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Abstract
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heavily in big-data tools that aim to construct social networks, we investigate the
value of acquiring network information. We do this using networks that allow for
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social networks may be counterproductive.
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1 Introduction

Tax evasion is a significant economic phenomenon. Estimates provided by the UK tax

authority put the value of the tax gap —the difference between the theoretical tax liability

and the amount of tax paid —at 6.5 percent (H.M. Revenue and Customs, 2016). Academic

studies for the US and Europe put the gap substantially higher, at around 18-20 percent

(Cebula and Feige, 2012; Buehn and Schneider, 2016).

In this paper we link evasion behavior to a mass of evidence that people engage in compar-

isons with others (social comparison). Utility, evidence for developed economies suggests,

is in large part derived from consumption relative to social comparators, rather than from

its absolute level (e.g., Ferrer-i-Carbonell, 2005; Luttmer, 2005; Clark and Senik, 2010; Mu-

jcic and Frijters, 2013). The evolutionary processes that might explain this phenomenon

are explored in Postlewaite (1998), Rayo and Becker (2007) and Samuelson (2004), among

others. Researchers have proposed that social comparison can explain economic phenomena

including the Easterlin paradox (Clark et al., 2008; Rablen, 2008), stable labor supply in

the face of rising incomes (Neumark and Postlewaite, 1998); the feeling of poverty (Sen,

1983); the demand for risky activities (Becker et al., 2005); and migration choices (Stark

and Taylor, 1991). There are important consequences for consumption and saving behavior

(Harbaugh, 1996; Hopkins and Kornienko, 2004) the desirability of economic growth (La-

yard, 1980, 2005), and for tax policy (Boskin and Sheshinki, 1978; Ljungqvist and Uhlig,

2000).

We provide a network model in which taxpayers are assumed to have an intrinsic concern for

consumption relative to that of other “local”taxpayers with whom they are linked on a social

network.1 In this context, taxpayers may seek to evade tax so as to improve their standing

relative to those they compare against. The model exhibits strategic complementaries in

evasion choices, so that more evasion by one taxpayer reinforces other taxpayers’decisions

to evade also. Following the lead of Ballester et al. (2006), we utilize linear-quadratic utility

functions to provide a characterization of Nash equilibrium. We show that there is a unique

Nash equilibrium in which evasion is a weighted network centrality measure of the form

proposed by Bonacich (1987). Network centrality is a concept developed in sociology to

1The economics of networks is a growing field. For recent overviews, see Ioannides (2012), Jackson and
Zenou (2015), and Jackson et al. (2017). Our analysis connects to broader literatures that apply network
theory to the analysis of crime (e.g., Glaeser et al., 1996; Ballester et al., 2006) and to other types of risky
game (e.g., Bramoullé and Kranton, 2007a).
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quantify the influence or power of actors in a network. It counts the number of all paths

(not just shortest paths) that emanate from a given node, weighted by a decay factor that

decreases with the length of these paths. In this sense, our contribution combines sociological

and economic insights in seeking to understand tax evasion behavior.

Although the model is simple enough to admit an analytic solution, it is also suffi ciently rich

that it may be used to address a range of questions of interest to academics and practitioners

in tax authorities. Here we focus on two such questions: first, we investigate —for an arbitrary

network structure —how changes in the model’s exogenous parameters affect optimal evasion.

Second, in the light of growing investment by tax authorities into “big data”tools that seek to

construct social networks, we investigate the value to a tax authority —in terms of additional

revenue raised through audits —of knowing the structure of the social network. The analysis

is performed on a class of generative networks that possess many of the empirically observed

features of social networks — in particular allowing for highly visible celebrity taxpayers.

Our results compare audit revenue outcomes when audits are targeted using the available

network information with audit revenues under random auditing. We show that there are

strong returns to a tax authority from moving from not observing the social network at all

to observing around 20 percent of the links. Attempting to target audits with a very limited

understanding of the social network is, however, shown to actually be counterproductive. The

more concentrated are the links within a social network the greater the value of possessing

at least some network information. These findings are robust to the presence or absence of

unobserved preference heterogeneity.

An important feature of our model is that it addresses explicitly the role of local comparisons

on a social network. By contrast, the existing analytical literature on tax evasion allows only

global (aggregate) social information to enter preferences: the global statistic that taxpayers

are assumed to both have a concern for, and to be able to observe, is either (i) the proportion

of taxpayers who report honestly (Gordon, 1989; Myles and Naylor, 1996; Davis et al., 2003;

Kim, 2003; Traxler, 2010; Ratto et al., 2013); (ii) the average post-tax consumption level

(Goerke, 2013); (iii) the level of evasion as a share of GDP (Dell’Anno, 2009); or (iv) the

average tax payment (Mittone and Patelli, 2000; Panadés, 2004).

While reducing social information to a single statistic known to all taxpayers promotes

analytical tractability, it is problematic in other respects. First, from the perspective of

modelling with explicit social networks, assuming that taxpayer’s observe aggregate-level
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information is implicitly the assumption that every taxpayer observes every other taxpayer.

When, as we suppose, observability is only between linked taxpayers, full observability is

equivalent to the assumption that the social network is the complete network (in which

every taxpayer is directly linked to all other taxpayers). But there are reasons to think that

relative consumption externalities are, in fact, heterogeneous across individuals. In particu-

lar, we know that the reference group often contains “local”comparators such as neighbors,

colleagues, and friends (Luttmer, 2005; Clark and Senik, 2010).2 Moreover, implicitly as-

suming a complete network implies that all taxpayers are equally connected socially, thereby

ruling out, in particular, the existence of “stars”or “celebrities”whose consumption is very

widely observed in the network. Yet, this feature of social networks may matter for the

targeting of tax audits (Andrei et al., 2014).

The only literature that has enriched the analysis of social information to allow for lo-

cal comparisons is that which uses agent-based simulation techniques as an alternative to

analytical methods. Models in this tradition nonetheless employ representations of social

networks that appear to differ markedly from real world examples. A common property of

the network structures employed (e.g., Korobow et al., 2007; Hokamp and Pickhardt, 2010;

Bloomquist, 2011; Hokamp, 2014) is that the number of taxpayers who observe a given tax-

payer is fixed, thereby ruling out the existence of highly-observed celebrity taxpayers. Other

authors (e.g., Davis et al., 2003; Hashimzade et al., 2014, 2016) utilize an undirected network,

meaning that, if i is linked to j, then necessarily j is linked to i. Yet social networks display

strong asymmetry in the direction of links (Foster et al., 2010; Szell and Thurner, 2010).3

We offer a model that is both analytically tractable and that allows for local comparisons

on an arbitrary social network. In this sense, our approach lies in the cleavage between

existing analytical and agent-based approaches, and is complementary to each.4 We perform

simulation analysis on a class of generative networks that are not subject to the restrictions

discussed above, and which are utilized widely to model network structures in the natural

sciences. Our methodology in this regard, therefore, has applicability beyond the current

2Relative consumption externalities may be viewed more generally as a form of peer effect. In other
contexts, generative models of peer effects predict heterogeneous exposure. For instance, when job informa-
tion flows through friendship links, employment outcomes vary across otherwise identical agents with their
location in the network of such links (Calvó-Armengol and Jackson, 2004).

3Zaklan et al. (2008) and Andrei et al. (2014) are among exceptions that do explore more general network
structures.

4By extending analytical understanding of network effects upon tax evasion —in particular being able to
prove formal comparative statics properties of the model —we assist the interpretation of simulation output
from related agent-based models.
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context of tax evasion.

In related research, Goerke (2013) assumes an intrinsic concern for relative consumption

by taxpayers. The primary focus of his contribution is, however, the derived impact on

tax evasion from endogenous changes in labor supply, whereas we treat earned income as an

exogenous parameter. In the remaining literature that considers a social dimension to the tax

evasion decision, taxpayers are assumed to derive utility solely from absolute consumption,

but react nonetheless to social information because they experience social stigma — the

extent of which depends on the evasion of other taxpayers —if caught evading. The focus

of much of this literature is on the potential for multiple equilibria, whereas our model

yields a unique equilibrium. While a concern for relative consumption is compatible with

the simultaneous existence of social stigma towards evaders, the two approaches differ in

emphasis. Underlying the idea of social stigma is the concept of social conformity, in which

individuals seek to belong to the crowd, whereas the presumption of relative consumption

theories is that individuals seek to stand out from the crowd. A literature relating to this

point in the context of tax evasion offers strong evidence that social information impacts

compliance behavior (Webley et al., 1988; De Juan et al., 1994; Alm and Yunus, 2009; Alm

et al., 2017), but rejects social conformity as the underlying mechanism (Fortin et al., 2007).

The paper proceeds as follows: section 2 develops a formal model of tax evasion on a social

network. Section 3 analyzes the comparative statics of optimal evasion with respect to

information transmitted through the social network. Section 4 considers the value of network

information to a tax authority, and section 5 concludes. Proofs are collected in the Appendix,

and figures are at the very rear.

2 Model

Let N be a set of taxpayers of size N . A taxpayer i ∈ N has an (exogenously earned) income

Wi > 0. By law taxpayers should declare Wi to the tax authority and pay tax θ (Wi), where

θ : R≥0 7→ (0,Wi) is a non-decreasing function. If a taxpayer declares their true gross income,

Wi, they receive a (legal) net disposable income Xi ≡ Xi (Wi) = Wi − θ (Wi). Taxpayers

can, however, choose to declare less than their true income, thereby evading an amount of

tax Ei ∈ [0,Wi −Xi]. Taxpayer i is audited with probability pi ∈ (0, 1) in each period.

Heterogeneity in the pi can arise, for example, if the tax authority conditions audit selection

upon observable features of taxpayers. Audited taxpayers face a fine at rate f > 1 on all

4



undeclared tax, à la Yitzhaki (1974).

In each period, taxpayers behave as if they maximize expected utility, where the utility of

taxpayer i is denoted by Ui (.). Most of our analysis shall be undertaken under the assumption

that Ui (.) is of the linear-quadratic form, but the model is more parsimoniously outlined for

the more general case. Utility is derived from a taxpayer’s level of consumption relative to

a reference level of consumption Ri (the determination of which we shall discuss later). The

expected utility of taxpayer i is therefore given by

E (Ui) ≡ [1− pi]Ui (Cn
i −Ri) + piUi (C

a
i −Ri) , (1)

where consumption in the audited state (Ca
i ) and not-audited state (C

n
i ) is given by:

Cn
i ≡ Xi + Ei; Ca

i ≡ Cn
i − fEi. (2)

Optimal evasion is the solution to the problemmaxEi E (Ui) subject to the Cournot constraint

that reference consumption, Ri, is taken as given. The first order condition for optimal

evasion is therefore given by

[1− pi]U ′i(Cn
i −Ri)− pifU ′i(Ca

i −Ri) = 0. (3)

2.1 Reference Consumption

Reference consumption, Ri, is a function of social comparison. To formalize the notion of

social comparison, we assume that each taxpayer observes the consumption of a non-empty

set of taxpayers Ri⊂ N , a set we term the reference group. A taxpayer, i, is said to be

observed if their consumption is visible to at least one other taxpayer in the network, i.e.,

i ∈ ∪j∈N\iRj.

We represent the observability of consumption in the form of a directed network (graph),

where a link (edge) from taxpayer (node) i to taxpayer j indicates that i observes j’s con-

sumption. Links are permitted to be subjectively weighted, for some members of the reference

group may be more focal comparators than are others. The network is represented as an

N ×N (adjacency) matrix, G, of subjective comparison intensity weights gij ∈ [0, 1], where

gii = 0. We normalize the gij for each taxpayer to sum to unity:
∑

j∈Ri gij = 1. Taxpayers

i and j with gij > 0 are said to be linked. Accordingly, the reference group of taxpayer i is

the set of all taxpayers to whom i is linked: Ri = {j ∈ N : gij > 0}. For later reference, a
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network, G, in which there is a path (though not necessarily a direct link) between every

pair of taxpayers is said to be connected.

Expected consumption writes as qi = [1− p]Cn
i + pCa

i = Xi + [1 − pif ]Ei. We define q̄i as

the (weighted) mean of expected consumption over the taxpayers in i’s reference group. This

weighted mean is written conveniently as q̄i ≡ q̄i (q) = giq, where gi is the ith row of G, and

q is a N × 1 vector of the expected consumptions. We then set

Ri = q̄i. (4)

2.2 Nash Equilibrium

Using (4) in the first order condition (3), we now solve for the unique Nash equilibrium of

the model. To do this, we first define a notion of network centrality due to Bonacich (1987),

which computes the (weighted) discounted sum of paths originating from a taxpayer in the

network:

Definition 1 Consider a network with (weighted) adjacency matrix A. For a scalar β

and weight vector α, the weighted Bonacich centrality vector is given by b(A, β,α) =

[I− βA]−1α provided that [I− βA]−1 is well-defined and non-negative.

In Definition 1, the scalar β specifies the discount factor that scales down (geometrically) the

relative weight of longer paths, while the vector α is a set of weights. In the present context

the matrix [I− βA]−1 is a form of social comparison multiplier. It measures the way in which

actions by one taxpayer feed through into other taxpayers’actions. Ballester et al. (2006)

show that [I− βA]−1 will be well-defined, as required in Definition 1, when 1 > βρ (A),

where ρ (A) is the spectral radius of A.5 In our context, this condition is that the local

externality that a taxpayer’s evasion imparts upon other taxpayers cannot be too strong.

If local externality effects are too strong then the set of equations that define an interior

Nash equilibrium of the model have no solution. In this case, multiple corner equilibria can

instead arise (see, e.g., Bramoullé and Kranton, 2007b; Bramoullé et al., 2014). Focusing on

the case when local externality effects are not too strong, we have the following Proposition:

Proposition 1 If
5Given the formal similarity between network adjacency matrices and Leontief input-output matrices,

this condition plays an equivalent role to the Hawkins-Simon condition (Hawkins and Simon, 1949) in that
literature.
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(i) utility is linear-quadratic, Ui (z) =
[
bi − aiz

2

]
z, with ai ∈

(
0, bi

Wi

)
and bi > 0 for all

i ∈ N ;

(ii) 1 > ρ (M); [I−M] θ (W)−α > 0;

then there is a unique interior Nash equilibrium, at which the optimal amount of tax evaded

is given by

E = b(M, 1,α),

where

mij =
[1− pif ][1− pjf ]

ζ i
gij; ζ i = [1− pif ]2 + pi [1− pi] f 2 > 0.

αi1 =
1− pif
aiζ i

{b− ai [Xi −Ri (X)]} ;

Proposition 1 characterizes the unique interior Nash equilibrium of the model, and the con-

ditions under which it arises, for the case of linear-quadratic utility. The restrictions in (i)

on the parameters {ai, bi} are suffi cient to ensure that marginal utility is everywhere pos-
itive. The restrictions in (ii) guarantee an interior equilibrium: the first ensures Ei > 0,

while the second ensures Ei < θ (Wi), so that the amount a taxpayer evades does not exceed

the amount of tax they owe. The uniqueness of equilibrium evasion follows intuitively from

the observation that, under linear-quadratic utility, each taxpayer’s best-response function

is linear in the evasion of other taxpayers.

According to Proposition 1 a taxpayer’s optimal evasion corresponds to a Bonacich centrality

on the social networkM, weighted to reflect a taxpayer’s marginal utility of consumption.6

By this measure, taxpayers that are more central in the social network evade more. The

social network M transforms the underlying comparison intensity weights, gij, by a factor

[1 − pif ][1 − pjf ]ζ−1i ∈ (0, 1) that reflects potential heterogeneity in audit probabilities

across taxpayers. It follows that, in the special case that all taxpayers face a common audit

probability, as might occur if a tax authority has committed to a policy of random auditing,

no adjustment to the underlying comparison intensity weights is warranted. In this case,

therefore, optimal evasion is a weighted Bonacich centrality measure on the untransformed

network G:
6Marginal utility in the linear-quadratic specification is given by U ′ (z) = b − az. Accordingly, the term

in braces in the expression for αi1 is the marginal utility from ones own legal consumption, Xi, relative to a
reference level of consumption reflecting the weighted average over the reference group of legal consumption.
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Corollary 1 Under the conditions of Proposition 1 and setting pi = p for all i ∈ N , the
unique interior Nash equilibrium for evasion is given by E = b(G, ω,α), where

ω =
[1− pf ]2

ζ
< 1.

What if utility is not linear-quadratic? For an arbitrary twice-differentiable utility function

we may generalize the model by considering the first order linear approximation around a

Nash equilibrium to a set of (potentially non-linear) first order conditions of the form in (3).

The resulting set of equations are given by

E = JE+ α̂ = [I− J]−1 α̂ =

[ ∞∑
k=0

Jk

]
α̂, (5)

where α̂ is again a vector of weights for the different taxpayers, and J is a matrix of co-

effi cients measuring how actions interact. By appropriate decomposition of J, therefore, a

solution to the equation system in (5) is a Bonacich centrality measure of the form contained

in Definition 1.7

Proposition 1 survives multiple extensions to the (intentionally) simple model we present. For

instance, whereas we represent utility as purely relative, absolute utility perhaps also plays a

role.8 If, accordingly, utility is instead specified as U (C −R,C), such that C matters in its

own right, not only relative toR, then a Bonacich representation of Nash equilibrium pertains

so long as U (·) is specified to preserve linearity in the best-response functions. One might also
worry that, in practice, not all consumption is observable, leading to a distinction between

observable (or “conspicuous”) consumption and unobservable consumption (Frank, 1985;

Veblen, 1899). Without altering the Bonacich centrality interpretation of the equilibrium,

this point can be addressed by altering the definition of reference income such that taxpayers

compare against the expected observable consumption of those in their reference group,

rather than against expected full consumption. It is also possible to extend the definition

of reference consumption to reflect features other than social comparison. Incorporating an

additional concern for previous own consumption, for instance, introduces habit effects into

the model (see, e.g., Bernasconi et al., 2016). This too is achieved without altering the

7See also Allouch (2015) for results relating Nash equilibrium and Bonacich centrality under Gorman
polar form preferences.

8We note that measures of subjective wellbeing typically become uncorrelated with absolute income above
a threshold of average national income estimated at $5,000 (in 1995, PPP) by Frey and Stutzer (2002). As
most citizens of developed countries lie above this threshold, a model with purely relative utility may actually
be a reasonable approximation in such cases.
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Bonacich centrality interpretation of the equilibrium. Moral and/or stigma costs can also be

integrated into the payoffs without diffi culty, thereby potentially introducing a second role

for social information when stigma costs reflect locally observed compliance behavior.

Bearing in mind the extent to which our basic framework can be extended to allow for a

wide range of features, we now show examples of how it may be used to address a range of

questions of interest to academics and practitioners in tax authorities. In particular, sub-

sequent sections will consider how information carried by the social network affects optimal

evasion, and the value of knowing the network to a tax authority. These analyses by no

means exhaust the range of questions that can be analyzed within the framework, however.

3 Comparative Statics of Network Interaction

We now use the model in Proposition 1 to understand the way in which social information

affects the evasion decision. We do this for an arbitrary social network that satisfies condition

(ii) in Proposition 1.

A basic property of the model is that, under the assumptions of Proposition 1, the model

exhibits strategic complementaries in evasion choices: an increase in evasion by one taxpayer

induces others to do likewise.9 This is equivalent to the expected utility of taxpayer i being

supermodular in the cross evasion choices of another taxpayer j belonging to i’s reference

group:

∂2E (Ui)

∂Ei∂Ej
= aigij[1− pif ][1− pjf ] > 0 j ∈ Ri.

We now analyze how the evasion decision of a taxpayer i, Ei, is affected by a permanent

marginal increase in a parameter zj belonging to a different agent j 6= i. Differentiating the

expression for evasion in Proposition 1 we obtain:

9The version of the model we present here is simple enough to admit computation of exact comparative
statics. An advantage of the strategic complementary property, however, is that, if one only seeks the
signs of the comparative statics (as might be appropriate in more complex versions of the model where the
computation of exact compative statics is burdensome), these can be elucidated straightforwardly using the
theory of monotone comparative statics (e.g., Edlin and Shannon, 1998; Tremblay and Tremblay, 2010).
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Proposition 2 Under the conditions of Proposition 1 it holds at an interior Nash equilib-
rium that:

∂Ei
∂Wj

= b1i

(
M, 1,

∂α

∂Xj

)
≥ 0;

∂Ei
∂pj

= b1i

(
M, 1,

∂M

∂pj
E+

∂α

∂pj

)
≤ 0.

The results in Proposition 2 underscore that the attributes of other taxpayers, and the

treatment of other taxpayers by the tax authority, both affect own compliance. Moreover,

the precise effects are heterogeneous across taxpayers, depending upon how “close”taxpayers

are in the social network. In respect of sign, these results are in line with those of models

of tax evasion that introduce social concerns through a social norm for compliance, albeit

there are important differences in economic interpretation.

The first result is that an increase in the income of taxpayer j induces taxpayer i to evade

more. When j gets richer this pushes up their expected consumption, causing those taxpayers

who observe j’s consumption to feel poorer in relative terms. This, in turn, induces these

taxpayers to increase their evasion in an attempt to boost their consumption. This behavior,

in turn, induces yet a further set of taxpayers to also feel poorer, and also increase their

evasion, and so on. If the network M is connected then this ripple effect ultimately reaches

every taxpayer in the network, so the result in Proposition 2 may be strengthened to a

strict inequality. If, however, the network M is not connected, then there exists at least one

taxpayer pair {i, j} between whom social information does not flow. For such {i, j} pairs it
will hold that ∂Ei/∂Wj = 0.

The second result in Proposition 2 is an enforcement spillover effect: the evasion of taxpayer i

responds negatively to the level of tax authority enforcement of other taxpayers in the social

network. When a taxpayer j experiences an increase in audit probability they decrease

their evasion. This decreases the evasion required of taxpayer i to maintain a given level of

expected relative consumption, leading i to evade less. The result can be strengthened to

a strict inequality if the network M is connected. This finding is consistent with a recent

literature that documents empirically enforcement spillover effects in networks (e.g., Drago

et al., 2015; Rincke and Traxler, 2011).
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4 Audit Targeting and Network Structure

Can tax authorities observe links in social networks? Although surely the full gamut of

links cannot be observed, importantly, there exist some individuals — celebrities —whose

widespread visibility is common knowledge. Also, even for non-celebrities, the idea that tax

authorities know at least something about people’s associations is becoming more credible

with the advent of “big data”. The UK tax authority, for instance, uses a system known

as “Connect”, operational details of which are in the public domain (see, e.g., Baldwin and

McKenna, 2014; Rigney, 2016; Suter, 2017). Connect cross-checks public sector and third-

party information, seeking to detect relationships among actors. According to Baldwin

and McKenna (2014), the system produces “spider diagrams” linking individuals to other

individuals and to legal entities such as “property addresses, companies, partnerships and

trusts.”The IRS is known to have also invested in big data heavily, but has so far been much

more reticent in revealing its capabilities.

Accordingly, in this section we consider the business case for investing in the means to

acquire information about social networks. Can such knowledge be used to systematically

improve audit yields through improved targeting? We also address the related questions of

how the value of network information varies with the topological properties of the network.

We begin by developing a theoretical framework for analyzing rigorously these questions,

and then perform simulations of this framework to obtain numerical estimates.

4.1 Theoretical Framework

We consider the problem of a tax authority seeking to audit those taxpayers who have evaded

most, conditional on observing (i) an income declaration di; and (ii) some (potentially partial)

information regarding the social network. Let the taxpayer’s income declaration be denoted

as di. Using this notation, we may write evasion as Ei = θ (Wi)− θ (di), thereby giving the

income declaration as

di ≡ d̂i (G) = θ−1 (θ (Wi)− Ei (Wi;G)) . (6)

The function d̂i (Wi) in equation (6) gives the optimal disclosure di for a taxpayer with income

Wi. Of relevance to our purpose, however, is the inverse functionWi ≡ Ŵ (di;G) = d̂−1i (di),

which gives the true income Wi of a taxpayer who optimally declares income di. On receipt

of the taxpayer’s declaration di, a tax authority can use Ŵ (di; ·) to estimate the vector
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of true incomes W. To illustrate, consider a tax authority that observes every aspect of

the model except potentially the network. If such a tax authority perfectly observes the

network, it can use Ŵ (di; ·) to correctly infer true income, i.e., Ŵ (di;G) = Wi. If, however,

the tax authority does not perfectly observe the social network — instead observing some

other (related) network G′ 6= G — it will obtain imperfect estimates of the Wi, given by

Ŵi = Ŵ (di;G
′). The estimates Ŵi may then be used to compute predicted evasion as

Êi = θ(Ŵi)− θ (di). Audit selection is then towards those taxpayers with the highest Êi. To

the extent that the ordering of the Ŵi does not match the ordering of the true Wi a failure

to observe fully the social network leads to a suboptimal choice of audit targets.

To formalize this idea, we suppose that the tax authority observes only a subset of the links

in the network. We define a probability κ ∈ [0, 1] that the tax authority observes a given link

in the social network. When κ = 1 the tax authority observes the social network perfectly;

when κ = 0.5 on average half the links between taxpayers are known by the tax authority,

and the other half are not; and when κ = 0 all links are unobserved. Hence, we obtain

the adjacency matrix G (κ) from the “true”adjacency matrix G by randomly deleting links

(with probability 1 − κ).10 Let A (G (κ) ; p) be the set of taxpayers selected for audit (by

virtue of having the highest values of Êi), when a proportion p of taxpayers will be chosen

for audit; and let RA (G (κ) ; p) be the revenue (in recovered taxes and fines) from auditing

the taxpayers in A. For a given p, audit revenue attains its theoretical maximum when the

social network is observed perfectly, i.e., at RA (G; p). At the other end of the information

scale, any tax authority —no matter how information starved —can always choose to audit

randomly. On average, a random audit strategy yields revenue RRA (p) = pf
∑

j∈N Ej.

To quantify the extent to which network information permits audits to be better-targeted,

we compare audit yield when audits are chosen utilizing network information to audit yield

under a random audit rule. Our analysis centers on the statistic

Ψ (κ) ≡ RA (G (κ) ; p)−RRA (p)

RA (G; p)−RRA (p)
× 100. (7)

A value Ψ (κ) = 1 signifies that RA (G (κ) ; p) attains the full-information upper bound

(in which audits are targeted perfectly). A value Ψ (κ) = 0 signifies that RA (G (κ) ; p)

10The only restriction we place on the random elimination of links is to ensure the requirement that each
taxpayer’s reference group is non-empty. Accordingly, in cases where the random process that eliminates
links chooses to eliminate all the links belonging to a taxpayer, one of the taxpayer’s links is randomly
selected to be preserved.
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generates no improvement in revenues over random auditing. Intermediate values of Ψ (κ)

measure the improvement in revenue over random auditing, relative to that achieved by the

full-information strategy.

4.2 Simulation

We now discuss how we simulate the model to obtain numerical estimates of the function

Ψ (κ).

4.2.1 The Social Network

To generate the social network G, we follow the approach of network scientists, who utilize

a class of network models, known as generative models, to investigate complex network

formation (see, e.g., Pham et al., 2016). In this modelling paradigm, complex networks are

generated by means of the incremental addition of nodes and edges to a seed network over a

long sequence of time-steps. Two processes governing the node/edge dynamics in generative

models have been shown to generate features consistent with a multitude of social, biological,

and technological networks (see, e.g., Redner, 1998; Adamic and Huberman, 2000; Jeong et

al., 2000; Ormerod and Roach, 2004; Capocci et al., 2006). The first — the node-degree

(or preferential attachment) process —makes the probability that a new taxpayer added to

the network observes an existing taxpayer, i, a positive function of i’s degree (the number

of taxpayers who already observe i). The second — the node-fitness process —makes the

probability that a new taxpayer added to the network observes an existing taxpayer, i, a

positive function of i’s fitness (an exogenous and time-invariant characteristic of node i).

At step s of the generative process consider a taxpayer i with degree dis, and fitness ηi > 0.

The separate node-degree and node-fitness processes are entwined in a single process by

allowing the probability that said taxpayer i is observed by the taxpayer added at step s to

be proportional to the product ηiA (dis), where A (.) is an increasing function. Important

special cases of this approach include that of Barabási and Albert (1999), who assume ηi to

be equal across taxpayers; and that of Bianconi and Barabási (2001), who assume A (d) = d.

Recent research, however, suggests that social networks may be consistent with non-linear

forms for A (.). In particular, the sublinear specification, A (d) = dφ, φ < 1, finds empirical

support (Backstrom et al., 2006; Kunegis et al., 2013; Pham et al., 2016). Pham et al. (2016:

7) estimate φ = 0.43 for the social network constituted by a sample of 46,000 Facebook wall-

posts, and we adopt this estimate (we also investigate the systematic effects of varying this
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estimate of φ).

In allowing for a role for node-fitness in social network formation, we are able to account for

the observation that, empirically, celebrity taxpayers are surely not drawn at random from

the distribution of income, but rather belong systematically to the upper tail. TV and sports

stars, whose consumption habits are widely reported, are also some of the richest members of

society. To replicate this feature, we equate node-fitness with income: ηi = Wi. We specify

the distribution function of Wi across taxpayers to satisfy a power law, consistent with a

large body of empirical evidence (e.g., Coelho et al., 2008).

In our implementation we generate networks of N = 200 taxpayers, starting from a seed

network composed of two interlinked taxpayers. Each taxpayer incrementally added to the

network is linked to members of the existing network according to the outcome of five random

draws under the probability distribution ηid
φ
is discussed previously. Note, however, that these

draws are with replacement, so a taxpayer may be linked multiple times to another. As the

model of section 2 allows for only a single, albeit weighted, link between taxpayers, we use the

frequency of links realized by the generative process to construct the comparison intensity

weights. Specifically, let #ij ∈ N denote the number of times taxpayer i is linked with j by
the generative process. If #ij = 0 then taxpayers i and j are not linked. If #ij ≥ 1 then

taxpayers i and j are linked, and the intensity of the link is given by

gij =
#ij∑

k∈Ri #ik

.

Owing to its stochastic nature, any single iteration of the generative process may realize

a network that is unrepresentative. To mitigate this concern we form G as the average

of multiple independent iterations of the generative process.11 With G thus specified we

generate 14 G (κ) within the interval κ = [0, 1]. Each G (κ) is generated from G by deleting

links with probability 1−κ, and rescaling the resulting matrix such that
∑

j∈Ri gij = 1 holds

for the remaining links.

4.2.2 Model Functions and Parameters

Having now described the social network, we specify the remaining model functions and

parameters. To make concrete the vector of predicted income, Ŵ, we specify the tax system

11That is, each element gij of G is the mean of the realized comparison intensity weights across the
independently generated networks. We do not average over a prescribed number of iterations, but rather
implement a stopping rule that monitors the rate of convergence of the sample mean towards the true mean.
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as a linear income tax, θ (Wi) = θWi, where θ ∈ (0, 1). We may then write evasion as

Ei = θ [Wi − di] and the legal disposable income level as X (Wi) = [1− θ]W . Next, we show
that the vector Ŵ takes the form of a weighted Bonacich centrality:

Lemma 1 Under the conditions of Proposition 1, and with a linear income tax, the income
of a taxpayer who declares income optimally according to (6) is given by

Ŵ (d;G) = b(V, θ,γ),

where

vij =
ζ i
ξi
mij; ξi = [1− θ] [1− pif ] + θ {1 + [f − 2] pif} > 0;

γij =
{1 + [f − 2] pif}θaidi + bi [1− pif ]

aiξi
+

[1− pif ]R(X− θ [1− pif ]d)

ξi
.

Taxpayers are assumed to know the true average probability of audit, p, but do not know

how the tax authority will select audit targets. Consistent with this idea, tax authorities are

known to shroud their audit rules —the so-called “DIF score” in the case of the IRS —in

great secrecy (see, e.g., Alm and McKee, 2004; Plumley and Steuerle, 2004; Hashimzade et

al., 2016). We set {p, f} to be consistent with a level of evasion of ten percent, as is broadly
consistent with the empirical evidence for developed countries cited in the Introduction.

The level of evasion predicted by the model relates closely to the product pf , such that we

are able to hold evasion at the ten percent level when, e.g., lowering f and raising p. The

qualitative features of Ψ (κ) that we shall report are unaffected by the chosen decomposition

of pf , however.

We assume that the tax authority knows only average values of the parameters {ai, bi}, given
by ā = N−1

∑
j∈N aj and b̄ = N−1

∑
j∈N bj. This allows us to distinguish two separate cases.

First, the baseline case we consider is when {ai, bi} are the same for all taxpayers. In this
case

{
ā, b̄
}
coincides with the common {a, b}, so the tax authority is only ignorant of the

network. Second, as a separate analysis we are then able to examine the effects of allowing

unobserved heterogeneity in the {ai, bi} to interact with partial observability of the social
network. The baseline results are depicted for (common) utility parameters {a, b} = {2, 80}.
Again, based on tests of the model predictions for a range of choices of {a, b} consistent with
an interior equilibrium, our qualitative findings are not sensitive to the particular choice of

these two parameters.
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4.2.3 Results

Implementing the methodology described above, our results for Ψ (κ) under the baseline

parameter specifications are shown in Figure 1 (see p. 27). As would be expected, Ψ (κ)

is monotonically increasing in κ: more visibility of the network results in improved audit

revenues relative to random auditing. It is apparent from the steepness of the left-side of the

figure that there are significant returns from observing a little about the network (observing

around 20 percent of all links) relative to knowing nothing. Thus, tax authorities that are in

the infancy of their attempts to systematically construct social networks have an especially

strong case to invest in this endeavour. The other remarkable feature of Ψ (κ) at low values

of κ is that, at values of κ very close to zero, it is actually counterproductive to seek to

target audits on the basis of a very incomplete picture of the true social network (Ψ (κ) < 0).

Rather, tax authorities in this situation are better-offsimply choosing audit targets randomly.

Only once approximately one percent of network links are observed does targeting based

upon network information systematically improve upon random auditing. The strong initial

returns to network visibility are seen to diminish on an interval of intermediate values of κ,

before increasing strongly again as the tax authority moves from around 80 percent network

visibility towards full visibility. Thus, in a way we have made precise, knowledge of the

structure of social networks can be of value to tax authorities.

Figure 1 —see p. 27

It is of interest to understand how these results are systematically affected by network

structure. Figure 2 (p. 28) depicts the line of best fit for Ψ (κ) as φ is varied around the

benchmark value of 0.43. Specifically, we depictΨ (κ) for φ ∈ {0.33, 0.43, 0.53}. Recall that φ
regulates the importance of node-degree (preferential attachment) in the network formation

process: high values of φ produce networks with a highly concentrated distribution of links,

implying the existence of a small number of extremely visible taxpayers. The left-side of the

Figure indicates that, the greater the role of preferential attachment, the more deleterious

are the results of attempting to utilize extremely incomplete information about the network.

Intuitively, in cases of strong preferential attachment the true distribution of links will be

highly concentrated. A successful audit strategy must therefore target a small number of

key taxpayers. When network information is so scarce that the tax authority cannot observe

the strong concentration of links, this leads to systematic misdirecting of audit resources.
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In contrast to the findings at low levels of network visibility, at somewhat higher such lev-

els preferential attachment actually reduces sensitivity to network visibility. This occurs as

increases in preferential attachment imply that a growing proportion of taxpayers have the

same few celebrity taxpayers in their reference group. It therefore becomes possible for the

tax authority to identify these celebrity taxpayers, even when observing the network in a

relatively limited way. In summary, the existence of celebrity taxpayers in social networks

appears to present both threats and opportunities to tax authorities: it weakens the ef-

fectiveness auditing with very little information, but is helpful to tax authorities who can

observe the network to a suffi cient degree —and can thereby identify the celebrity taxpayers.

Figure 2 —see p. 28

The analysis so far has the feature that, as the parameters {a, b} do not vary across taxpayers,
it is only network information that is potentially unobserved by the tax authority. In practice,

however, it seems certain that tax authorities also face unobserved preference heterogeneity.

As a final analysis, therefore, we consider the robustness of our findings to the case in which

unobserved preference heterogeneity coexists with partial observability of the network. To

do this we generate the {ai, bi} as realizations of the random processes a ∼ U (1.9, 2.1)

and b ∼ U (76, 84). Note that the means of these two processes correspond to the {a, b}
in the baseline case, as the bounds of the uniform distribution are set symmetrically at

±5 percent of these baseline values. The tax authority knows the mean of the processes

generating the {ai, bi}, but not the realized values. In the presence of this unobserved

preference heterogeneity we see (Figure 3 —p. 29) that, even when the social network is fully

observed (κ = 1), the tax authority does not achieve the full-information revenue outcome.

This effect aside, however, the qualitative shape of the function remains as in Figure 1, with

the greatest benefits from network information appearing in the neighborhood of κ = 0 and

κ = 1. Accordingly, we find no evidence of important interaction effects between uncertainty

over background preference parameters and uncertainty over the network.

Figure 3 —see p. 29
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5 Conclusion

Tax evasion is estimated to cost governments of developed countries up to 20 percent of

income tax revenues. We link the tax evasion decision with a large literature on the role in

individual decision-making of social comparison. Previous studies have restricted compar-

isons to be at the aggregate, rather than local, level. Moreover, the network structures that

have been employed in these models possess few of the topological properties of observed

social networks. In this paper we have sought to provide an analysis that addresses these

issues. Taxpayers compare their consumption with others in their social network. In mak-

ing social comparisons, each taxpayer makes “local”comparisons on their part of the social

network. Engaging in tax evasion is a tool by which taxpayers can seek to increase their

consumption relative to others. In this setting, we show that a linear-quadratic specification

of utility yields a unique solution for optimal evasion corresponding to a weighted Bonacich

centrality measure on a social network: by this measure, taxpayers that are more central in

the social network evade more.

Our model provides a rich framework for understanding how information conveyed through

a social network influences optimal evasion behavior. Although optimal evasion depends

in quite a complex way on the underlying parameters, we are able to demonstrate how an

increase in income of one taxpayer in the social network leads other taxpayers to optimally

increase their evasion, while an increase in the probability of tax authority enforcement

induces other taxpayers to reduce their evasion. The size of these effects is heterogeneous

across taxpayers owing to heterogeneity in how taxpayers are linked in the social network.

Given that tax authorities are now investing in technology that seeks to construct social

networks, we show that network information can allow a tax authority to better predict

the likely revenue benefits from conducting an audit of a particular taxpayer. We obtain

numerical estimates of this effect using a social network that permits, in particular, the

existence highly-observed “celebrity” taxpayers belonging systematically to the upper tail

of the income distribution. Our results point to an important role for network effects. In

particular, for a tax authority that is largely ignorant of the social network, we document

strong initial revenue gains from acquiring relatively small amounts of network information.

We also have a cautionary message, however, that attempting to target audits on the basis

of extremely limited network information may be counterproductive, especially if the true

distribution of links is highly concentrated. In this situation a random audit strategy is more

18



gainful.

The basic model we have presented here offers much scope for future research. Here we

suggest three. First, it would also be of interest to introduce dynamic features to the model

that relate behavior today to past evasion decisions and audit outcomes. Second, while

we have focused on tax evasion, early empirical work (Alstadsæter et al., 2018) suggests

the relevance of a similar modelling approach to tax avoidance behavior, or indeed criminal

activity more generally. Third, as we have assumed income to be exogenously determined,

it would be of interest to introduce formally a labor-supply decision. While these extensions

must await a dedicated treatment, we hope our contribution at least clarifies the role of

social comparison in driving tax evasion behavior on a social network.
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Appendix
Proof of Proposition 1. Under linear-quadratic utility equation (3) can be solved to give
optimal evasion at an interior solution as

Ei =
1− pif
aiζ i

{bi − ai [Xi −Ri]} , (A.1)

where ζ i > 0 is defined in the Proposition. Marginal utility, bi − ai [Xi −Ri], is positive by
the assumed restrictions on {ai, bi}. Using (4), optimal evasion in (A.1) is written in full as

Ei =
1− pif
aiζ i

{bi − ai [R (X) + [1− pif ]giE]} , (A.2)

where necessarily 1−pif > 0 at an interior optimum. Then the set of N equations defined by
(A.2) for taxpayers i ∈ N can be written in matrix form as E = α+ME where the elements
of {α, 1,M} are as in Proposition 1. It follows that [I−M]E = α, so E = [I−M]−1α ≡
b(M, 1,α).
Proof of Proposition 2. We have

∂E

∂pj
=

∂ [I−M]−1

∂pj
α+ [I−M]−1

∂α

∂pj
;

= [I−M]−1
∂M

∂pj
[I−M]−1α+ [I−M]−1

∂α

∂pj
;

= [I−M]−1
[
∂M

∂pj
[I−M]−1α+

∂α

∂pj

]
;

= [I−M]−1
[
∂M

∂pj
E+

∂α

∂pj

]
;

= b

(
M, 1,

∂M

∂pj
E+

∂α

∂pj

)
;

∂E

∂Wj

=
∂E

∂Xj

= [I−M]−1
∂α

∂Xj

= b

(
M, 1,

∂α

∂Xj

)
;

from which the Proposition follows.
Proof of Lemma 1. Substituting X (Wi) = [1− θ]Wi and Ei = θ [Wi − di] into (A.1)
and rearranging for Wi gives

Wi =
{1 + [f − 2] pif} θaidit + bi [1− pif ] + ai [1− pif ]Ri

aiξi
; (A.3)

ξi = [1− θ] [1− pif ] + θ {1 + [f − 2] pif} .

Noting that the second order condition for (A.1) to define a maximum is−θ2ai {1 + [f − 2] pif} <
0, it follows that ξi > 0. Using (4), (A.3) is written in full as

Wi =
{1 + [f − 2] pif} θaidi + bi [1− pif ]

aiξi
+
ai [1− pif ] {R (X− θ [1− pif ]d) + [1− pif ] [1− pif ]giW}

aiξi
.

(A.4)
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Then the set of N equations defined by (A.4) for taxpayers i ∈ N can be written in matrix
form as W = γ + θVW where the elements of {γ, θ,V} are as in Proposition 1. Hence
W = [I− θV]−1 γ = b(V, θ,γ).
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Figure 1: Revenue effects of network information.
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Figure 2: The role of network structure.
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Figure 3: Revenue effects under unobserved preference heterogeneity.
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