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Type of Model

“keeping models simple enhances 
understandability and theoretical 
utility but that using models for 
disease control decisions often 
requires realism that adds 
considerable complexity.”

– Roy Anderson

Factors for choosing a model
Why Patient Level Simulation?

Need patient-level information from model
Sufficiently heterogeneous populations (many risk 
groups, many stages of natural history, 
geography)
Constrained resources (queuing and health 
outcome)
Patient interaction (e.g. infectious disease 
transmission)

Purpose: understand one system (sensitivity) 
or select best of finite set or optimize
Estimand: Mean? Variance? Distribution?

Factors for choosing a model
Also:

Stationary versus transient
Time invariant versus time varying parameters
Continuous time versus discrete time versus untimed
Deterministic versus stochastic
Large or small population

The simplest model to answer a question is 
preferred (Occam’s razor)
Different model types can give different conclusions
Goal: Understand how models relate, and what 
systematic implications are due to model choice 

Roadmap
Model Type

System dynamics; Markov chain; discrete 
event simulation at patient level

Independence and system dynamics
Water treatment policy for the E.P.A.

Stochastic versus deterministic
Infectious disease control: NTHi

Patient-level, discrete-event simulations
Structure, time-oriented social dynamics, 
resource constraints

Call for model transition sensitivity analysis
Open Questions

Some Models

Stochastic decision 
tree with covariates

Decision tree

Markov: 
sample # 
patients that  
transition

Discrete 
event 
simulation

System 
dynamics 
(ODE, PDE)
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Some Models
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Roadmap
Model Type

System dynamics; Markov chain; discrete event 
simulation at patient level

Independence and system dynamics
Water treatment policy for the E.P.A. 

Stochastic versus deterministic
Infectious disease control: NTHi

Patient-level, discrete-event simulations
Structure, time-oriented social dynamics, 
resource constraints

Call for model transition sensitivity analysis
Open Questions

Waterborne Transmission of Infection 
and Risk of Infectious Disease 

Chemical risk versus Microbial risk
Public health issue.

Crypto, giardia, legionella, …
CCL: adeno- & caliciviruses, MAC, …
Outbreak! Two of many…

Milwaukee, Crypto, 1993: 400 000 w/ 
diarrhea; 1 000 ⇒ hospital; 53 died (HIV)
Walkerton, Ontario, E. coli O157:H7, 
2001: 2 000 ill; 7 died

Endemic: May be more significant!

Microbial Risk Assessment
Similarity with chemical risk

Primary exposure: exogenous source
Standard approach

Identify hazards
Quantify occurrence and exposure
Assess dose-response relationship
Identify human health effects

But…
Exposure to microbes from secondary transmission 
depends on number of infected individuals

• Human to human
• Human to environment to human
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Comparative Analysis:
Milwaukee in Retrospect

HIV community more susceptible?  Did suffer 
more serious outcomes
Chemical Risk: Filter (local) vs. Ozone (global)

Contaminated water ⇒ exposure to HIV community
$100 Million question
Assessment: Filters 10x more effective than ozone

Microbes: Secondary transmission
Even with 100% effective filters, human-human 
transmission might continue infection!
Can ozone be more effective than filters?

Simplified Transmission System:
ODE Infection Transmission Model
Natural history of infection

Susceptible-Infectious-
Susceptible (SIS)

Infection dynamics

Water contamination
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SIDRS-W model for 
Heterogeneous Populations

• More complex natural history of infection
• Subpopulations
• Human-human & human-water-human loops

Human loop
Water loop

Ozone/Filter Policy Regions
Ozone pretreatment: centralized, entire population 
Filters: targeted, in homes of HIV subpopulation
Criterion: “better” = fewer crypto infections in HIV 
subpopulation
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Filter (localized)
is better

Ozone (centralized)
is better

R0h = mean number secondary transmissions from human contact

Summary: Independence and 
System Dynamics

Current U.S. water treatment policy for microbes 
based on invalid risk assessment
Lives of many and hundreds of millions of £¥$€
Dynamics of risk account for dependent outcomes
One issue: Unknown transmission parameters

System dynamics (aka ODE or PDE or 
compartmental models) embody risk dynamics

Question: Are conclusions sensitive to the type of 
model (ODE versus stochastic dynamics)? 

Roadmap
Model Type

System dynamics; Markov chain; discrete event 
simulation at patient level

Independence and system dynamics
Water treatment policy for the E.P.A.

Stochastic versus deterministic
Infectious disease control: NTHi

Patient-level, discrete-event simulations
Structure, time-oriented social dynamics, 
resource constraints

Call for model transition sensitivity analysis
Open Questions
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ODE ⇔ Markov Chain
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ODE Compartmental Models
Many have unique attractor
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“Shadow”: count # individuals (people, 
microbes) in compartment.

Apparent 
risk of local 
die-out of 
infection

Pushing the model: 
Local and disseminating contact
Different agents transmitted differently

Local: 
Family unit, classroom, small office, geographic 
“word of mouth”

Disseminating: 
Contaminate source water, random mixing in 
street, “mass marketing”

What if we have 2 groups, and vary the 
fraction of “local” contacts?

ODE and MC give 
different mean 
prevalence if…
…most contacts 
are local
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βρ ODE and MC give 
different mean 
prevalence if…
…or local groups 
are small

Proof: Math Biosci 2002
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Summary: Stochastic versus 
deterministic model types

ODE: large population limit of MC for some models 
(Ethier and Kurtz, Whitt, …)

MC behavior differs on two levels
Random outcomes
Long-run averages may differ! (Local die-out of infection).

Prevention:
Disseminating: municipal water treatment, SARS masks
Local: hygiene in families,behavioral
10% decrease in disseminating transmission reduces 
prevalence more than at 10% decrease in local
Vaccination: target to individuals ⇒ hits both local & global

Roadmap
Model Type

System dynamics; Markov chain; discrete event 
simulation at patient level

Independence and system dynamics
Water treatment policy for the E.P.A.

Stochastic versus deterministic
Infectious disease control: NTHi

Patient-level, discrete-event simulations
Structure, time-oriented social dynamics, 
resource constraints

Call for model transition sensitivity analysis
Open Questions

How Sensitive are the Conclusions 
to the Assumptions?

Partnership Concurrency and STDs
ODE models typically assume one long-term partner, several 
independent point contacts (e.g. Dietz, …)
Prevalence depends strongly upon potential of multiple longer-term 
partners (Adams Chick Koopman, Math Biosci 2000)

Smallpox preparedness
ODE says mass vaccination more effective than contact tracing, 
model with service capacity constraint (Kaplan, et al. PNAS 2002)
Patient-level simulation with social structures (family, 
neighborhood), richer natural history of infection implies 
surveillance, tracing about as effective (Longini et al. 2002, 
capacity,vaccine sequelae)

Local versus disseminating
Critical fraction of ‘random contacts’ leads to infection outcomes that 
are more similar to random mixing versus (Soorapanth, Chick 
Koopman 2001; social networks)

Service constraints and delays
Breast cancer screening not as sensitive to delays in a stochastic 
system as to other effects of service delivery program (outreach; 
frequency of screens; quality/volume, Gunes et al. HCMS 2004) –
an ODE is sufficient

Summary: Patient-level models
Outcomes and conclusions may depend upon 
the type of model, not just to input parameters
Many patient-level models are ‘black boxes’, 
little information given for verification

No names given/no blame/ too many ‘special 
cases’
Reasonable values if assumptions simplified?

Question: 
How to calibrate conclusions from one model 
relative to conclusions of another, if both model 
types can be used?
How to dissect the effect of various modeling 
assumptions at each level, in order to account for 
the side-effects of modeling in our conclusions?

Roadmap
Model Type

System dynamics; Markov chain; individual 
(patient) level spreadsheets; discrete event 
simulation

Independence and system dynamics
Water treatment policy for the E.P.A.

Stochastic versus deterministic
Infectious disease control: NTHi

Patient-level, discrete-event simulations
Structure, time-oriented social dynamics, resource 
constraints

Call for model transition sensitivity 
analysis

Open Questions

MTSA/ModelSeer with BioMedware
GERMS: Implemented DEDS, 
validated with ODE separately
MTSA: Assess effect of model 
on decisions regarding the 
analysis, surveillance, and 
control of infectious diseases. 
Sensitivity to changes in 
parameter values, model type, 
(e.g. ODE vs. MC vs patient-
level) and model complexity 
(e.g. mixing, natural history)
Progress:

Phase I: Prototype for NTHi
mixing in patient setting done
Phase II: In progress

parameter 
space

model 
type

model 
complexity
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MTSA Prototype: NTHi model

Individuals flow through ‘cross 
product’ of compartments, some 
combinations ‘illegal’

Example of cross-product

ODE Trajectory Markov Chain Sample Path

Patient-Level Event History Model Hierarchy

Stochastic decision tree 
with covariates

Stochastic 
decision tree

Decision treeUntimed

Patient 
evolve on 
discrete-
time grid

…Sample 
counts of 
patients that  
transition

Finite 
difference 
model

Discrete time

Discrete 
event 
simulation

Patient-
level 
simulation 
(interact)

Stochastic 
Markov 
model 
(queue,…)

System 
dynamics 
(ODE, PDE)

Continuous 
time

Stochastic 
general 
distribution 
individuals

StochasticM
arkovian
individual

Stochastic 
discrete 
counts

Deterministic 
continuous 
state

Patient levelAggregate level
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Summary: Model Type Sensitivity
Models that can be handed to different simulation 
engines may / may not give similar results (output or 
decision), but some differences are predictable

Large numbers
Discrete or continuous time

Multiple types of models: useful for ‘debugging’

Some models might only be handed to one type of 
simulation engine

People trained to model in system dynamics may 
approach problems differently than those trained in 
discrete-event simulation versus decision diagrams

Modeling is part of the understanding
Viva la difference!

Conclusions
No models are right, some models are useful
All model types make assumptions: Awareness
Implied conclusions may depend upon model type
Which model type to choose?

Basic question needs to trace individuals data ⇒ patient 
level (clinical trial, contact tracing, …)
Interactions (infection, constrained resources) ⇒ don’t 
use ‘untimed’ model (e.g. decision tree)…
“Curse of dimensionality”: Much patient/natural history 
heterogeneity ⇒ patient level simulation
Tightly constrained resources + waits affect health 
outcomes ⇒ patient level simulation
“Law of small numbers”: Interactions + small numbers 
per compartment ⇒ stochastic models
Need to explore variability ⇒ stochastic model

Simulation for visualization and communication
Simulation runtimes and uncertainty analysis

Professional Resources

Institute for Operations Research and 
Management Science (INFORMS)

Health Applications
Simulation (www.informs-cs.org)
“The Science of Better” www.informs.org

Winter Simulation Conference
www.wintersim.org
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