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Abstract 

This chapter summarises the different regression based decomposition methods used in the empirical 

literature to evaluate discrimination. Starting with the decomposition at the mean using the methods 

made popular in the 1970s by Oaxaca and Blinder, we discuss how the method has evolved over time 

to look beyond the means, taking into account the entire distribution of the outcomes of interest. We 

present the formal identification assumptions underlying the decomposition method and discuss 

cautions that should be exercised in interpreting them and their limitations. We also explain how the 

‘unexplained gap’ in the decomposition, often used as a measure of discrimination, relates to the 

treatment effect literature. 
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1. Introduction 

The fact that discrimination exists is not a doubt; it exists and impacts every aspect of our lives, 

including, but not limited to, economic outcomes (in educational opportunities, and outcomes in labour 

and credit markets), social outcomes (network formations, and residential location), health outcomes 

(mortality rates, and access to health services), and interactions with the criminal justice system (Arrow 

1998; Lang and Kahn-Lang Spitzer 2020; Small and Pager 2020). Within the discipline of economics, 

much of the theoretical discussion around discrimination started with the work of Becker (1957), while 

much of the empirical work has come from within the field of labour economics with the seminal 

works of Oaxaca (1973) and Blinder (1973), who used wage regressions to quantitatively assess the role 

of discrimination in explaining the observed wage gaps between men and women (in case of Oaxaca) 

and between whites and blacks (in case of Blinder, who also looked at the gender wage gaps). 

Since Oaxaca and Blinder’s work, the literature on regression based decompositions has seen 

substantial growth in methodological advancements and their empirical applications. This chapter gives 

a summary of the different regression based decomposition methods. Starting with Oaxaca and 

Blinder’s work, we discuss how the method has evolved over time. Two key limitations of the 

regression based decompositions should be stated at the very beginning. First, all the methods 

discussed here follow the partial equilibrium approach. The wage gaps are decomposed into a part 

explained by the differences in endowments of the two groups, holding the returns to these 

endowments constant; and the differences in the returns to endowments across the two groups, 

holding their endowments constant. This assumes that we can change the endowments without 

impacting returns to them and vice versa. This is a strong assumption and often not valid. 

Second, regression based decomposition methods are an accounting exercise. While we can 

know various factors contributing to the existing difference between wages (or any outcome of 

interest), decompositions do not tell us the underlying mechanisms. They can, however, help us 

confirm an existing hypothesis or form new ones. When we do regression based decompositions, we 

are not trying to detect discrimination but are attempting to quantify it. While we have to be cautious in 

our interpretations that not all the observed wage gaps are discrimination, nothing stops us from 

concluding that discrimination exists and is buried in it. The way we use regression based 

decompositions and the way we interpret them is critical. If done correctly and used correctly, we can 

give some accounting of the existing discriminations. 

Section 2 of the chapter discusses the most famous decomposition method – the Oaxaca-

Blinder (OB, henceforth) method. This section will also highlight issues around interpretations, 

including the treatment effect interpretation, and formal assumptions for identification. Section 3 will 

discuss the different decomposition methods that have been proposed in the literature since the OB 

work. Section 4 provides concluding comments. 
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2. Decomposing the mean 

2.1 Oaxaca-Blinder method 

What we refer to as the OB decomposition in economics was first employed in demography by 

Kitagawa (1955), and made popular in sociology by Althauser and Wigler (1972). This method has been 

used extensively in the empirical economics literature to study mean wage gaps between different 

groups in the labour market, defined over gender, race and ethnicity, age, disability, and over 

immigration status, among others. The decomposition has also been used to look at outcomes beyond 

the labour market, like consumption and expenditure differences, and inequalities over time and space 

(i.e. across different regions). Below we lay out the basics of this decomposition.  

Let 𝑌𝑔𝑖 be any outcome of interest, for individual 𝑖 (𝑖 = 1,… , 𝑛) belonging to group 𝑔 ∈

(𝑀,𝑊). For ease of exposition, let the two groups be men (𝑀) and women (𝑊), and the outcome of 

interest be wages. Let 𝛸𝑔𝑖 = (𝑋𝑔𝑖1, … , 𝑋𝑔𝑖𝐾) be a vector of 𝐾 covariates which are associated with the 

outcome of interest. We assume that the outcome of interest is continuous and linearly related to the 

covariates as: 

 𝑌𝑔𝑖 = 𝛽𝑔0 + Σ𝑘=1
𝐾 𝑋𝑔𝑖𝑘𝛽𝑔𝑘 + 𝜐𝑔𝑖 (1) 

where 𝛽𝑔0 and 𝛽𝑔𝑘 are parameters to be estimated; and 𝜐𝑔𝑖 is the error term which is conditionally 

independent of 𝛸𝑔𝑖, such that 𝐸(𝜐𝑔𝑖|𝛸𝑔𝑖) = 0.  The difference in the means of the outcomes between 

the two groups, ∆̂𝑂
𝜇
= �̅�𝑀 − �̅�𝑊, where �̅�𝑔 is the mean outcome for group 𝑔, is given as: 

 
∆̂𝑂
𝜇
= (�̂�𝑀0 − �̂�𝑊0) +∑ �̅�𝑊𝑘(�̂�𝑀𝑘 − �̂�𝑊𝑘)

𝑘⏟                        
∆̂𝑆
𝜇
 (𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑)

  +∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)�̂�𝑀𝑘
𝑘⏟              
∆̂𝑋
𝜇
 (𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑)

 
(2) 

where �̅�𝑔𝑘 is the mean of covariate 𝑋𝑔𝑖𝑘 for group 𝑔, and �̂�𝑔0 and �̂�𝑔𝑘 are the estimated parameters, 

intercept and slope coefficients, from the regression models estimated separately for the two groups. 

The mean difference is decomposed into two parts. The first term, ∆̂𝑆
𝜇

 is the unexplained component, if 

the outcome of interest is wages, this is also referred to as the wage structure effect. The second term, ∆̂𝑋
𝜇

 is 

the explained component, this is also referred to as the composition effect. 

The composition (explained) effect is the difference in wages due to differences in the observed 

covariates (endowments) of the individuals across the two groups. For example, the composition effect 

is the part of the mean gender wage gap that is explained due to observable differences in mean 

characteristics, �̅�𝑀𝑘 − �̅�𝑊𝑘, among the men and women, like education and labour market experience. 

The wage structure (unexplained) effect is the difference in mean wages due to the difference in returns 

to individual characteristics, �̂�𝑀𝑘 − �̂�𝑊𝑘 . The difference in the intercepts, �̂�𝑀0 − �̂�𝑊0, is interpreted as 

the part of the unexplained gap attributed to group membership. The unexplained component is the 

gender wage gap that is often associated with labour market discrimination, omitted variables, and 

unobserved heterogeneity. 
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Using the expression given in equation (2), we can investigate both the aggregate and detailed 

decompositions. Aggregate decomposition is where we are only interested in the overall wage structure and 

composition effects, i.e. ∆̂𝑋
𝜇

 and ∆̂𝑆
𝜇

, which helps us understand how much of the observed gap is due 

to differences in endowments (composition effect) and how much of the gap is due to differences in 

returns to those endowments (wage structure effect). If we are interested only in aggregate 

decompositions, we do not even need to separately estimate the wage regressions for women. The 

unexplained component can be simply computed as, ∆̂𝑆
𝜇
= ∆̂𝑂

𝜇
− ∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)�̂�𝑀𝑘𝑘 . 

There is, however, often an interest in detailed decomposition, where we wish to know the 

contribution of each individual covariate, 𝑋𝑔𝑖𝐾, to both the wage structure and composition effect. For 

example, to understand the gender wage gap, it can be of interest to know how much of the 

composition gap is due to differences in education between men and women and how much is due to 

differences in the labour market experience between the two groups; as the policy implications from 

the two can be different. Similarly, we might also be interested in differences in returns to education 

versus differences in returns to labour market experience when looking at the wage structure effect.  

The OB decomposition has a counterfactual interpretation, which has been exploited in later 

methodological innovations. Consider, 

 𝑌𝑖
𝐶 = �̂�𝑀0 + Σ𝑘=1

𝐾 𝑋𝑊𝑖𝑘�̂�𝑀𝑘 (3) 

where 𝑌𝑖
𝐶 is the counterfactual wage for women obtained by using their own characteristics, but the 

estimated parameters are from regression for men. The counterfactual wages tell us what women’s 

wages would have been if they had their own characteristics but their characteristics were rewarded as 

men’s are. Using the notion of counterfactual wages, we can write the decomposition in equation (2) as: 

 �̅�𝑀 − �̅�𝑊⏟    
∆̂𝑂
𝜇

= �̅�𝑀 − �̅�
𝐶⏟    

∆̂𝑋
𝜇
 

  + �̅�𝐶 − �̅�𝑊⏟    
∆̂𝑆
𝜇

 (4) 

where �̅�𝐶 is the mean counterfactual wage distribution. The first term of equation (4) is the explained 

component and the second term is the unexplained component. The unexplained component is the 

difference in wages that women would have received if they had their own characteristics but were 

treated as men are in the labour market and the actual wages of women. 

 

2.2 Issues with the decompositions 

This section discusses three main cautions that should be exercised or issues that should be 

kept in mind when interpreting the findings from regression based decompositions. These cautions 

apply to the OB decomposition of the mean and all the extensions and methods proposed since then, 

including those discussed in section 3. 

First is the issue of the reference group. To understand this, let’s consider the counterfactual 

wages generated for women, given by equation (3). In this format, it is clear that men are assumed to be 
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the reference group, and male returns to characteristics (the estimated coefficients) are assumed to be 

non-discriminatory, i.e. we assume that these are the returns that would prevail in the market for both 

men and women in the absence of discrimination. This is not an innocuous assumption; choice of 

reference group can alter how the observed wage gap is attributed to the effect of wage structure and 

composition.  

The choice of reference group has been discussed in the literature, with various alternatives 

being proposed. Cotton (1988) gives an excellent graphical illustration of the inherent assumption made 

when choosing one group as a reference relative to the other group, and proposes using a weighted 

average of the estimated coefficients for the two groups as the non-discriminatory coefficients. 

Neumark (1988), on the other hand, proposed using estimated coefficients from a pooled regression 

for the two groups. Jones and Kelly (1984) propose what is known as the three-fold decomposition: 

 
∆̂𝑂
𝜇
= (�̂�𝑀0 − �̂�𝑊0) +∑ �̅�𝑊𝑘(�̂�𝑀𝑘 − �̂�𝑊𝑘)

𝑘⏟                        
𝑤𝑎𝑔𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑒𝑓𝑓𝑒𝑐𝑡

  +∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)�̂�𝑀𝑘
𝑘⏟              
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡

+∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)(�̂�𝑀𝑘 − �̂�𝑊𝑘)
𝑘⏟                    

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

 

(5) 

The first term, in equation (5), is the pure wage structure effect, as before this reflects how much of the 

gender wage gap results from differences in how women’s characteristics are actually valued in the 

market and how they would be valued if they had the same rates of return as of men. The second term 

is the pure composition effect, as before, this reflects how much more women would earn if they had 

the same characteristics as men, but nothing else has changed. The third term is the interaction term, 

this is the amount that women would gain if they had the characteristics as men and if these 

characteristics had returns similar to men. In the empirical analysis, this term is often small and is hard 

to interpret when we have multiple covariates. For a further discussion of the alternative measures 

proposed in the literature and a unified framework to compare them see Oaxaca and Ransom (1994). 

The second issue concerns the base group or the ‘omitted group’ problem. The omitted group 

problem is discussed in detail by Oaxaca and Ransom (1999) and Oaxaca (2007). This is a concern if we 

want to do a detailed decomposition of the wage structure (unexplained) component and have 

categorical covariates. If we are interested only in aggregate decompositions, then this is not a concern. 

To illustrate the problem, let’s assume the only covariate we have are sectors of employment: primary, 

manufacturing, and service. In the regression framework, we include two dummies for two sectors, and 

one sector is omitted as the base category. Say we arbitrarily set the primary sector (𝑠𝑒𝑐1) as the 

omitted category and include dummies for manufacturing (𝑠𝑒𝑐2) and service (𝑠𝑒𝑐3) sector in the 

regression equation. This gives us the wage structure effect: 

 
∆̂𝑆
𝜇
= (𝛽′̂𝑀0 − 𝛽′̂𝑊0) +∑ �̅�𝑊𝑠𝑒𝑐𝑘(�̂�𝑀𝑠𝑒𝑐𝑘 − �̂�𝑊𝑠𝑒𝑐𝑘)

𝑘=2,3
 

(6) 
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In the presence of categorical covariates, the difference in the intercepts of the two wage regressions 

for the two groups can be written as: 

𝛽′̂𝑀0 − 𝛽
′̂
𝑊0
= (�̂�𝑀0 + �̂�𝑀𝑠𝑒𝑐1) − (�̂�𝑊0 + �̂�𝑊𝑠𝑒𝑐1) = (�̂�𝑀0 − �̂�𝑊0) + (�̂�𝑀𝑠𝑒𝑐1 − �̂�𝑊𝑠𝑒𝑐1) (7) 

When we have categorical covariates difference in intercepts, 𝛽′̂𝑀0 − 𝛽
′̂
𝑊0

, includes not only the gap 

attributed to the group membership, �̂�𝑀0 − �̂�𝑊0, but also the gap attributed to belonging to the 

omitted sector, �̂�𝑀𝑠𝑒𝑐1 − �̂�𝑊𝑠𝑒𝑐1. The latter will change depending on the sector that is omitted. 

The omitted group’s issue arises only in the wage structure effect and does not impact the 

composition effect; neither does this problem arise if there is only one binary dummy variable as a 

covariate (Oaxaca 2007). However, the problem gets complicated if we have more than one categorical 

covariate. Further, as Jones (1983) pointed out, the base group problem also exists in continuous 

covariates that do not have a natural scale, like test scores. Some solutions to the base group problem 

have been proposed in the literature, see Gardeazabal and Ugidos (2004) and Yun (2005), which 

involve the normalisation of coefficients of the categorical variables. However, there is no agreement 

on this, these normalisations tend to be sample specific and different researchers can use different sets 

of normalisations. Base groups should be chosen based on context and economic meaning. 

The third issue is of self-selection within groups and between groups. The most common example 

of self-selection within groups is of differential selection into the labour force by gender. Self-selection 

between groups arises when there is an element of choice over group membership, e.g. union versus non-

union workers. In the presence of selection (whether between groups or within groups), the estimated 

coefficients of the wage regression are biased. There are unobserved variables that are correlated with 

both selection, whether it is the choice of participation in the labour force or the choice of joining 

unions, and wages. A solution to this problem is to estimate a selection corrected wage regression, 

similar to that proposed by Hekman (1979). The selection-corrected wage regression then yields the 

unbiased estimates of the wage regressions and allows for subsequent decomposition. 

Let the selection corrected wage regression be given as: 

 𝑌𝑔𝑖 = 𝛽𝑔0 + Σ𝑘=1
𝐾 𝑋𝑔𝑖𝑘𝛽𝑔𝑘 + 𝜎𝑔𝜆𝑔𝑖 + 𝜐𝑔𝑖 (8) 

where 𝜆𝑔𝑖 is the control variable to correct for selection, if the Heckman selection model is used this 

will be the inverse mills ratio estimated from the first step of the selection model; and 𝜎𝑔 is the 

estimated coefficient for the control variable. This now changes the decomposition, as the selection 

corrected wage regressions have an additional term; the decomposition is now given as: 

∆̂𝑂
𝜇
= (�̂�𝑀0 − �̂�𝑊0) +∑ �̅�𝐹𝑘(�̂�𝑀𝑘 − �̂�𝑊𝑘)

𝑘⏟                        
∆̂𝑆
𝜇
 (𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑)

  +∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)�̂�𝑀𝑘
𝑘⏟              
∆̂𝑋
𝜇
 (𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑)

+ (�̅�𝑀�̂�𝑀 − �̂�𝑊�̂�𝑊) 
(9) 

where the first two terms are as before and the last term (�̅�𝑀�̂�𝑀 − �̂�𝑊�̂�𝑊) is the difference in the wage 

gap attributed to differences in selection bias. How the selection term (control variable and the 
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parameter associated with it) is attributed to the different parts of the wage decomposition has 

implications for interpreting discrimination; for a discussion see Neuman and Oaxaca (2005). 

 

2.3 Treatment effect interpretation 

Fortin et al. (2011) show that the wage structure effect estimated from regression based 

decomposition has parallels with the treatment effect literature. To explain this, let us consider union 

workers (𝑈) and non-union workers (𝑁). The difference in the average wages if everyone is paid 

according to the wage structure of union members and the average wages of everybody if they were 

paid according to the wage structure of non-union members, can be conceived as the average treatment 

effect (ATE) where the treatment is ‘union’ membership, i.e. switching workers from being non-union 

members to union members. Assuming non-union workers as the reference group, we can construct 

counterfactual wages for union workers, these are the wages that the union workers with characteristics 

𝑋𝑈𝑖𝑘 would earn if they were paid as non-union workers: 

 
�̅�𝐶 = �̂�𝑁0 +∑ �̅�𝑈𝑘�̂�𝑁𝑘

𝑘
 

(10) 

Using this counterfactual wage the decomposition can be written as: 

 ∆̂𝑂
𝜇
= �̅�𝑈 − �̅�𝑁 = (�̅�𝑈 − �̅�

𝐶)⏟      
∆̂𝑆
𝜇
 

  + (�̅�𝐶 − �̅�𝑁)⏟      
∆̂𝑋
𝜇
 

 (11) 

where the difference between the average wages of the union workers and their counterfactual wages, 

�̅�𝑈 − �̅�
𝐶 , is the wage structure effect. Under treatment effect interpretation �̅�𝑈, the average wages of 

the union workers, is the average wages of the treatment group where the treatment is ‘union’ 

membership; and �̅�𝐶 is then the average wages of the treated (union) workers if they were not treated, 

i.e. they were non-unionised. Difference between the two, �̅�𝑈 − �̅�
𝐶 , is the ‘union effect’ or the average 

treatment effect on the treated (ATT). In this framework, the composition effect, ∆̂𝑋
𝜇

, is referred to as 

the selection bias. 

The ATT interpretation of the wage structure holds for aggregate decompositions, including 

extensions that go beyond the mean, under the formal identification assumptions discussed below; 

however, this equivalence does not always hold for detailed decompositions. The issues of choice of 

the reference group and the base group problem remain in this interpretation as well; however, this 

approach gives us a way around the selection issue. For a detailed discussion of equivalence between 

the treatment effect interpretation for the OB decompositions see An and Glynn (2019).  

For the OB decomposition, we had assumed the error tern to be conditionally independent of 

covariates, 𝐸(𝜐𝑔𝑖|𝛸𝑔𝑖) = 0. Under the treatment effect interpretation, this assumption can be replaced 

by a weaker assumption of ‘ignorability’. This helps us address some issues of selection bias. Under the 

assumption of ignorability selection bias is allowed as long as it is the same for the two groups. For 
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example, ability, which we do not observe, can be correlated with education, an observed covariate, as 

long as the correlation is the same in the two groups being considered. This is the ‘selection on 

observables’ assumption used in the treatment literature. Under this interpretation, we do not need to 

calculate the composition (explained) component, once we have the unexplained component we can 

compute the explained part as: ∆̂𝑋
𝜇
= ∆̂𝑂

𝜇
− ∆̂𝑆

𝜇
, which reflects the difference in the distribution of the 

covariates and the error term. 

In the treatment effect literature ATT has a causal interpretation. Even though the wage 

structure effect is derived under the same conditions as ATT, the causal interpretation often cannot be 

extended to the wage structure effect for two main reasons. First, in decompositions, ‘treatment’ is not 

always a choice or something that can be manipulated easily. For example, while we can conceive 

union/non-union membership as a choice, gender cannot be conceived as a choice or something that 

can be manipulated. Further, as we discussed in the selection issue, group membership is often related 

to unobserved variables, this means the ignorability assumption is often violated, making the causal 

interpretation hard. Second, as mentioned in the introduction, decompositions are a partial equilibrium 

approach. For example, the wage structure effects for union wage gap tells us, holding union workers 

characteristics (𝛸𝑈𝑖) same, if the returns to their characteristics were the same as that of non-union 

workers (i.e. 𝛽𝑈𝑘 = 𝛽𝑁𝑘), then the wage structure effect would be zero. Equating the two parameters is 

similar to ‘treating’ union workers as non-union workers, but this treatment is likely to change union 

workers’ characteristics. When 𝛸𝑔𝑖 is impacted by the treatment we cannot obtain a causal 

interpretation. Unless great caution has been taken to include only those characteristics that are unlikely 

to be impacted by the treatment, for an example of this see Neal and Johnson (1996). 

 

2.4 Formal identification 

In this section, we lay out the minimum set of assumptions needed to identify the aggregate 

decomposition. There are further assumptions needed to identify detailed decompositions and some of 

the extensions discussed in section 3. For a more technical account of these assumptions refer to Fortin 

et al. (2011), who set out the full set of assumptions needed for identification for all regression based 

decomposition methods. 

 

Assumption 1: Mutually exclusive groups 

The population of interest can be divided into two mutually exclusive groups, 𝑔 ∈ (𝐴, 𝐵). We 

are interested in comparing the outcome 𝑌𝑔𝑖 of the two groups. In line with the treatment effect 

literature, 𝑌𝐴𝑖 and 𝑌𝐵𝑖 can be interpreted as potential outcomes for individual 𝑖. If the individual is in 

group 𝐴 (𝐵) then we only observe 𝑌𝐴𝑖 (𝑌𝐵𝑖). 
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Assumption 2: Structural form 

A worker 𝑖 belonging to group 𝑔 is paid according to the wage structure 𝑚𝑔, which is a 

function of worker’s observable characteristics, 𝑋𝑔𝑖, and unobservable characteristics, 𝜐𝑔𝑖: 

 𝑌𝐴𝑖 = 𝑚𝐴(𝑋𝐴𝑖 , 𝜐𝐴𝑖)   and   𝑌𝐵𝑖 = 𝑚𝐵(𝑋𝐵𝑖 , 𝜐𝐵𝑖) (12) 

In a more general framework, we can think of 𝑚𝑔 as the function linking individual characteristics and 

their outcomes. Under linearity: 𝑌𝑔𝑖 = 𝑚𝑔(𝑋𝑔𝑖, 𝜐𝑔𝑖) = 𝚾𝑔𝑖𝛽𝑔 + 𝜐𝑔𝑖. There are three reasons why 

wages can be different between groups. (1) The difference in the wage setting equations 𝑚𝐴 and 𝑚𝐵. 

For the linear model this is the difference in the returns to the observed characteristics, 𝛽𝐴 and 𝛽𝐵; or 

the difference in the returns to the unobservable characteristics. (2) Differences in the distribution of 

the observable characteristics, 𝑋𝑔𝑖, for the two groups. (3) Differences in the distribution of the 

unobservable characteristics, 𝜐𝑔𝑖, for the two groups. 

 

Assumption 3: Simple counterfactual treatment 

A counterfactual wage structure, 𝑚𝐶 , is said to correspond to a simple treatment when it can be 

assumed that 𝑚𝐶 (𝑋𝐵𝑖 , 𝜐𝐵𝑖) ≡  𝑚𝐴(𝑋𝐵𝑖 , 𝜐𝐵𝑖), or 𝑚𝐶 (𝑋𝐴𝑖 , 𝜐𝐴𝑖) ≡  𝑚𝐵(𝑋𝐴𝑖 , 𝜐𝐴𝑖). This assumption 

states, we can identify what the distribution of wages for groups 𝐴 will be if the returns to their 

characteristics are similar to those of group 𝐵. This is the counterfactual we constructed for women, 

given by equation (3), and the counterfactual we constructed for union workers, given by equation (10). 

This assumption, however, also highlights that while we can identify what the distribution of wages for 

women (union workers) will be if they were paid as men (non-union workers) are, we cannot identify 

what the distribution of wages for women (union workers) will be if there were no labour market 

discrimination (no unions). 

 

Assumption 4: Overlapping support 

No single value of observable, 𝑋𝑔𝑖, or unobservable, 𝜐𝑔𝑖, characteristics can identify group 

membership. This rules out a situation where the covariates in 𝑋𝑔𝑖 are different across groups, or there 

are values that 𝑋𝑔𝑖 can take only for one group and not for the other. The issue of overlapping support, 

or common support as it is also referred to, is well recognised in the treatment effect literature. This is 

usually not a problem if our focus is only on the decomposition of the mean but becomes an issue 

when looking at distributions. 

An example of different covariates across groups is when let’s say we want to compare wages of 

immigrants and natives, where the country of origin is an essential predictor of wages for the 

immigrants but is not relevant for natives. Similarly, when we look at gender wage gaps, often women 

tend to be concentrated into occupations and or industry combinations where there will be no men. 
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For a discussion of this and possible solutions see Nopo (2008). It is also possible that the range of 

values that certain covariates take differ by groups. This was discussed by Barsky et al. (2002), where 

the authors look at the role of income in explaining the black-white wealth gaps, and found that there 

are certain regions of income where no blacks are observed. 

 

Assumption 5: Conditional independence or ignorability 

Let 𝐷𝑔𝑖 = 𝟏{𝑖 ∈ 𝑔}, where 𝟏{. } is the indicator function for group membership. Ignorability 

requires 𝐷𝑔𝑖 ⊥ 𝜐|𝑋. Intuitively, the ignorability assumption states that the distribution of unobservable 

characteristics, 𝜐, given observable characteristics, 𝑋, be the same for the two groups. In case of the 

decomposition of the mean and linear specification, it does not require 𝐸(𝜐𝑔𝑖|Χ𝑔𝑖) = 0, instead all it 

requires is 𝐸(𝜐𝐴𝑖|Χ𝐴𝑖) = 𝐸(𝜐𝐵𝑖|Χ𝐵𝑖). In the treatment effects literature, this assumption is also referred 

to as unconfoundedness or selection on observables. 

 

3. Going beyond the mean 

There have been several extensions of the OB decomposition. In this section, we discuss some 

of these extensions. First, we discuss the extension proposed by Juhn et al. (1993), who give a way to 

account for the unobserved characteristics via a residual imputation method. Second is the reweighting 

method, proposed by DiNardo et al. (1996) to investigate the distribution of the unexplained 

differences. The third is the decomposition of the conditional distributions, based on quantile 

regressions, by Machado and Mata (2005). Fourth, and finally, is the decomposition of unconditional 

quantiles, using Recentered Influence Functions, proposed by Firpo et al. (2007, 2009). While most of 

the methods discussed in this chapter allow us to look beyond the mean and are good at obtaining 

aggregate decompositions, detailed decompositions beyond the mean remain challenging, and where 

possible, they come at the cost of simplicity and intuitive appeal of the OB method.  

 

3.1 Residual Imputations 

The main contribution of Juhn, Murphy, and Pierce (1993), JMP henceforth, was to take into 

account the returns to the unobservable characteristics (also referred to as unobserved heterogeneity) 

explicitly in the decompositions. Starting with the regression function given by equation (1), when we 

decompose the mean gap between two groups we get equation (2). Residuals, 𝜐𝑖𝑔, are not a part of the 

decomposition as �̅�𝑔 = 0, where �̅�𝑔 is the mean residual of group 𝑔. However, the residuals 𝜐𝑖𝑔 are 

interpreted as unobservable characteristics and JMP propose a way to look at how the distributions of 

these unobserved characteristics differ among the two groups. 
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JMP define the cumulative distribution of wage residuals, conditional on covariates, as 𝜃𝑖𝑔 =

𝐹(𝜐𝑖𝑔|𝑋𝑖𝑔). This gives us, 𝜐𝑖𝑔 = 𝐹
−1(𝜃𝑖𝑔|𝑋𝑖𝑔) ≡ 𝐹𝑖𝑔

−1, which is the inverse cumulative distribution of 

wage residuals. Using this definition of residuals we can rewrite equation (1) as: 

 𝑌𝑔𝑖 = 𝛽𝑔0 + Σ𝑘=1
𝐾 𝑋𝑔𝑖𝑘𝛽𝑔𝑘 + 𝐹𝑖𝑔

−1 (13) 

Assuming the two groups to be men and women, there are now three potential sources of the gender 

wage gap, differences in the observables, 𝑋; differences in returns to observables, 𝛽; and differences in 

the distribution of unobservables (residuals), 𝐹𝑔
−1. To obtain the decomposition JMP recommend 

generating two different counterfactuals: 

 𝑌𝑖
𝐶1 = �̂�𝑀0 + Σ𝑘=1

𝐾 𝑋𝑊𝑖𝑘�̂�𝑀𝑘 + 𝐹𝑖𝑀
−1 (14) 

 𝑌𝑖
𝐶2 = �̂�𝑊0 + Σ𝑘=1

𝐾 𝑋𝑊𝑖𝑘�̂�𝑊𝑘 + 𝐹𝑖𝑀
−1 (15) 

The first counterfactual, 𝑌𝑖
𝐶1, gives us the counterfactual wages for women, if the observable 

characteristics are of women and the returns to the observables and the residual distribution are of 

men. The second counterfactual, 𝑌𝑖
𝐶2, gives us the counterfactual wages for women, if both the 

observable characteristics and returns to them are of women, but the residual distribution is of men. 

Using the two counterfactuals the decomposition is given as: 

 �̅�𝑀 − �̅�𝑊 = (�̅�𝑀 − �̅�
𝐶1) + (�̅�𝐶1 − �̅�𝐶2) + (�̅�𝐶2 − �̅�𝑊) (16) 

The first term on the right-hand side of equation (16), (�̅�𝑀 − �̅�
𝐶1), gives us the difference in wages due 

to observable characteristics (the composition effect); second term, (�̅�𝐶1 − �̅�𝐶2), gives us the 

difference in wages due to returns to observable characteristics (the wage structure effect); and the third 

term, (�̅�𝐶2 − �̅�𝑊), gives us the difference in wages due to differences in the distribution of the 

unobservable factors. 

While proving to be very useful in looking at the role of unobserved characteristics in 

explaining wage differentials, the JMP method has some limitations which need to be kept in mind. 

First, if the number of observations between the two groups does not match it is not clear how to 

assign residuals from one group to another, i.e. how to generate the first counterfactual, equation (14). 

The solution proposed by JMP for this is to replace the 𝑖𝑡ℎ ranked residual from women’s residual 

distribution with the 𝑖𝑡ℎ ranked residual from the residual distribution for men. Second, while 

theoretically, we need 𝜃𝑖𝑔 = 𝐹(𝜐𝑖𝑔|𝑋𝑖𝑔), empirically all we can get is 𝜃𝑖𝑔 = 𝐹(𝜐𝑖𝑔), which implies 

independence between observed and unobserved characteristics. This can be an unrealistic assumption. 

Third, the decomposition is path dependent, the order in which we generate the counterfactuals can 

change the size of the different effects. Lastly, in the empirical analysis the three components of the 

decomposition need not add up to the observed mean gap. For a full discussion of the JMP method’s 

limitations and possible solutions, see Lemieux (2002) and Yun (2009). 
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3.2 Reweighting methods 

DiNardo, Fortin, and Lemieux (1996), DFL henceforth, generalised the OB method for the 

entire distribution of wages. We start by estimating the distribution of observed wages for the two 

groups,  

 
𝑓(𝑌𝑔) ≡ 𝑓(𝑌|𝑔) = ∫𝑓(𝑌|𝑔, 𝑥)ℎ(𝑥|𝑔)𝑑𝑥 

(17) 

where 𝑓(𝑌|𝑔) is the distribution of the wages for group 𝑔; 𝑓(𝑌|𝑔, 𝑥) is the wage distribution for group 

𝑔 given individual characteristics, 𝑋 = 𝑥; and ℎ(𝑥|𝑔) is the distribution of individual characteristics for 

group 𝑔. The empirical counterpart to equation (17) can be given as: 

 
𝑓(𝑌𝑔) = ∑ 𝐾 (

𝑌𝑔,𝑖−𝑌𝑔,𝑗

𝑏𝑔
)

𝑛𝑔
𝑗=1

, for all 𝑖 = 1,… , 𝑛𝑔 
(18) 

where 𝐾(. ) is the kernel function and 𝑛𝑔 is the number of observations in group 𝑔. The actual 

distributions are estimated for both groups, let’s say men and women. 

DFL then propose an estimation of a counterfactual distribution for one of the groups, we 

show it for women, defined as: 

 
𝑓𝐶(𝑌𝑊) ≡ 𝑓

𝐶(𝑌|𝑀) = ∫𝑓(𝑌|𝑀, 𝑥)ℎ(𝑥|𝑊)𝑑𝑥 = ∫𝜔(𝑥)𝑓(𝑌|𝑀, 𝑥)ℎ(𝑥|𝑀)𝑑𝑥 
(19) 

where 𝑓𝐶(𝑌𝑊) is the counterfactual distribution of women, such that the distribution of individual 

characteristics is as that of women, but they are paid as men would be. The counterfactual distribution 

suggested by DFL is the distributional equivalent of counterfactual wage regression defined in equation 

(3). The counterfactual distribution is simply a reweighted distribution of men, where 𝜔(𝑥) is the 

reweighting function defined as 𝜔(𝑥) ≡
ℎ(𝑥|𝑊)

ℎ(𝑥|𝑀)
. To estimate the counterfactual distribution, we need an 

estimate of the reweighting function, which using the Bayes rule can be written as: 

 
𝜔(𝑥) =

Pr(𝑊|𝑥) /Pr (𝑊)

Pr(𝑀|𝑥) /Pr (𝑀)
 

(20) 

To estimate equation (20), we pool the data and estimate a probit model, where the dependent variable 

is the binary gender variable, and the covariates are the individual characteristics, 𝑋. Pr (𝑊|𝑥) and 

Pr (𝑀|𝑥) are simply the predicted probabilities from the probit model, and Pr (𝑊) and Pr (𝑀) are the 

unconditional probabilities. Once we have the estimate of the reweighting function empirically the 

counterfactual distribution can be estimated as: 

 𝑓𝐶(𝑌𝑀) = ∑ �̂�(𝑥)𝐾 (
𝑌𝑀,𝑖−𝑌𝑀,𝑗

𝑏𝑀
)

𝑛𝑀
𝑗=1 , for all 𝑖 = 1,…𝑛𝑀 (21) 

Once we have estimates of the actual and the counterfactual distributions we can estimate the 

distributional composition effects (∆̂𝑋
𝑓
) and the wage structure effects (∆̂𝑆

𝑓
) as: 

 ∆̂𝑋
𝑓
= 𝑓(𝑌𝑀) − 𝑓

𝐶(𝑌𝑊)   and   ∆̂𝑆
𝑓
= 𝑓𝐶(𝑌𝑊) − 𝑓(𝑌𝑊) (22) 
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The DFL method is simple to implement, intuitive, and can decompose statistics other than the 

mean. The reweighting function proposed by them has been used in the context of many other 

decomposition methods, including the Recentered Influence Function approach discussed below. 

While aggregate decompositions are easy to do with the DFL method, detailed decompositions are still 

an issue. For binary variables detailed decomposition is feasible, and the authors discuss how to do 

them in their 1996 paper, however detailed decompositions for continuous covariates remain a 

challenge. See Butcher and DiNardo (2002) and Altonji et al. (2012) for some solutions to detailed 

decomposition within the DFL framework. Other methods, other than DFL, have been proposed in 

the literature to look at the decomposition of distribution, for one such method see Jenkins (1994) who 

takes the Generalised Lorenz Curve approach to estimate both the actual distributions and the 

counterfactual distributions. 

 

3.3 Conditional Quantiles 

While the DFL method allows us to do aggregate decomposition at the distributional level, 

detailed distribution beyond the mean remains a challenge. An alternative to looking at the entire 

distributions and doing detailed decomposition is proposed by Machado and Mata (2005), MM 

henceforth, who based their decomposition on conditional quantile regressions (Koenker and Bassett 

1978). In this, instead of estimating a regression for the mean (OLS) we start by estimating a quantile 

regression for each group, men and women, given as: 

 𝑄𝜏(𝑌𝑔|𝑋𝑔) = 𝑋𝑔𝛽𝑔
𝜏,     𝜏 ∈ (0,1) (23) 

where 𝛽𝑔
𝜏 gives us the returns to the characteristics, 𝑋, on the 𝜏𝑡ℎ quantile of the wage (𝑌) distribution. 

As in the OB method, we next estimate a counterfactual distribution for women if they had their own 

characteristics but are paid as men would be: 

 𝑄𝜏(𝑌
𝐶|𝑋𝑊) = 𝑋𝑊𝛽𝑔

𝜏 (24) 

Once we have estimates of the actual and the counterfactual quantile regressions, we can estimate the 

composition effects (∆̂𝑋
𝜏 ) and the wage structure effects (∆̂𝑆

𝜏) at different quantiles as: 

 ∆̂𝑋
𝜏= 𝑄𝜏(𝑌𝑀|𝑋𝑀) − 𝑄𝜏(𝑌

𝐶|𝑋𝑊)   and   ∆̂𝑆
𝜏= 𝑄𝜏(𝑌

𝐶|𝑋𝑊) − 𝑄𝜏(𝑌𝑊|𝑋𝑊) (25) 

To do the quantile decomposition, MM suggest the following simulation: 

1. Sample 𝜏 from a standard uniform distribution. 

2. Estimate the quantile regression for the 𝜏𝑡ℎ quantile, and obtain �̂�𝑔
𝜏. 

3. Compute �̂�𝜏(𝑌
𝐶|𝑋𝑊) = 𝑋𝑊�̂�𝑀

𝜏  and �̂�𝜏(𝑌𝑊|𝑋𝑊) = 𝑋𝑊�̂�𝑀
𝜏 . The difference between the two gives 

us the wage structure effect (∆̂𝑆
𝜏), composition effect is then computed as residual, ∆̂𝑋

𝜏=

(�̂�𝜏(𝑌𝑀|𝑋𝑀) − �̂�𝜏(𝑌𝑊|𝑋𝑊)) − ∆̂𝑆
𝜏 

4. Repeat steps 1 to 3 𝑀 times. 
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MM method is computationally very intensive, further, while it allows for the detailed 

decomposition of the wage structure effect, we cannot obtain the detailed decomposition of the 

composition effect. Melly (2005) provides a way to reduce the computation time and do a detailed 

decomposition of the composition effect at the median. Chernozhukov et al. (2013) provide a further 

extension of the MM method, giving detailed decomposition for both the wage structure and the 

composition effect. A key limitation of this method is that the detailed decompositions based on 

conditional quantile regressions are path dependent, the order in which the various covariates are 

considered in decomposition can alter their contribution to the explained and the unexplained 

components. 

 

3.4 Recentered Influence functions 

Firpo et al. (2007, 2009) proposed a way to look at the unconditional distributions and do both 

the aggregate and detailed decomposition, by using Recentered Influence Function (RIF) regressions. 

The RIF regression for the 𝜏𝑡ℎ quantile, 𝑞𝜏, of the wages, 𝑌𝑔, for group 𝑔, is defined as: 

 𝑅𝐼𝐹(𝑌𝑔, 𝑞𝜏) = 𝑞𝜏 + [𝜏 − 𝑑𝑔,𝜏]/𝑓𝑌𝑔(𝑞𝜏),… 𝜏 ∈ (0,1) (26) 

where 𝑓𝑌𝑔(𝑞𝜏) is the density function of 𝑌𝑔 computed at quantile 𝑞𝜏, and 𝑑𝑔,𝜏 is the dummy variable 

taking value one if 𝑌𝑔 ≤ 𝑞𝜏 and zero otherwise. The 𝑅𝐼𝐹(𝑌𝑔, 𝑞𝜏) has two properties that make it 

particularly useful; first, its expectation is the actual 𝜏𝑡ℎ-quantile, 𝐸𝑌[𝑅𝐼𝐹(𝑌𝑔, 𝑞𝜏)] = 𝑞𝜏; and second, 

the expectation of the conditional 𝑅𝐼𝐹, when conditioning on the vector 𝑋𝑔, is also the actual 𝜏𝑡ℎ-

quantile, 𝐸𝑋 [𝐸𝑦[𝑅𝐼𝐹(𝑌𝑔, 𝑞𝜏)|𝑋𝑔]] = 𝑞𝜏. Assuming RIF to be a linear function of covariates we have, 

𝑅𝐼𝐹(𝑌𝑔, 𝑞𝜏) = 𝛽𝑔0
𝜏 + Σ𝑘=1

𝐾 𝑋𝑔𝑖𝑘𝛽𝑔𝑘
𝜏 + 𝜐𝑔

𝜏 (27) 

where 𝛽𝑔
𝜏 is the vector of coefficients for the 𝜏𝑡ℎ-quantile, and 𝜐𝑔

𝜏 is the error term. Given the two 

properties of the RIF function equation (27) is the unconditional quantile regression, which is estimated 

separately for the two groups, men and women. 

The difference in the 𝜏𝑡ℎ-quantile wage for men and women, 𝑞𝜏,𝑀 − 𝑞𝜏,𝑊, can then be 

decomposed as follows: 

𝑞𝜏,𝑀 − 𝑞𝜏,𝑊⏟      
Δ̂𝜏

 =  (�̂�𝑀0
𝜏 − �̂�𝑊0

𝜏 ) +∑ �̅�𝑊𝑘(�̂�𝑀𝑘
𝜏 − �̂�𝑊𝑘

𝜏 )
𝑘⏟                        
∆̂𝑆
𝜏

+∑ (�̅�𝑀𝑘 − �̅�𝑊𝑘)�̂�𝑀𝑘
𝜏

𝑘
 

⏟              
∆̂𝑋
𝜏

 
(28) 

On the left-hand side of equation (6), Δ̂𝜏, is the gap in the wages of men and women at the 𝜏𝑡ℎ-quantile. 

The first term on the right-hand side, ∆̂𝑆
𝜏, is the wage structure effect at the 𝜏𝑡ℎ-quantile, and the second 

term ∆̂𝑋
𝜏 , is the composition effect at the 𝜏𝑡ℎ-quantile. Like the OB decomposition, we can obtain both 

the aggregate decomposition and the detailed decomposition, which are path independent. When the RIF 

is evaluated at the mean of 𝑌𝑔, we get OB decomposition as a special case. 
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The RIF regressions can be biased as the assumption of linearity holds true only locally. To 

correct for the specification error, the RIF regression is combined with the DFL reweighting function. 

This requires estimating the RIF regression for women with the reweighting function such that the 

covariates of women have the same distribution as of men. This yields the specification error and the 

reweighting error, separately from the composition and the wage structure effect, respectively. 

Empirically these errors tend to be very small. 

 

4. Conclusion 

Oaxaca and Blinder decomposition was first popularised in the 1970s, the use and popularity of 

this method have not waned over the last five decades. This chapter summarises the OB 

decomposition’s main facets, its main limitations, cautions that should be exercised when using it, and 

the formal identification assumptions underlying it. We also link OB decomposition to the treatment 

effect literature. This chapter is not an exhaustive discussion of all methods of decomposition and the 

issues underlying them. For example, we have only focused on continuous outcomes, and not discussed 

the various methods that have been proposed for limited dependent variables (Fairlie 2005). Instead, 

this chapter’s focus has been to introduce the regression based decompositions and highlight, up to 

date, key innovations in this method. 

This main limitation of regression based methods, from the perspective of discrimination 

studies, is the interpretation of the unexplained gaps. On the one hand, not all of the unexplained gap 

can be discrimination, there often are unobservable factors at play making the unexplained gap an 

overestimation of discrimination. On the other hand, the estimated coefficients (return to endowments) 

from regressions already taken into account the feedback from the market, so any estimated 

discrimination is likely to be understated. The decomposition methodology has come a long way from 

the original work of Oaxaca and Blinder, increasingly we have methods that help us address the issues 

of unobserved productivity differences, self-selection, and omitted variables. 

In recent years, in an attempt to separate discrimination from unobserved productivity 

differences, self-selection, and omitted variables, there has been substantial growth in the experimental 

literature on discrimination (for a review, see Neumark 2018). While the experimental methods help us 

identify discrimination more robustly and explore the underlying mechanisms, they have their 

limitations. Most of the experimental literature in labour economics focuses on hiring, which may not 

impact earnings, whereas the decomposition methods can look at earnings directly. 
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