab}(D)$ there is a countable collection of active rays

$$
\ell=\mathbb{R}_{>0} \exp (i \pi \phi) \subset \mathbb{C}
$$

for which there exist semistable objects of phase ϕ.

As σ varies, the active rays move and may collide and separate.

Encoding DT invariants

To each active ray is associated a formal function on \mathbb{T}

$$
\mathrm{DT}_{\ell}=\sum_{Z(\alpha) \in \ell} \mathrm{DT}_{\sigma}(\alpha) x^{\alpha}
$$

Ignoring convergence issues, there is a corresponding automorphism

$$
S_{\ell}=\exp \left(\left\{D T_{\ell},-\right\}\right) \in \operatorname{Aut}(\mathbb{T})
$$

Wall-CROSSING FORMULA

For any convex sector $\Delta \subset \mathbb{C}$, the clockwise product over active rays

$$
\mathcal{S}_{\Delta}=\prod_{\ell \in \Delta} S_{\ell} \in \operatorname{Aut}(\mathbb{T})
$$

remains constant as σ varies, providing no active ray crosses $\partial \Delta$.

This all makes good sense in a suitable completion $\mathbb{C}\left[\left[N_{+}\right]\right]$.
2. Irregular connections and Stokes data

Stokes matrices And ISOMONODROMY

The wall-crossing formula resembles an isomonodromy condition for an irregular connection with values in the infinite-dimensional group

$$
G=\operatorname{Aut}_{\{-,-\}}(\mathbb{T})
$$

of Poisson automorphisms of the torus $\mathbb{T} \cong\left(\mathbb{C}^{*}\right)^{n}$.
We first explain such phenomena in the finite-dimensional case, so set

$$
G=\operatorname{GL}(n, \mathbb{C}), \quad \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C}) .
$$

As a warm-up we start with the case of regular singularities.

A Fuchsian connection

We will consider meromorphic connections on the trivial G-bundle over the Riemann sphere $\mathbb{C P}^{1}$.

Consider a connection of the form

$$
\nabla=d-\sum_{i=1}^{k} \frac{A_{i} d z}{z-a_{i}}
$$

(I) $a_{i} \in \mathbb{C}$ are a set of k distinct points,
(II) $A_{i} \in \mathfrak{g}$ are corresponding residue matrices.

Then ∇ has regular singularities at the points a_{i}, and also at ∞.

IsOMONODROMIC DEFORMATIONS

For each based loop

$$
\gamma: S^{1} \rightarrow \mathbb{C} \backslash\left\{a_{1}, \cdots, a_{k}\right\}
$$

there is a corresponding monodromy matrix $\operatorname{Mon}_{\gamma}(\nabla) \in G$.

If we move the pole positions $a_{i} \in \mathbb{C}$, we can deform the residue matrices A_{i} so that all monodromy matrices remain constant. Such deformations are called isomonodromic.

Isomonodromic deformations are described by a system of partial differential equations called the Schlessinger equations.

A class of irregular connections

Introduce the decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\mathrm{od}}, \quad \mathfrak{g}^{\mathrm{od}}=\bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}, \quad \Phi=\left\{e_{i}^{*}-e_{j}^{*}\right\} \subset \mathfrak{h}^{*}
$$

Consider a connection of the form

$$
\nabla=d-\left(\frac{U}{z^{2}}+\frac{V}{z}\right) d z
$$

(I) $U=\operatorname{diag}\left(u_{1}, \cdots, u_{n}\right) \in \mathfrak{h}$ is diagonal with distinct eigenvalues,
(II) $V \in \mathfrak{g}^{\text {od }}$ has zeroes on the diagonal.

Then ∇ has an irregular singularity at 0 and a regular one at ∞.

Stokes data of the connection

The Stokes rays for the connection ∇ are the rays

$$
\mathbb{R}_{>0} \cdot\left(u_{i}-u_{j}\right)=\mathbb{R}_{>0} \cdot U(\alpha), \quad \alpha=e_{i}^{*}-e_{j}^{*}
$$

Associated to each Stokes ray ℓ is a Stokes factor

$$
\mathcal{S}_{\ell}=\exp \left(\sum_{U(\alpha) \in \ell} \epsilon_{\alpha}\right) \in \exp \left(\bigoplus_{U(\alpha) \in \ell} \mathfrak{g}_{\alpha}\right) \subset G
$$

CANONICAL SOLUTION ON A HALF-PLANE

Given a non-Stokes ray r, there is a canonical flat section X_{r} of ∇ on the orthogonal half-plane \mathbb{H}_{r}, uniquely defined by the condition that

$$
X_{r}(t) \cdot e^{U / t} \rightarrow 1 \text { as } t \rightarrow 0 \text { in } \mathbb{H}_{r} .
$$

As the ray r varies, the flat section X_{r} remains unchanged until r crosses a Stokes ray, where it jumps by

$$
X_{r} \mapsto X_{r} \cdot S_{\ell}
$$

Isomonodromy in The Irregular case

If we now vary the diagonal matrix U, we can deform the matrix V so that the Stokes factors remain constant. Such deformations are called isomonodromic. More precisely:

For any convex sector $\Delta \subset \mathbb{C}^{*}$ the clockwise product

$$
S_{\Delta}=\prod_{\ell \in \Sigma} S_{\ell} \in G
$$

remains constant unless a Stokes ray crosses the boundary of Σ.
Isomonodromic variations are again described by a system of partial differential equations.

Poisson vector fields on \mathbb{T}

Consider the group G of Poisson automorphisms of the torus

$$
\mathbb{T} \cong \operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n}
$$

and the corresponding Lie algebra \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{g}^{\text {od }}$, where
(A) the Cartan subalgebra

$$
\mathfrak{h}=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C}),
$$

consists of translation-invariant vector fields on \mathbb{T}.
(B) the subspace $\mathfrak{g}^{\text {od }}$ consists of Hamiltonian vector fields, and is the Poisson algebra of non-constant algebraic functions on \mathbb{T}

$$
\mathfrak{g}^{\text {od }}=\bigoplus_{\alpha \in N^{\times}} \mathfrak{g}_{\alpha}=\bigoplus_{\alpha \in N^{\times}} \mathbb{C} \cdot x^{\alpha} .
$$

DT invariants as Stokes data

It is tempting to interpret the elements

$$
S_{\ell}=\exp \left(\sum_{Z(\alpha) \in \ell} \mathrm{DT}_{\sigma}(\alpha) \cdot x^{\alpha}\right) \in G
$$

as defining Stokes factors for a G-valued connection of the form

$$
\nabla=d-\left(\frac{Z}{t^{2}}+\frac{F}{t}\right) d t
$$

for some element $F \in \mathfrak{g}^{\text {od }}$.
The wall-crossing formula is precisely the condition that this family of connections is isomonodromic as $\sigma \in \operatorname{Stab}(D)$ varies.
3. Quivers with potential

Quivers with potential

Let (Q, W) be a quiver with potential. Thus
(I) Q is an oriented graph,
(iI) W is a formal sum of oriented cycles in Q.

We always assume that Q has no loops or oriented 2-cycles.
Associated to (Q, W) is a triangulated category $D^{b}(Q, W)$
By definition, $D^{b}(Q, W)$ is the subcategory of the derived category of the complete Ginzburg dg-algebra $\Pi(Q, W)$ consisting of objects with finite-dimensional total cohomology.

General properties of $D^{b}(Q, W)$

Let (Q, W) be a QWP as before, and set $D=D^{b}(Q, W)$.
(A) D has the CY_{3} property:

$$
\operatorname{Hom}^{k}(E, F) \cong \operatorname{Hom}^{3-k}(F, E)^{*}
$$

(B) D is generated by objects S_{i} indexed by the vertices of Q, and

$$
\operatorname{Hom}^{*}\left(S_{i}, S_{j}\right)=\mathbb{C}^{\delta_{i j}} \oplus \mathbb{C}^{a_{i j}}[-1] \oplus \mathbb{C}^{a_{j i}}[-2] \oplus \mathbb{C}^{\delta_{i j}}[-3]
$$

with $a_{i j}$ the number of arrows in Q from vertex i to vertex j.
(c) There is a standard heart $\mathcal{A} \subset D$, which is finite-length, and whose simple objects are precisely the S_{i}.

Tilting and mutation

Let (Q, W) be a QWP and choose a vertex i of Q. Write $S=S_{i}$.

$$
{ }^{\perp} S=\{E \in \mathcal{A}: \operatorname{Hom}(E, S)=0\}, \quad\langle S\rangle=\left\{S^{\oplus n}: n \geqslant 0\right\} .
$$

Keller and Yang proved that there is an equivalence

where $\left(Q^{\prime}, W^{\prime}\right)$ is a new QWP obtained by a process called mutation.

ExCHANGE GRAPHS

Let (Q, W) be a quiver with a generic potential.
(A) The heart exchange graph $\mathrm{EG}_{\varrho}(Q, W)$ has

- vertices the finite-length hearts in $D^{b}(Q, W)$,
- edges connecting hearts related by a simple tilt.
(B) The cluster exchange graph is the quotient

$$
\mathrm{EG}(Q)=\mathrm{EG}_{\varrho}(Q, W) / \operatorname{Sph}(D)
$$

where $\operatorname{Sph}(D)=\left\langle T w_{s_{1}}, \cdots, T w_{s_{n}}\right\rangle \subset \operatorname{Aut}(D)$.

Stability space versus cluster variety

(A) For each heart $\mathcal{A} \in \mathrm{EG}_{\varrho}(Q, W)$ there is a cell $\mathbb{H}^{n} \subset \operatorname{Stab}(D)$.

$$
\operatorname{Stab}(D) / \operatorname{Sph}(D) \supset \bigcup_{\mathcal{A} \in \mathrm{EG}(Q)} \mathbb{H}^{n} .
$$

Note that the different cells only meet in their closures.
(B) The cluster variety is a union of tori glued by birational maps

$$
\begin{gathered}
\mathcal{X}(Q)=\bigcup_{\mathcal{A} \in \mathrm{EG}(Q)}\left(\mathbb{C}^{*}\right)^{n} . \\
x^{\beta} \mapsto x^{\beta} \cdot\left(1+x^{\alpha}\right)^{\langle\alpha, \beta\rangle} .
\end{gathered}
$$

4. Examples from triangulated

 surfaces
From triangulations to quivers

Fix a surface S of genus g with a set $M=\left\{p_{1}, \cdots, p_{d}\right\} \subset S$.
Consider triangulations of S with vertices at the points p_{i}.
Associated to any such triangulation is a quiver:

Flips And the ExChange graph

A flip of the triangulation induces a mutation of the quiver:

(A) Fomin, Shapiro and Thurston proved that the exchange graph is the set of (tagged) triangulations, with the edges being flips.
(B) Labardini-Fragoso dealt with the potentials associated to degenerate triangulations.

Cluster variety

Let (S, M) be a marked surface as above, choose a triangulation and let Q be the corresponding quiver. Set $G=\operatorname{PGL}(2, \mathbb{C})$.

Theorem (Fock and Goncharov)

The cluster variety $\mathcal{X}(Q)$ is a dense open subset of the stack of labelled G-local systems on $S \backslash M$

$$
\mathcal{X}(Q) \subset \operatorname{Loc}_{G}^{*}(S \backslash M) \xrightarrow{2^{d}: 1} \operatorname{Loc}_{G}(S \backslash M) .
$$

Space of stability conditions

Choose a generic potential W and set $D=D^{b}(Q, W)$.

Theorem (-, Ivan Smith)

$$
\operatorname{Stab}(D) / \operatorname{Aut}(D) \cong \operatorname{Quad}(g, d)
$$

The space $\operatorname{Quad}(g, d)$ parameterizes pairs (S, ϕ) with (A) S is a Riemann surface of genus g,
(B) $D=\sum_{i=1}^{d} p_{i}$ is a reduced divisor,
(C) $\phi \in H^{0}\left(S, \omega_{S}(D)^{\otimes 2}\right)$ has simple zeroes.

Horizontal strip decomposition

A quadratic differential defines a foliation

$$
\langle\sqrt{\phi(p)}, x\rangle \in \mathbb{R}, \quad X \in T_{p} S .
$$

For a generic point $\phi \in \operatorname{Quad}(g, d)$ the trajectories split the surface into a disjoint union of horizontal strips.

Relating $\operatorname{Stab}(D)$ то $\mathcal{X}(Q)$

Two stories (like Frobenius versus $t t^{*}$ in $\mathrm{GL}(n)$ case):
(1) Non-holomorphic version (Gaiotto-Moore-Neitzke):

$$
\underset{\left(S^{1}\right)^{n}}{\mathcal{M}_{\text {Higgs }}^{0}} \longleftrightarrow \mathcal{M}_{\text {Betti }} \cong \mathcal{X}(Q)
$$

$$
\frac{\operatorname{Stab}(D)}{\operatorname{Aut}(D)} \cong \operatorname{Quad}(g, n) \underset{\mathbb{C}-\text { str. }}{\stackrel{\text { fix }}{\imath}} B_{0} \quad B_{0} \subset H^{0}\left(S, K_{S}(D)^{2}\right)
$$

(2) Holomorphic version ('conformal limit'):

$$
\frac{\operatorname{Stab}(D)}{\operatorname{Aut}(D)} \cong \operatorname{Quad}(g, n) \xrightarrow[\text { non-canon. }]{\cong} \operatorname{Proj}(g, n) \longrightarrow \mathcal{M}_{\text {Betti }} \cong \mathcal{X}(Q)
$$

