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Type of Model

A “keeping models simple enhances
understandability and theoretical
utility but that using models for
disease control decisions often
requires realism that adds
considerable complexity.”

— Roy Anderson

Factors for choosing a model

A Why Patient Level Simulation?

A Need patient-level information from model

A Sufficiently heterogeneous populations (many risk
groups, many stages of natural history,
geography)

A Constrained resources (queuing and health
outcome)

A Patient interaction (e.g. infectious disease
transmission)

A Purpose: understand one system (sensitivity)
or select best of finite set or optimize

A Estimand: Mean? Variance? Distribution?

Factors for choosing a model

A Also:
A Stationary versus transient
A Time invariant versus time varying parameters
A Continuous time versus discrete time versus untimed
A Deterministic versus stochastic
A Large or small population

A The simplest model to answer a question is
preferred (Occam’s razor)
A Different model types can give different conclusions

A Goal: Understand how models relate, and what
systematic implications are due to model choice

Roadmap

A Model Type

A System dynamics; Markov chain; discrete
event simulation at patient level

A Independence and system dynamics
A Water treatment policy for the E.P.A.
A Stochastic versus deterministic
A Infectious disease control: NTHi
A Patient-level, discrete-event simulations

A Structure, time-oriented social dynamics,
resource constraints

A Call for model transition sensitivity analysis
A Open Questions
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Model Hierarchy
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A Model Type

A System dynamics; Markov chain; discrete event
simulation at patient level

A Independence and system dynamics
A Water treatment policy for the E.P.A.

A Stochastic versus deterministic
A Infectious disease control: NTHi

A Patient-level, discrete-event simulations

A Structure, time-oriented social dynamics,
resource constraints

A Call for model transition sensitivity analysis
4 Open Questions

Waterborne Transmission of Infection
and Risk of Infectious Disease

A Chemical risk versus Microbial risk
A Public health issue.

A Crypto, giardia, legionella, ... Cryptogporidium parvum ;
o
A CCL: adeno- & caliciviruses, MAC, ... 7
b o
A Qutbreak! Two of many... r.'~ e -
A Milwaukee, Crypto, 1993: 400 000 w/ o
diarrhea; 1 000 :> hospltalll; 53 died (HIV) Giardia lamblia
A Walkerton, Ontario, E. coli 0157:H7,
2001: 2 000 ill; 7 died
A Endemic: May be more significant! i
cyst

(by PW. Pappas and S.M. Wardrop)
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Microbial Risk Assessment

A Similarity with chemical risk

A Primary exposure: exogenous source
A Standard approach

A |dentify hazards

A Quantify occurrence and exposure

A Assess dose-response relationship

A ldentify human health effects
A But...

A Exposure to microbes from secondary transmission
depends on number of infected individuals
* Human to human
* Human to environment to human




Comparative Analysis:
Milwaukee in Retrospect
A HIV community more susceptible? Did suffer
more serious outcomes
A Chemical Risk: Filter (local) vs. Ozone (global)
A Contaminated water => exposure to HIV community
A $100 Million question
A Assessment: Filters 10x more effective than ozone
A Microbes: Secondary transmission

A Even with 100% effective filters, human-human
transmission might continue infection!

A Can ozone be more effective than filters?

Simplified Transmission System:
ODE Infection Transmission Model
A Natural history of infection
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Ozone/Filter Policy Regions

A Ozone pretreatment: centralized, entire population

A Filters: targeted, in homes of HIV subpopulation

A Criterion: “better” = fewer crypto infections in HIV
subpopulation
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ROh = mean number secondary transmissions from human contact

Summary: Independence and
System Dynamics

A Current U.S. water treatment policy for microbes
based on invalid risk assessment

A Lives of many and hundreds of millions of £¥$€
A Dynamics of risk account for dependent outcomes
A One issue: Unknown transmission parameters

A System dynamics (aka ODE or PDE or
compartmental models) embody risk dynamics

A Question: Are conclusions sensitive to the type of
model (ODE versus stochastic dynamics)?
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Roadmap

A Model Type

A System dynamics; Markov chain; discrete event
simulation at patient level

A Independence and system dynamics
A Water treatment policy for the E.P.A.
A Stochastic versus deterministic
A Infectious disease control: NTHi
A Patient-level, discrete-event simulations

A Structure, time-oriented social dynamics,
resource constraints

A Call for model transition sensitivity analysis
A Open Questions




ODE < Markov Chain
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ODE Compartmental Models

A Many have unique attractor
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Pushing the model:
Local and disseminating contact
A Different agents transmitted differently

A Local:

A Family unit, classroom, small office, geographic
“word of mouth”

A Disseminating:
A Contaminate source water, random mixing in
street, “mass marketing”

A What if we have 2 groups, and vary the
fraction of “local” contacts?

ODE and MC give
different mean

prevalence if...
A ...or local groups
are small

A Proof: Math Biosci 2002

# per Fraction of local contacts
subgroup | 0.0 025 050 0.75 0.90

ODE () | 0.500 0.500 0.500 0.500 0.500

MC10 | 0460 0458 0.451 0432 0.391
MC20 | 0483 0483 0481 0473 0.462
MC50 | 0495 0.494 0493 0492 0.490




Summary: Stochastic versus
deterministic model types

A ODE: large population limit of MC for some models
A (Ethier and Kurtz, Whitt, ...)

A MC behavior differs on two levels
A Random outcomes
A Long-run averages may differ! (Local die-out of infection).

A Prevention:
A Disseminating: municipal water treatment, SARS masks
A Local: hygiene in families,behavioral
A 10% decrease in disseminating transmission reduces
prevalence more than at 10% decrease in local
A Vaccination: target to individuals = hits both local & global

Roadmap

A Model Type

A System dynamics; Markov chain; discrete event
simulation at patient level

A Independence and system dynamics
A Water treatment policy for the E.P.A.
A Stochastic versus deterministic
A Infectious disease control: NTHi
A Patient-level, discrete-event simulations

A Structure, time-oriented social dynamics,
resource constraints

A Call for model transition sensitivity analysis
A Open Questions

How Sensitive are the Conclusions

to the Assumptions?

A Partnership Concurrency and STDs
A ODE models typically assume one long-term partner, several
independent point contacts (e.g. Dietz, ...)
A Prevalence depends strongly upon potential of multiple longer-term
partners (Adams Chick Koopman, Math Biosci 2000)

A Smallpox preparedness
A ODE says mass vaccination more effective than contact tracing,
model with service capacity constraint (Kaplan, et al. PNAS 2002)
A Patient-level simulation with social structures (family,
neighborhood), richer natural history of infection implies
surveillance, tracing about as effective (Longini et al. 2002,
capacity,vaccine sequelae)

A Local versus disseminating
A Critical fraction of ‘random contacts’ leads to infection outcomes that
are more similar to random mixing versus (Soorapanth, Chick
Koopman 2001; social networks)

A Service constraints and delays
A Breast cancer screening not as sensitive to delays in a stochastic
system as to other effects of service delivery program (outreach;
frequency of screens; quality/volume, Gunes et al. HCMS 2004) —
an ODE is sufficient

Summary: Patient-level models

A Outcomes and conclusions may depend upon
the type of model, not just to input parameters
A Many patient-level models are ‘black boxes’,
little information given for verification
A No names given/no blame/ too many ‘special
cases’
A Reasonable values if assumptions simplified?

A Question:

A How to calibrate conclusions from one model
relative to conclusions of another, if both model
types can be used?

A How to dissect the effect of various modeling
assumptions at each level, in order to account for
the side-effects of modeling in our conclusions?

Roadmap

A Model Type
A System dynamics; Markov chain; individual
(patient) level spreadsheets; discrete event
simulation
A Independence and system dynamics
A Water treatment policy for the E.P.A.
A Stochastic versus deterministic
A Infectious disease control: NTHi
A Patient-level, discrete-event simulations
A Structure, time-oriented social dynamics, resource
constraints
A Call for model transition sensitivity
analysis
A Open Questions

MTSA/ModelSeer with BioMedware

A GERMS: Implemented DEDS,
validated with ODE separately
A MTSA: Assess effect of model parameter
on decisions regarding the space
analysis, surveillance, and
control of infectious diseases. model
4 Sensitivity to changes in type
parameter values, model type,
(e.g. ODE vs. MC vs patient- odel
level) and model complexity plexity
(e.g. mixing, natural history)
A Progress:
A Phase I: Prototype for NTHi
mixing in patient setting done
A Phase II: In progress
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MTSA Prototype: NTHi model
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Model Hierarchy
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Summary: Model Type Sensitivity

A Models that can be handed to different simulation
engines may / may not give similar results (output or
decision), but some differences are predictable

A Large numbers
A Discrete or continuous time

A Multiple types of models: useful for ‘debugging’

A Some models might only be handed to one type of
simulation engine

A People trained to model in system dynamics may
approach problems differently than those trained in
discrete-event simulation versus decision diagrams

A Modeling is part of the understanding
A Viva la difference!

Conclusions

4 No models are right, some models are useful
A All model types make assumptions: Awareness
A Implied conclusions may depend upon model type
A Which model type to choose?
4 Basic question needs to trace individuals data = patient
level (clinical trial, contact tracing, ...)
A Interactions (infection, constrained resources) = don’t
use ‘untimed’ model (e.g. decision tree)...
A “Curse of dimensionality”: Much patient/natural history
heterogeneity = patient level simulation

A Tightly constrained resources + waits affect health
outcomes = patient level simulation

A “Law of small numbers”: Interactions + small numbers
per compartment = stochastic models

A Need to explore variability = stochastic model
A Simulation for visualization and communication
A Simulation runtimes and uncertainty analysis

Professional Resources

A Institute for Operations Research and
Management Science (INFORMS)
A Health Applications
A Simulation (www.informs-cs.org)
A “The Science of Better” www.informs.org
A Winter Simulation Conference
A www.wintersim.org

Related Works

Chic| Js,
for Drmkmg Water, In Operatlons Research and Health Care Handbook of

and M.L., Sainfort, F., and W.P.
Pierskalla, Eds p. 467-494.

A Chlck SE, Koopman Js, SooraPanth S, 2003, Inferring Infection
Water Treatment Decisions,

A

Management Sclence 49(7): 920 935.

A Giines, E.D., Chick, S.E., Akgln 0.Z., 2004, Breast Cancer Screening:
Trade-nffs in Planmng and Service Prowslon Health Care Management
Science, 7(4): in press

4 Koopman JS, Chick SE, Riolo CP, Simon CP, Jacquez G, 2002, Stochastic
effects on levels of versus local contacts,
Mathematical Biosciences, 180: 49-71.

A Koopman, J.S., Jacquez, G Chlck S.E., 2001 New Data and Tools for
Integrating Discrete and
Populatlon Health and Agmg Strengthenmg the Dialog between

Ep and D M. A. Hermalin, M.A. Stoto
Eds. Annals of the New York Academy of Sciences, 954: 268-: 294.

A Chick SE, Koopman JS, Soorapanth S, Brown ME, 2001, Infection
Transmission System Models for Microbial Risk Assessment, Science of
the TotaIEnwronment 274(1-3): 197-207.

A Koopman, J.S., Chick, S.E., Riolo, C.S., Adams, A.L., Wilson, M.L., Becker,
M.P., 2000, ing Contact i ission in

n
Geographic_ and Social Space Using GERMS, Sexually Transmitted
Diseases, 27(10): 617-626.

(C) 2004, Stephen Chick




