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Abstract

We develop a dynamic zero-inflated model to analyse the number of hospital ad-

missions within an aging population, which allows for the considerable number of zero

hospital admissions at the individual level and occurrence dependence. In addition,

certain health conditions may lead to groups of individuals having similar hospital ad-

mission rates. We analyse the US Health and Retirement Survey, which includes self-

assessed health (SAH), which can be predictive of hospital admissions. Our modelling

framework embeds a dynamic hierarchical matrix stick-breaking process to flexibly

characterize this dynamic group structure allowing individuals to belong to different

SAH groups at different points in time.
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1 Introduction

The fact that the world population is aging is well-established: as stated by the United

Nations (2015), ‘virtually every country in the world is experiencing growth in the number

and proportion of older persons in their population.’ Specifically, their latest estimates

predict that between 2015 and 2030, the number of people in the world aged 60 years or over

is projected to grow by 56 per cent, from 901 million to 1.4 billion. With respect to increases

in life expectancy, the World Health Organisation (2016) reports US life expectancy at 79.3

years in 2015, compared to 66.6 years in 1960 and 46.3 years in 1900. It is apparent that

such demographic changes will be associated with an increased demand for health care, as

well as, changes in the nature of health care demand, with needs associated with chronic

conditions becoming increasingly important. It is crucial, therefore, that we enhance our

understanding of the demand for health care.

Hospital admissions are an important aspect of the demand for health care and, further-

more, it is apparent that as chronic conditions become more prevalent in the context of an

aging population, understanding the needs associated with inpatient care and hospital visits

becomes increasingly important. As aging changes the nature of health care demand with

more emphasis on hospitalization and thus more challenges faced by health care systems

throughout the world, further analysis into hospital admissions at the individual level seems

to be particularly warranted. Thus, in this paper, we contribute to the existing literature

which has focused on developing models to analyse the rate of hospital admissions at the

individual level. We exploit data drawn from the US Health and Retirement Survey, which

provides detailed information following individuals over time for an aging population. A

number of analytical challenges associated with modelling hospital admissions at the in-

dividual level have been discussed in the existing literature, which serves to highlight the

complexities associated with modelling the demand for health care. Such challenges have

generally not been addressed within a unified framework. Thus, we aim to fill this gap in

the existing literature by conducting a comprehensive study of these issues. We now discuss

these analytical challenges in more detail.

Given the considerable amount of zero observations that are observed in measures of

hospital admissions at the individual level, existing studies have developed zero inflated

approaches for modelling counts of hospital admissions to account for the excess zeros (see,

for example, Deb and Trivedi, 1997, Winkelmann, 2004 and Atella and Deb, 2008). We

build on this existing literature by proposing a flexible modelling framework in which we
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analyse the number of hospital admissions at the individual level in the context of an aging

population. Simple distributions such as the Poisson or log normal distributions have been

used to model count variables such as the number of hospital admissions. However, such

an approach does not allow for the ordering information, which is likely to be inherent in

such data: i.e., an individual who was hospitalised 3 times may be regarded as more serious

compared to an individual who was hospitalised once in the same year. Hence, in this paper,

we propose an ordered logistic regression approach, i.e. a proportional odds model, to analyse

the number of hospital visits. Furthermore, as expected, there are a considerable proportion

of zero observations in our data, on average, 84%, which is based on the US Health and

Retirement Survey (HRS), reflecting the fact that a significant proportion of individuals are

not admitted to hospital in a given year. In order to account for such inflation at zero, we

develop an approach based on a zero-inflated proportional odds model.

There is an important additional issue associated with such data which is related to the

inherent assumption that every year an individual faces the same probability of hospitaliza-

tion, which may not be the case. Specifically, in the context of an aging population, the

probability of hospitalization is likely to be different between an individual who has never

been admitted to hospital compared to an individual who has been admitted to hospital.

Clearly, the onset of chronic conditions varies across individuals and over time, as does the

extent to which individuals are affected by such conditions and ultimately require hospital

care. Once an individual has been admitted to hospital, it may well be the case, for exam-

ple, that further follow-up visits ensue. Indeed, Westbury et al. (2016) analysing Hospital

Episode Data for a specific region of the UK, state that ‘in the context of hospital admission

among older people, it is reasonable to expect that risk of admission will increase with the

accumulated number of previous admissions’. Indeed, their argument is supported by their

empirical analysis of multiple hospital admissions for a sample of elderly individuals with an

average age of 66. In a similar vein, Banerjee et al. (2010) explore persistence in health care

utilisation using dynamic panel data models. Their analysis of the 2000-2004 US Medical

Expenditure Panel Survey (MEPS) endorses a dynamic modelling approach, with inpatient

hospitalization at the initial period found to have a large positive and significant impact

on current hospitalization. From a modelling perspective, such observations imply that the

distribution of the time to the first hospitalization may have a very different rate to the

distribution of times between subsequent hospitalization events, see the recent contribution

in this regard by Baetschmann and Winkelman (2016). Thus, we account for ‘occurrence

dependence’ in our modelling approach.
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Finally, categories of self-assessed-health (SAH), where respondents rate their own general

health on a response scale from say poor to excellent, have been used extensively in the health

economics literature. SAH is regarded as a good proxy for health risk since it contains private

information on health and health related behaviours that are predictive of future health and

are known only to the respondent. Idler and Benyamini (1997), for example, show that

SAH is predictive of mortality even after conditioning on objective measures of health. It is

often useful to group individuals based on covariate characteristics and in our application it is

interesting to group individuals according to their SAH. Furthermore, in the HRS data, these

groups can be dynamic with SAH varying over time. Within a time-varying group structure,

stronger dependence is expected among the data temporally close to each other. Thus, it

is interesting to develop models where one can estimate the group-specific parameters by

efficiently borrowing information across the groups dynamically in an automated manner.

Dirichlet Process (DP) priors have been successfully used in a wide range of applica-

tions for borrowing information across groups in an automated manner. Some examples

include Ferguson (1973), Antoniak (1974), Blei and Jordan (2006), Dunson, Herring, and

Engel (2008) and Rodriguez and Dunson (2014). Dunson et al. (2008) developed a matrix

stick-breaking process (MSBP) which is an important extension of the usual DP. MSBP is

essentially a generalization of the stick-breaking structure of DP (Sethuraman, 1994) where

the row and column stick-breaking random variables induce dependent local clustering. In

this paper, we first extend the stick-breaking weights into a product of group, time and

predictor specific components and then induce extra dependence among the data that are

temporally close to each other following Ren et al. (2010). The resultant proposed dynamic

hierarchical MSBP (DH-MSBP) is powerful because here we allow: (i) multiple shrinkage of

a large set of model parameters; (ii) global and local clustering by borrowing information

within and across groups; and (iii) a higher probability of sharing the same set of parameters

for temporally close data points.

The rest of the paper is organized as follows. In Section 2, we propose a zero-inflated

dynamic hurdle proportional odds model for the count of hospital visits. In Section 3, we

propose the DH-MSBP prior for the covariates with time-varying effects on the response.

We also discuss the zero-inflated Lasso priors for the covariates with time-invariant effects in

this section along with the joint posterior density and computational details. In Section 4,

we present the simulation results demonstrating the effectiveness of the proposed approach.

The results for the US HRS data analysis are presented in Section 5. Finally Section 6

concludes.
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2 A Zero-Inflated Dynamic Hurdle Proportional Odds

Model

Here we consider modelling hospital visits as our dependent variable. We distinguish between

two types of individual: (i) those who started visiting hospitals from the very first wave (the

start of the survey) until the end, and (ii) those who did not visit hospital initially but then

started visiting after a few waves.

Define Yirt as the count of hospital visits for the i-th individual in the r-th health status

(self-assessed) group at wave t (t = 1, 2, . . . , 10). Health status is based on self-assessment

and can be categorized as “poor”, “fair”, “good”, “very good”, “excellent”. These health

states can obviously vary over time. Thus, we have a very general set-up.

Our base model is the following zero-inflated dynamic model for Yirt:

Yirt = (1− πirt)1[Yirt=0] + πirtG(Yirt|Yirt > 0), (1)

where, πirt is the probability of hospital admission, i.e., πirt = P (Yirt > 0), and G(Yirt|Yirt >

0) is the distribution of the count of hospital visits conditional on hospitalization. In general,

when an individual visits hospital in a year, Yirt can take any of the values among k =

1, 2, · · · , K.

2.1 Model for πirt

For modelling the proportion of non-zeros, we consider a Probit model and thus express πirt

as the following: Φ−1(πirt) = xT
i δ+ ηi, where Φ denotes the cdf of the standard normal, and

x is the set of covariates (both with time-varying and time-invariant effects on the response)

and δ is the vector of regression coefficients. The individual-specific random effects ηi capture

the correlation among the measurements from the same individual over different waves. Thus

we allow the probabilities of the non-zero responses (and hence the zero responses) to vary

over the waves.
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2.2 Modelling G(Yirt|Yirt > 0)

The distribution of the count of hospital visits, i.e., G(Yirt|Yirt > 0) can be of two types: (1)

individuals who visit the hospital for the first time at the t-th wave and; (2) individuals who

visited the hospital before the t-th wave. We argue that the rate of hospitalization should

be different for these two types of individual who are exposed to hospital for the first time

at t and who were exposed before t, respectively. We use a proportional odds model with a

dynamic hurdle component for case 1 following Baetschmann and Winkelmann (2016) and

use a simple proportional odds model for case 2.

Case 1

Let t be the wave where the i-th individual visits hospital for the first time. In this case,

we follow Baetschmann and Winkelmann (2016) and use a dynamic hurdle Poisson model

for modelling G. This is based on the assumption that in this particular wave, for each

individual, the time of the first hospital visit and the total number of hospital visits are

related to each other. Suppose the first hospital visit for individual i occurs at time, Ti; for

0 < Ti < t. Therefore, one can write,

Pr(Yirt = k, Ti) = Pr(Yirt = k|Ti)f1(Ti) = Pr(Yirt(Ti, t− Ti) = k − 1)f1(Ti);

where Yirt(Ti, t− Ti) denotes the number of hospital visits for the i-th individual in the t-th

wave within the time interval (Ti, t − Ti), and f1 denotes the pdf of the time to the first

hospital visit. The marginal distribution of Yirt, thus, can be obtained as:

Pr(Yirt = k) =

∫ t

t−1

Pr(Yirt(Ti, t− Ti) = k − 1)f1(Ti)dTi. (2)

We consider Ti as the time to elapse before the event of interest (hospital admission) and

thus model this waiting time by a Weibull distribution. Specifically, we consider f1 as the

density of a Weibull distribution with parameters η1 and η2. Thus, Ti ∼ Weibull(η1, η2).

The cdf of Yirt(Ti, t− Ti) is modelled by the following proportional odds model:

logit(Pr(Yirt ≤ k)) =
J

∑

j=1

αjkr(t)xij(t) +
J ′

∑

j′=1

βj′krzij′t + bi, (3)

for k = 1, 2, . . . , K. We consider J time-varying covariates; the effect of the j-th covariate

on the log odds at time t is αjkr(t), which is also considered to be time-varying. We consider

J ′ covariates with non-time-varying effects. Note that the individual-specific random effects,
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bi, capture the correlation among the measurements from the same individual at different

waves.

For modelling the dependence among the zero-response probabilities and non-zero re-

sponse probabilities, we assume that (ηi, bi) jointly follow a bivariate normal density with

mean vector=0 and var(ηi) = σ2
η, var(bi) = σ2

b , correlation(ηi, bi) = ρ.

To model the time-varying coefficient αjkr(t) for the j-th covariate, we use penalized

splines (Ruppert, Wand and Carroll, 2003) and model αjkr(t) as follows:

αjkr(t) = bjkr0t + bjkr1tt + bjkr2tt
2 + ...+ bjkrgtt

gj +

Sj
∑

s=1

cjkrst(t− Ts)
gj
+ , (4)

where (x)g+ = xgI(x > 0) and (T1 < T2 < ... < TSj
) is a fixed set of knots.

Case 2

Here the t-th wave indicates the waves after the i-th individual visited hospital for the first

time. For such waves, we model G as the proportional odds model. The cdf of Yirt(T ) is

modelled by the proportional odds model given in equation (3).

3 A Nonparametric Bayesian Model for the time-varying

Coefficients

3.1 Dynamic Hierarchical Matrix Stick-Breaking Priors

We have coefficients from multiple groups of SAH and we assume in our setting (based on

the data) that the individual may not necessarily be in the same group throughout the

study since depending on health and other factors, their SAH will vary over time. Thus,

the modelling framework should take account of this dynamic switching of SAH. We aim to

model this time-varying structure where stronger dependence may be needed among data

that are temporally close to each other. Therefore, it is desirable to develop a prior where one

can efficiently estimate group specific parameters by borrowing information across groups

in an automated manner, allowing commonality across subsets of the groups over time, and

allowing equality of the parameters within a group over time. The matrix stick-breaking prior

(MSBP) of Dunson et al. (2008) is somewhat similar but does not allow the dynamicity over
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time. The MSBP of Dunson et al. (2008) has practical advantages, in that individuals can

be very similar for most of their coefficients, while still allowing distinct local deviations.

Here we consider a novel extension of the MSBP where information is shared across the

self-reported health status groups (r) over the waves (t) for different numbers of hospital

admission (k).

Define the vector of polynomial coefficients from equation (4), bjkrt = [bjkr0t, bjkr1t, . . . , bjkrgjt]
T .

Here we assume the vector bjkrt is drawn from an unknown distribution G
(b)
krt, which itself is

random, and a Dirichlet process (DP) is placed on the distribution of G
(b)
krt. Thus, we assume,

bjkrt ∼ G
(b)
krt =

Nb
∑

h=1

π
(b)
krthδξ(b)

th

; j = 1, 2, . . . , J ; k = 1, 2, . . . , K; r = 1, 2, . . . , R; t = 1, 2, . . . , T,

ξ
(b)
th ∼ G

(b)
t , (5)

where δx denotes a point mass at x. Define Ξb =
(

ξ
(b)
th

)

to be a matrix of order T×Nb, the

rows of which correspond to the parameters with the base distribution G
(b)
t and the columns

correspond to the “clusters”. The stick-breaking weights π
(b)
krth are defined as the following:

π
(b)
krth = V

(b)
krth

∏

s′<h

(1− V
(b)
krts′); V

(b)
krth = U

(b)
kh Z

(b)
rh W

(b)
th ,

U
(b)
kh

iid
∼ Beta(1, δ

(b)
1 ); Z

(b)
rh

iid
∼ Beta(1, δ

(b)
2 ); W

(b)
th

iid
∼ Beta(1, δ

(b)
3 ). (6)

The stick-breaking weights π
(b)
krth control the dependence among the distributions G

(b)
krt.

Note that we partition π
(b)
krth into three components U

(b)
kh , Z

(b)
rh and W

(b)
th which allocate the

vector of the polynomial coefficients from the k number of hospital visits and the r-th health

status group and the t-th wave to the h-th cluster. We need to take V
(b)
krtNb

= 1, for all k, r, t;

to make G
(b)
krt a valid probability measure.

The dynamic nature of our setting requires stronger dependence among the distributions

of parameters close to each other temporally. We propose the following hierarchical dynamic

DP (Ren et al., 2010) for G
(b)
t :

G
(b)
t = (1− ω

(b)
t−1)G

(b)
t−1 + ω

(b)
t−1H

(b)
t−1,

ω
(b)
t |αω, βω ∼ Beta(αω, βω); αω ∼ Gamma(ν1, ν2); βω ∼ Gamma(κ1, κ2),

G
(b)
1 ∼ DP (α

(b)
01 , G

(b)
0 ); H

(b)
t−1 ∼ DP (α

(b)
0t , G

(b)
0 ),

G
(b)
0 ∼ DP (γ

(b)
0 , H(b)); H(b) ∼ N(µ,Σ0). (7)
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In the above prior, we note that G
(b)
t is identical to G

(b)
t−1 with probability 1 − ω

(b)
t−1 and

with probability ω
(b)
t−1 it is identical to an innovation distribution, H

(b)
t−1. A Dirichlet Process

Prior (DPP) is considered for the innovation distribution. For the base distribution G
(b)
0 we

further consider a DPP similar to the hierarchical Dirichlet process (HDP) proposed by Teh

et al. (2006). The key point to note is that the above prior not only encourages “information

exchange” among the temporally proximate parameters but also for the temporally distant

parameters.

Formulations 5, 6 and 7 complete our proposed structure for the dynamic MSBP.

For the set of spline coefficients cjkrt = [cjkr1t, cjkr2t, . . . , cjkrSjt]
T in (4), we similarly

specify the following dynamic MSBP prior:

cjkrt ∼ G
(c)
krt; j = 1, 2, . . . , J ; k = 1, 2, . . . , K; t = 1, 2, . . . , T,

G
(c)
krt =

Nc
∑

h=1

π
(c)
krthδξ(c)

th

; π
(c)
krth = V

(c)
krth

∏

s′<h

(1− V
(c)
krts′); V

(c)
krth = U

(c)
kh Z

(c)
rh W

(c)
th ,

U
(c)
kh

iid
∼ Beta(1, δ

(c)
1 ); Z

(c)
rh

iid
∼ Beta(1, δ

(c)
2 ) W

(c)
th

iid
∼ Beta(1, δ

(c)
3 ),

ξ
(c)
th ∼ G

(c)
t ; G

(c)
t = (1− ω

(c)
t−1)G

(c)
t−1 + ω

(c)
t−1H

(c)
t−1,

G
(c)
1 ∼ DP (α

(c)
01 , G

(c)
0 ); H

(c)
t−1 ∼ DP (α

(c)
0t , G

(c)
0 ),

G
(c)
0 ∼ DP (γ

(c)
0 , H(c)); H(c) ∼ N(µ0, λ

−1I); λ ∼ Gamma(α∗, β∗). (8)

We note that the above prior is very similar to the priors proposed in (5-7) except the

prior for H(c). The spline coefficients essentially measure the roughness at the respective

knots and one can make the function smoother by shrinking the roughness towards zero. In

a Bayesian framework, this is achieved by considering a multivariate normal prior with the

covariance matrix λ−1I for the base distribution H(c) and then placing a gamma prior on

the penalty parameter λ, (Das and Daniels, 2014).

3.2 Properties

Note that the features of our proposed DH-MSBP priors for bjkrt and cjkrt, for j = 1, . . . , J,

have the same form. Here we focus on the properties of the prior for bjkrt only. Details of

the other properties of the MSBP and dynamic DP can be found in Dunson et al. (2008)

and Ren et al. (2010).

We note that the dynamic structure of G
(b)
t can be expressed as: G

(b)
t = (1−ω

(b)
t−1)G

(b)
t−1+
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ω
(b)
t−1H

(b)
t−1 = ω̃

(b)
t1 G

(b)
1 + ω̃

(b)
t2 H

(b)
1 + . . . + ω̃

(b)
tt H

(b)
t−1, where ω̃

(b)
tl = ω

(b)
l−1

t−1
∏

m=1

(1 − ω
(b)
m ), for l =

1, 2, . . . , t.

Proposition 1

Consider sets A in the Borel field of the real line. As Nb → ∞, we have

E{G
(b)
krt(A)} =

t
∑

l=1

ω̃
(b)
tl H

(b)(A),

V {G
(b)
krt(A)} =

t
∑

l=1

ω̃
(b)2
tl

1+α
(b)
0l

(

α
(b)
0l +γ

(b)
0 +1

1+γ
(b)
0

)

H(b)(A){1−H(b)(A)}

[

1− 4

(δ
(b)
1 +2)(δ

(b)
2 +2)(δ

(b)
3 +2)−4

]

+ 4

(δ
(b)
1 +2)(δ

(b)
2 +2)(δ

(b)
3 +2)−4

t
∑

l=1

ω̃
(b)
tl H

(b)(A)

[

1−
t
∑

l=1

ω̃
(b)
tl H

(b)(A)

]

.

Proof: As Nb → ∞ we have,

E{G
(b)
krt(A)} = EE{G

(b)
krt(A)|G

(b)
t } = E{

∞
∑

h=1

π
(b)
krthδξ(b)

th

(A)|G
(b)
t }

= E{G
(b)
t (A)} = ω̃

(b)
t1 H

(b)(A) + ω̃
(b)
t2 H

(b)(A) + . . .+ ω̃
(b)
tt H

(b)(A) =
t
∑

l=1

ω̃
(b)
tl H

(b)(A).

From Dunson et al. (2008), it follows that

V {G
(b)
krt(A)} =

[

1− 4

(δ
(b)
1 +2)(δ

(b)
2 +2)(δ

(b)
3 +2)−4

] [

V {G
(b)
t (A)}+

(

E{G
(b)
t (A)}

)2
]

+ 4

(δ
(b)
1 +2)(δ

(b)
2 +2)(δ

(b)
3 +2)−4

E{G
(b)
t (A)} −

[

E{G
(b)
t (A)}

]2

.

Since G
(b)
t has a dynamic structure, from Ren et al. (2010), we have,

V {G
(b)
t } =

t
∑

l=1

ω̃
(b)2
tl

1+α
(b)
0l

(

α
(b)
0l +γ

(b)
0 +1

1+γ
(b)
0

)

H(b)(A){1−H(b)(A)}. We also use the fact thatE{G
(b)
t (A)} =

t
∑

l=1

ω̃
(b)
tl H

(b)(A). The expression for V {G
(b)
krt(A)} then follows immediately.

Proposition 2

For the proposed DH-MSBP prior:

(a) the probability that for fixed time t, and fixed value k, the health status groups r and r′

will have identical coefficients for the polynomial part of (4) is

Pr(bjkrt = bjkr′t) =
2

(δ
(b)
2 +1)(δ

(b)
1 +2)(δ

(b)
3 +2)−2

;
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(b) the probability that the health status group r will have identical coefficients for the

polynomial part of (4) at two different times t and t′, for a fixed value k is:

Pr(bjkrt = bjkrt′) =
2

(δ
(b)
3 +1)(δ

(b)
1 +2)(δ

(b)
2 +2)−2

;

(c) the probability that the health status group r will have identical coefficients at fixed time

t for the polynomial part of (4) at two different values k and k′ is

Pr(bjkrt = bjk′rt) =
2

(δ
(b)
1 +1)(δ

(b)
2 +2)(δ

(b)
3 +2)−2

.

The proofs of the above results are similar to Dunson et al. (2008), and hence are omitted

here for brevity.

Note that the prior clustering probabilities in (a), (b), and (c) range between 0 and 1

depending on δ
(b)
1 , δ

(b)
2 and δ

(b)
3 . Clearly if δ

(b)
1 , δ

(b)
2 , δ

(b)
3 → 0, then the clusters are not different

and all the above prior probabilities converge to 1. However, for δ
(b)
1 or δ

(b)
2 or δ

(b)
2 → ∞,

none of the sets are clustered together and thus the probabilities in (a), (b) and (c) converge

to 0.

3.3 Zero-Inflated LASSO Priors

Since we have a large number of covariates with time-invariant effects on our response vari-

able, we incorporate a shrinkage prior approach. Our approach is similar to the hierarchical

Bayes representation of the LASSO proposed by Park and Casella (2008). Recently, Das

(2016) proposed a modified Bayesian LASSO with a zero-inflated structure which is relevant

to our setting. Define βkr = (β1kr, · · · , βJ
′
kr)

T . We add sparsity to the prior and consider

the following hierarchical representation:

βj′kr|σ
2, τ 2j′, Bj′ ∼ (1−Bj′)δ0 +Bj′N

(

0, σ2τ 2j′
)

, ∀j′, k, r,

Bj′|πj′ ∼ Bernoulli(πj′), πj′ ∼ Beta(u, v),

τ 2j′
iid
∼

λ2

2
exp

(

−
1

2
λτ 2j′

)

, λ2 ∼ π(λ2), σ2 ∼ π
(

σ2
)

.

Here δ0 is a point mass probability measure at 0. Note that the parameters πj′s are

updated from the data and force the coefficients of the insignificant covariates to be exactly

equal to 0 and simultaneously shrink the other coefficients towards 0 as LASSO does. The

advantage of considering a zero-inflated normal prior for βj′kr is discussed in detail in Das

(2016). Inverse Gamma priors are taken both for λ2 and σ2.
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3.4 Joint Posterior and Computational Details

Note that the likelihood function of the longitudinal responses Yirt can be written as follows:

L =





∏

(i,r,t):Yirt=0

(1− πirt)



×





∏

(i,r,t):Yirt>0

πirtG(Yirt|Yirt > 0)



 (9)

=

∫ ∫









∏

(i,r,t):Yirt=0

(1− Φ(xT
i δ + ηi)



×





∏

(i,r,t):Yirt>0

Φ(xT
i δ + ηi)G(Yirt|bi)







 f(ηi, bi)dηidbi,

where G(Yirt|bi) is the density described in Section 2.2 and f(ηi, bi) is the joint density of

the random effects. The log likelihood function can be expressed accordingly. The joint

posterior distribution is obtained by multiplying the corresponding prior components to L.

Note that for δ (Section 2.1), we consider a multivariate normal prior with mean vector=0

and covariance matrix=σ2
δI. Priors for all the other model parameters are discussed in

Sections 3.1 and 3.2.

We note that the truncation of the MSBP to finite Nb (and also for Nc) is done using the

approximation in Ishwaran and James (2002), such that the truncation value (Nb) makes

the expected approximation error smaller than 0.01. For bjkrt, the expected approximation

error =

[

1− 1

(1+δ
(b)
1 )(1+δ

(b)
2 )(1+δ

(b)
3 )

]Nb−1

, which requires knowing δ
(b)
1 , δ

(b)
2 , and δ

(b)
3 . Following

Dunson et al. (2008), we specify independent gamma(1,1) priors for δ
(b)
1 , δ

(b)
2 and δ

(b)
3 and we

run the MCMC algorithm for about 15% of its total length and use the posterior means of

δ
(b)
1 , δ

(b)
2 and δ

(b)
3 to determine if the expected approximation error is below 0.01. The same

approach is used to choose Nc. Our computations are similar to Das and Daniels (2014),

Chatterjee et al. (2016).

For the dynamic hierarchical structure, note that the infinite mixture representations of

Dirichlet Process Priors G
(b)
0 , G

(b)
1 , H

(b)
1 , . . . , H

(b)
T−1 will be truncated to a level, M say, using

the approximation in Ishwaran and James (2002). We consider the same threshold value

(0.01) in these cases as well.
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4 Simulation Study

We investigate the operating characteristics of the dynamic hurdle model and the dynamic

hierarchical MSBP prior through simulation studies. We consider a zero-inflated longitudinal

count response, two covariates with time-varying effects and 10 covariates with time-invariant

effects on the response.

We simulate data for 100 subjects at 10 evenly spaced time points (t = 1, 2, . . . , 10).

Consider 4 groups (r = 1, 2, 3, 4) and each subject belongs to one of these 4 groups at each

time point. In particular, we consider 30 subjects who are in group 1 until t = 6, and then

belong to group 2; 10 subjects who change from group 1 to group 4 at t = 5. Consider 20

subjects who change from group 2 to group 3 at t = 7; 10 subjects who change from group

2 to group 4 at t = 4; 10 subjects change from group 3 to group 1 at t = 5; 10 subjects

change from group 3 to group 4 at t = 6, and 10 subjects move from group 4 to group 1

at t = 8. We simulate the response Yirt from the model given in equation (1), where the

non-zero mixing proportions, πirts, are simulated from the probit model given in Section

2.2 (the explicit form of which is given in the web-appendix). If for the t-th time point we

observe the first non-zero response, then Yirt is generated from the model given in equation

(2) with Ti ∼ Weibull(1, 5) and the cdf of Yirt(Ti, t− Ti) is obtained from equation (3) with

k = 0, . . . , 5, J = 2 and J ′ = 10. On the other hand, if the t-th time point is either the time

before or after the time of the first occurrence of the event, we then simulate Yirt from the

model given in equation (3). We consider the following spline function for αjkr(t):

αjkr(t) = bjkr0t + bjkr1tt + bjkr2tt
2 +

2
∑

s=1

cjkrst(t− Ts)
2
+, (10)

with the knots T1 = 3 and T2 = 7. We consider both the discrete and continuous covariates

with time-invariant effects on the response. These covariates are simulated from Normal and

Bernoulli distributions. The details of the parameter values for the simulation are given in

the web-appendix. In general, we consider the different parameter values across the groups

and times for different k to be somewhat similar but not exactly the same.

We fit three different proportional odds models to the simulated data: (i) a model with a

distinct parameter set for each group (the group-specific model); (ii) a model with the same

parameter set for all the groups (the common model); and (iii) a model with the DH-MSBP

prior in the parameter set. For each of these models, we consider two different specifications

for modelling G(Yirt|Yirt > 0): (i) a dynamic hurdle as discussed in Section 2.2; and (ii) a
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non-dynamic hurdle, where G(Yirt|Yirt > 0) is modelled for all the subjects at all the time

points using the proportional odds model given in equation (3).

We simulate 100 datasets and for each dataset we run the MCMC algorithm for 65,000

iterations, discard the first 5,000 (“burn-in”) and thin the remaining 60,000 by keeping every

10-th iteration. The model parameters are estimated using posterior means. We specify

Nb = Nc = 20, which gives a truncation approximation error less than 0.015.

For the model selection, we use the conditional predictive ordinate (CPO) (Gelfand et

al. 1992) defined as CPOi = P (Yi|Y−i) = Eθ [P (Yi|θ, Y−i)], where Y−i denotes the data

excluding Yi and θ denotes the set of all model parameters. For the i-th subject, the CPO

can be estimated based on the MCMC samples as the following:

ĈPOi =

[

1
M

M
∑

m=1

1
P (Yi|θ(m))

]−1

, where θ(m) denotes the parameter estimates at the m-th

iteration of MCMC. We compute the log pseudo-marginal likelihood (LPML)=
n
∑

i=1

logĈPOi,

where a greater value of the LPML indicates a better fit.

We compute the LPML across all replications and Table 1 shows the average values for

the different models. We note that the DH-MSBP prior with a dynamic hurdle gives the

largest LPML value. However, the LPML values for the DH-MSBP prior with the non-

dynamic hurdle and the group-specific model with the dynamic hurdle are quite close to this

largest value.

Table 2 shows the average estimated bias, average width of the 95% credible intervals

(CIs) and the estimated coverage probabilities of a randomly selected subset of the model

parameters for the three models with the larger LPML values in Table 2. We note that the

proposed DH-MSBP prior with the dynamic hurdle results in the smallest bias and shortest

CI with a comparable coverage probability. Thus, our simulation studies demonstrate the

effectiveness of the DH-MSBP and the dynamic hurdle model compared to their competitors.
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5 Data Analysis

5.1 The HRS Data

We exploit data from the University of Michigan’s Health and Retirement Study (HRS),

which is a longitudinal survey of Americans over the age of 50, with a follow-up frequency

of every two years. The HRS provides multi-disciplinary data to understand the challenges

of aging. In this paper, we use data for 10 waves from the 1931-1941 cohort. Baseline

observations for this cohort began in 1992 when individuals were aged between 52 and 62,

and, hence, were nearing retirement. The HRS is maintained by RAND’s Center for the

Study of Aging. Our sampling is based on 2630 individuals, who are observed in all 10

waves. For our outcome measure, we use the number of hospital visits made since the

previous interview. This variable is derived from the responses to the following question:

How many different times were you a patient in a hospital overnight in the last 24 months?

As expected, a large proportion of zero observations are observed in the data. Specifically,

from waves 1 to 4, 90-94% are zero observations, which falls to 80-86% for waves 5 to 8, and

to 75-80% for waves 9-10. In accordance with intuition, the proportion of zero observations

declines as the individuals in our sample age. Across all waves, for the non-zero responses,

the minimum value of the response variable is 1 and the maximum is 15, with an average

of 1.4 visits. With respect to grouping individuals by health status, we have 5 categories of

SAH (r); poor (1), fair (2), good (3), very good (4) and excellent (5), which can vary over

time.

The HRS provides a rich set of covariates for our analysis. Specifically, we have four

covariates with time-varying effects on the response variable, i.e. the number of hospital

visits, namely: (i) the body mass index (BMI); (ii) the total value of assets, (iii) the total

value of debt and (iv) total household income.

We include BMI in our set of covariates with time varying effects in recognition of the

well-documented relationship between obesity and poor health conditions. According to the

World Obesity Federation (www.worldobesity.org), the epidemic of obesity is now recognized

as one of the most important public health problems facing the world today. Obesity, a

condition of excessive body weight in the form of fat, is causally linked to a large number

of debilitating and life-threatening conditions. The most commonly used measure to assess

whether an individual is obese is BMI: the ratio of the individual’s weight to the square of
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height. Hence, we include BMI in our modelling framework.

The inclusion of the three financial covariates reflects the large existing literature ex-

ploring the relationship between a range of household financial outcomes and health. For

example, Adams et al. (2003), Michaud and van Soest (2008) and Hurd and Kapteyn (2003)

generally find a positive association between better health and household wealth. Total as-

sets are defined as the summation of the value of: individual retirement accounts; stocks;

bonds; checking and saving accounts; certificates of deposit and saving bonds; other saving

accounts; the primary residence; transport; net value of any business; and other assets.

With respect to the other side of the household balance sheet, there is a growing literature

exploring the relationship between health and debt. For example, Drentea and Lavrakas

(2000) find that both credit card debt and stress regarding debt are inversely associated

with good health and Brown et al. (2005) find that unsecured debt is inversely related to

psychological wellbeing. More recently, Keese and Schmitz (2014) report that a variety of

debt measures are strongly correlated with satisfaction with health and mental health. Our

measure of total debt includes: all mortgages/land contracts; other home loans; and other

debt including credit cards.

With respect to income, a number of studies have explored the relationship between

income and health. For example, for the UK, Contoyannis and Rice (2001) report an inverse

relationship which poor health and wages for men. For the US, Pelkowski and Berger (2004)

use data from the US HRS and find that permanent health problems have a significant effect

on labour market participation, wages and hours for both men and women. All monetary

variables are entered in natural logarithm form and are expressed in 2010 prices.

For the covariates with time-invariant effects, we have the following 15 covariates. Note

that these covariates are all binary variables. We control for being female, education as

measured by having General Education Diploma (GED) level education or higher, whether

the individual consumes alcohol and whether the individual smokes. In order to capture

the effects of long-term health, we include 8 covariates relating to chronic health conditions.

Specifically, we have 8 controls for whether the individual has ever had: (i) high blood

pressure or hyper-tension; (ii) diabetes or high blood sugar; (iii) cancer or a malignant

tumour of any kind; (iv) chronic lung disease except asthma such as chronic bronchitis or

emphysema; (v) heart attack, coronary heart disease, angina, congestive heart failure, or

other heart problems; (vi) stroke or transient ischemic attack; (vii) emotional, nervous, or

psychiatric problems; and (viii) arthritis or rheumatism. Finally, we include 3 controls for
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different types of health insurance: (i) having health insurance related to employment; (ii)

government insurance; and (iii) other private health insurance.

Some important features of the data are summarized in Figures 1 and 2 (as well as Figures

S1 and S2 in the web appendix). In Figure 1, we show the counts of individuals with different

numbers of hospital admissions across the 10 waves through a series of bar diagrams. We

note that the counts decrease over the waves for zero admission and increase for the number

of admissions 1, 2 and 3. For counts 4 and 5, there is no specific pattern evident although

the counts are at the maximum for waves 9 and 10. In Figure 2, we show the distribution

of individuals across the number of hospital admissions for each SAH category. We note

that the distributions are neither the same nor completely different, but rather are similar

in pattern for certain waves. This motivates the use of the dynamic MSBP construction as

discussed earlier. In Figures S.1 and S.2 in the web appendix, we show the heat map of the

average number of hospital admissions across the different SAH categories and waves; and

total counts (from all SAH categories) across the number of hospital admissions for different

waves.

5.2 Results

In Table 3, we show the distribution of the average number of hospital admissions for the

individuals who made their first hospital visit at wave 1, 2, 3, etc. We observe clear differences

in the distributions, reflecting the fact that the rates of hospital admission depend on the

time of the first observed hospital visit. Under such a scenario, a dynamic hurdle model is

more appropriate as demonstrated in Section 4.

In Table 4 we present the effects of all 19 covariates on the probability of non- zero hos-

pital visits. The estimates and the 95% credible intervals are given for the corresponding

model parameters. Among the chronic health conditions, cancer and strokes are found to

have a significant effect on the probability of zero hospital visits, which accords with in-

tuition since such serious conditions are associated with frequent hospitalization. On the

other hand, conditions such as high blood pressure and diabetes, which are often treated by

medication rather than hospitalization, are found to exert statistically insignificant effects.

This is also the case for emotional, nervous, or psychiatric problems, which also accords with

expectations in that only a small number of very severe cases are likely to be associated

with hospitalization. It is reassuring, therefore, that the parameter estimates associated
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with the health covariates largely accord with our expectations. Health insurance related to

employment and other private health insurance are both found to have significant effects,

which may reflect better quality health care associated with such insurance relative to gov-

ernment health insurance, leading to more frequent hospital visits for those holding such

health insurance. Among the financial covariates, total assets and total household income

exert significant effects on the probability of zero hospital visits. This is also not surprising

since financially affluent individuals are more likely to be able to access health care thereby

potentially leading to better health.

Next, in order to highlight the flexibility of our approach, we summarize the results for the

covariates with time-invariant effects from equation (3) for different SAH categories and for

different values of k. In Table 5, we present the corresponding coefficient estimates, and 95%

credible intervals (based on the MCMC samples) for the people belonging to the “good” SAH

group (r=3) with 1 or less hospital admissions. With respect to the chronic health conditions,

the findings as above accord with intuition, with the three particularly severe conditions,

namely, cancer, heart problems and strokes, found to be statistically significantly related to

the response variable, with large parameter estimates. The other controls are characterised

by statistically insignificant parameter estimates. The large parameter estimates for educa-

tion and government insurance are particularly noticeable. Education is clearly related to

employment opportunities as well as healthy life styles, (Cutler and Glaeser, 2005), whereas

the large parameter estimate for government health insurance may reflect the importance

of Medicare and Medicaid in the US. However, these parameter estimates are statistically

insignificant in our case, since the 95% Credible intervals contain zero.

We then summarize the results for the two extreme SAH groups, i.e. the “poor” SAH

group with the number of hospital admissions 4 or less; and the “excellent” SAH group

with 1 or less hospital admissions. Table 6 shows the results for the “poor” group with k

equalling 4 or less. Note that here we have some additional important covariates namely,

blood pressure, lung problems, arthritis, smoking, alcohol consumption and government

insurance. Coefficients for the covariates gender, education and psychological problems are

exactly equal to 0, due to the zero-inflated LASSO prior. Table 7 summarizes the results for

the “excellent” SAH group with k=1. In addition to the chronic health conditions of cancer,

heart problems and stroke, smoking and education are found to be important predictors for

this case.

We now turn to the plots (Figures 3-6) for the time varying coefficients for the four
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covariates as mentioned earlier, namely: BMI, total assets, total debt and income. We have

5 categories of SAH (r); poor, fair, good, very good and excellent. Across all waves, SAH

is distributed as follows: excellent (21.66%); very good (38.78%); good (28.02%); moderate

(9.00%); and poor (2.54%). In accordance with expectations, from waves 1 to 10, the

proportion in the excellent SAH category falls as individuals age. For example, in wave 1,

32.40% are observed in the excellent SAH category, which falls to 21.53% by wave 5 and

12.85% by wave 10. For each of the four covariates with time varying effects on the number

of hospital admissions, we present plots for these five categories of SAH for k=2, 4 and 6 for

illustration purposes.

Focusing initially on BMI, which is regarded as one of the leading indicators of health,

it is apparent from Figure 3 that, for k=2, the effect of BMI for the fair SAH category

increases dramatically over waves 1 to 10. In contrast, the effect of BMI for the poor

category is characterised by a less pronounced increase from wave 4 onwards. Interestingly,

the effects of BMI fall over the observed waves for the excellent and good SAH categories,

yet demonstrate a steady increase over time for the very good health category. Furthermore,

the pattern of effects is clearly different for the case when k = 4, where less variation in the

pattern of the effects is apparent. For all 5 categories, we generally observe an increase in the

effects over time, with the increase for the fair health category starting from wave 6 onwards

and for very good health, from wave 7 onwards. It is interesting to see that when k = 6, i.e.

for a very large number of hospital visits, distinct differences in the magnitudes of the effects

are apparent across the five categories, with very good health generally characterised by the

largest effect and poor health by the smallest. However, over the observed waves, the size of

the effects within each SAH category are relatively stable, which clearly contrasts with the

case when k = 2, where we observe considerable variation over time in the effects of BMI on

the outcome variable.

Turning to total financial assets, it is apparent that, when k=2 and k=4, for all five

SAH categories, in general, an upwards trend is observed moving from wave 1 to 10, with

the size of the effects being most pronounced for the poor and fair SAH categories. The

upwards trend is still apparent, yet less pronounced, for the other SAH categories. As in

the case of BMI, less variation in the effects of assets over the 10 waves is apparent when k

=2 relative to when k = 4, i.e. for a larger number of hospital visits. As expected, the poor

health category is characterised by the largest size of effect for k = 6. Focusing on excellent

SAH, it is apparent that across the values of k, a moderate upwards trend can be seen across

the waves, with a more pronounced upwards trend discernible from wave 5 onward and the
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effect of financial assets on the number of hospital visits within this SAH category being

relatively stable over time. This contrasts, in particular, with the lower categories of SAH,

specifically, poor and fair health, where the effect of financial assets appears to exhibit much

more variation over the waves, especially in the case where k = 2.

Interestingly in the case of debt, the observed patterns are generally the opposite to

those observed for financial assets. For example, when k = 2, a downwards trend is gener-

ally apparent for the effect of debt on hospital visits across the five SAH categories, with

a particularly pronounced downwards trend apparent for the excellent and good SAH cate-

gories. Thus, over waves 1 to 10, the findings suggest that the effect of debt on hospital visits

falls for k = 2, and k = 4. This may reflect the fact that over the life cycle debts generally

fall as individuals age: in an early seminal contribution, for example, Ando and Modigliani

(1963) hypothesized that individuals may be more comfortable with debt holding when they

are young and their income is low, as they expect future income to be much higher, and to

be able to pay off the debt at a later stage. Thus, in the context of an aging population,

the effect of debt on the number of hospital visits is generally seen to decline over time.

Interestingly, in the case of the lowest two SAH categories, poor and fair SAH, a more stable

effect is observed across all three cases, suggesting that the effect of debt does not fall for

these categories. This may reflect borrowing associated with being in such low SAH states.

It is interesting to note that in the case where k = 6, all SAH categories, with the exception

of very good health, are characterised by an increase in the effect of debt on the number of

hospital visits at wave 9.

Finally, with respect to income, the observed patterns tend to follow those associated

with financial assets, with an upwards trend generally observed for all five SAH categories

across the three values of k. When k =2, the upwards trend is particularly pronounced

for the fair SAH category, with the very good health category characterised by the most

stable effect over time, which is also the case for the other values of k. It is interesting

to note that, although there are some changes in the relative size of the effect across the

three values of k, the effect of income on hospital visits seems to be relatively stable over

time. This may reflect the possibility that as individuals age, there are less opportunities

for increasing income, with many individuals relying on pension income. In contrast, with

financial assets, funds can be raised by dis-saving or selling assets if required which may lead

to more variation in the effects of financial asset holding over time as compared to the effects

of income on the number of hospital visits.
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6 Discussion

In clinical trials and biomedical studies, dynamic group structure is not uncommon. For

example, with respect to blood pressure an individual might belong to three different groups

(high, medium and low) dynamically. Traditional approaches of analyzing clustered data

do not work in such situations since the group sizes (and compositions) vary over time.

Advanced nonparametric Bayesian methods allow information sharing across groups but the

group structure is assumed to be static. We consider a dynamic group structure and develop

models for handling the complexities with a zero-inflated longitudinal count measurement.

Our approach, however, suffers from one limitation. We assume no missingness in our

data. However, in reality, it is not uncommon to have missing responses and some missing

covariates. If the missingness is ignorable (e.g. missing at random), then one can simply add

a data-augmentation technique to our method. However, for non-ignorable missingness our

method has to be revised substantially following Daniels and Hogan (2008). Also one might

have zero-inflated endogenous covariates with time-varying or time-invariant effects on the

response. A Bayesian approach of two-stage regression could be developed for handling such

cases. We leave these issues for future research.
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Table 1: LPML values from different model specifications in the simulation study.

Model LPML value

Dynamic Hurdle model

Common model -539.8

Group-Specific model -397.2

DH-MSBP -396.6

Non-dynamic Hurdle model

Common model -639.5

Group-Specific model -463.8

DH-MSBP -401.4

Table 2: Bias, CI width, and CI coverage probability for some of the model parameters in

the simulation study.

Group specific dynamic hurdle DH-MSBP non-dynamic hurdle DH-MSBP dynamic hurdle

Parameter Bias width of C.I. (Cov.Prob) Bias width of C.I. (Cov.Prob) Bias width of C.I. (Cov.Prob)

b12101 0.38 0.87(0.96) 0.35 0.92(0.96) 0.11 0.26(0.94)

b23213 0.33 0.69(0.95) 0.37 0.74(0.96) 0.09 0.24(0.95)

b15324 0.29 0.58(0.95) 0.26 0.55(0.95) 0.10 0.31(0.94)

c12121 0.37 0.73(0.95) 0.34 0.68(0.95) 0.08 0.25(0.95)

c23218 0.35 0.84(0.96) 0.42 0.91(0.96) 0.11 0.28(0.94)

c25425 0.41 0.93(0.96) 0.39 0.86(0.95) 0.13 0.23(0.95)

β131 0.39 0.59(0.96) 0.33 0.64(0.96) 0.06 0.29(0.94)

β554 0.28 0.63(0.96) 0.35 0.58(0.95) 0.08 0.25(0.95)

β823 0.36 0.65(0.96) 0.34 0.67(0.96) 0.10 0.33(0.94)
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Table 3: Distribution of the average number of hospital admissions depending on the time

of the first hospital visits for the HRS data

Waves

Wave for the first visit 1 2 3 4 5 6 7 8 9 10

1 - 0.63 0.90 0.52 0.31 0.18 0.32 0.20 0.28 0.32

2 0 - 0.62 0.40 0.43 0.32 0.28 0.26 0.26 0.38

3 0 0 - 0.57 0.25 0.20 0.18 0.23 0.28 0.27

4 0 0 0 - 0.37 0.19 0.24 0.33 0.21 0.36

5 0 0 0 0 - 0.36 0.22 0.26 0.31 0.27

6 0 0 0 0 0 - 0.38 0.38 0.31 0.41

7 0 0 0 0 0 0 - 0.37 0.34 0.58

8 0 0 0 0 0 0 0 - 0.41 0.42

9 0 0 0 0 0 0 0 0 - 0.49
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Table 4: Probit model estimates for all the covariates in the HRS data.

Covariate Parameter Estimate 95% C.I.

Blood pressure 0.013 (-1.48,0.97)

Diabetes 0.052 (-1.68,2.51))

Cancer* 2.58 (1.43, 4.29)

Lung problem 1.02 (-2.19, 2.47)

Heart problem 0.16 (-1.31,2.51)

Stroke* 5.53 (2.33, 8.16)

Arthritis 0.0027 (-0.91,0.85)

Psychological problem 0.74 (-1.84,2.78)

Employment Insurance* 2.92 (0.49,4.56)

Gov. Insurance 1.62 (-2.20, 3.89)

Other Insurance* 2.56 (1.21,5.73)

Smoking 0.08 (-1.29,1.56)

Alcohol Consumption 1.04 (-2.68,3.77)

Gender 0.94 (-2.68,2.09)

Education level 0.46 (-1.49,2.36)

BMI 0.085 (-0.96,1.88)

Total assets* 2.51 (1.44,5.63)

Total debt 1.16 (-2.06,3.89)

Total household income* 2.75 (-2.41,4.55)
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Table 5: LASSO estimates for the covariates with time-invariant effects on the response for

the “good” SAH group with k=1, in the HRS data.

Covariate Parameter Estimate 95% C.I.

Blood pressure 0.064 (-1.33,0.87)

Diabetes 0.041 (-2.02,1.76)

Cancer* 4.58 (2.65, 5.93)

Lung problem 1.16 (-0.29, 2.05)

Heart problem* 3.56 (1.32,5.68)

Stroke* 10.32 (7.96, 13.30)

Arthritis 0.29 (-1.31,2.04)

Psychological problem 0.02 (-2.11,1.19)

Employment Insurance 0.18 (-2.74,1.55)

Gov. Insurance 3.63 (-1.49,6.26)

Other Insurance 0.03 (-1.49,1.14)

Smoking 0.05 (-2.79,0.68)

Alcohol Consumption 0.007 (-0.99,1.06)

Gender 0.58 (-3.61,2.47)

Education level 1.12 (-2.44,2.83)
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Table 6: LASSO estimates for the covariates with time-invariant effects on the response for

the “poor” SAH group with k=4, in the HRS data.

Covariate Parameter Estimate 95% C.I.

Blood pressure* 1.89 (0.84,4.02))

Diabetes 0.67 (-1.54,2.51)

Cancer* 3.88 (1.55, 6.01)

Lung problem* 1.53 (1.03, 2.24)

Heart problem* 2.66 (1.13,5.61)

Stroke* 7.19 (3.36, 9.14)

Arthritis* 1.27 (0.59,3.66)

Psychological problem 0 -

Employment Insurance 0.26 (-0.56,0.88)

Gov. Insurance* 2.58 (1.39,4.43)

Other Insurance 0.16 (-1.29,0.94)

Smoking* 1.19 (0.78,2.18)

Alcohol Consumption* 2.34 (1.39,4.11)

Gender 0 -

Education level 0 -
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Table 7: LASSO estimates for the covariates with time-invariant effects on the response for

the “excellent” SAH group with k=1, in the HRS data.

Covariate Parameter Estimate 95% C.I.

Blood pressure 0.53 (-2.15,1.73)

Diabetes 0.72 (-1.95,1.23))

Cancer* 5.91 (3.50, 6.99)

Lung problem 1.13 (-2.05, 2.86)

Heart problem* 2.54 (1.12,4.65)

Stroke* 8.11 (5.84, 10.71)

Arthritis 0 -

Psychological problem 0 -

Employment Insurance 0.31 (-0.94,0.75)

Gov. Insurance 0 -

Other Insurance 0.83 (-1.04,1.88)

Smoking* 1.59 (0.96,3.18)

Alcohol Consumption 0.06 (-0.39,0.51)

Gender 0 -

Education level* 1.27 (0.94,2.86)
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Figure 1: Bar charts comparing the counts of individuals with different numbers of hospi-

talizations across 10 waves.
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Figure 3: Time varying effect of BMI for 5 different groups for k=2, 4 and 6 respectively.
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Figure 4: Time varying effect of the total assets for 5 different groups for k=2, 4 and 6

respectively.
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Figure 5: Time varying effect of the total debt for 5 different groups for k=2, 4 and 6

respectively.
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Figure 6: Time varying effect of the total household income for 5 different groups for k=2,

4 and 6 respectively.
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Web-Appendix

Simulation Study Details and Additional HRS Data Graphs

We simulate data on 100 individuals belonging to 4 related groups at 10 different time

points. Our response is a count variable and we consider 2 continuous predictors with time-

varying effects on the response; and 10 predictors with time-invariant effects. Among the

predictors with time-invariant effects, there are 8 continuous predictors, and the remaining

2 are categorical in nature.

Let x be the set of all covariates; thus x = [x1, x2, . . . , x12]
T . Again, for each predictor

xi, we have measurements for T = 10 time points. Hence, xi = [xi(1), xi(2), . . . , xi(10)]
T .

We simulate the predictors xis, for i = 1, 2, . . . , 10, from a multivariate normal density

with mean= µ1 = [1, 3, 5, 4, 5, 6, 3.5, 5.5, 6, 3.8]T, and covariance matrix=Σ, which is the first

order auto-regressive structure with ρ1 = 0.65 and σ2 = 3.6. The predictors x11 and x12 are

generated at each time point from Bernoulli distributions with p=0.46 and 0.55, respectively.

Next, we generate πirt, the probabilities of non-zero response. We first generate the

iid samples of (ηi, bi) from a bivariate normal density with mean vector=0 and covari-

ance matrix=

[

10 5.01
− 8.6

]

. Then the probabilities πirt are generated from the following probit

model:

πirt = Φ(xT
i δ+ηi), with δ = [0.04, 1.4, 2.5, 0.005, 3.6, 6.3,−2.56, 0.02,−0.003, 4.36, 1.1,−3.9]T.

For each individual i, at each time point t, we sample from a uniform (0,1) distribution; and

assign a zero value with probability=1-πirt. Note that individuals change their groups as

described in Section 4 of the main text.

Next, for each individual i, we find the time corresponding to the first non-zero response.

If t is that time, then we generate Ti, the exact time of the first hospital visit for individual

i. We generate Ti from a Weibull (1,5) distribution truncated below at t− 1 and truncated

above by t. Next, we sample Yirt for each individual at each time point t as follows.
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For the i-th individual, if t is the time for the first non-zero response, then we sample

Yirt from the distribution given in equation (2) of the main text, and if t is the time after

the first non-zero response, then we sample Yirt using the model given in equation (3) of

the main text, with k = 0, 1, . . . , 5. We consider x1 and x2 as the predictors with time-

varying effects on the response, while the other 10 predictors are treated as the covariates

with time-invariant effects on the response. Thus, we have J = 2 and J ′ = 10.

Next, we specify the parameter values for the model in equation (3). For our simulation,

we take βj′kr = βj′, and consider β = [2.3, 4.5, 3.9, 0.04, 6.1, 3.2, 0.003,−1.65,−0.06, 1.4]. For

the time-varying part, we consider gj=2, for j = 1, 2 and two knots at at time 3 and 7,

thus Sj = 2. Define bjkrt = [bjkr0t, bjkr1t, bjkr2t]
T , and also cjkrt = [cjkr1t, cjkr2t]

T . We show

the parameter values for our simulation study for different choices of k and j. We present

selected tables below: the other findings were very similar and, hence, for brevity we do not

present them here (they are available on request). Note that the set of parameters for both

b and c are shared across the groups and times for different values of k and j, thus allowing

a shared parameter structure.

Table S.1: Model parameter values for bjkrt across groups and times for j=1 and k = 1.

Time Group 1 Group 2 Group 3 Group 4
1 (1.74,0.86,1.31) (1.71,0.82,1.24) (1.80,0.91,1.31) (1.75,0.86,1.34)
2 (1.69,0.85,1.42) (1.80,0.73,1.26) (1.63,0.81,1.19) (1.77,0.81,1.34)
3 (1.82,0.93,1.24) (1.77,0.79,1.14) (1.69,0.76,1.24) (1.72,0.88,1.30)
4 (1.77,0.88,1.37) (1.76,0.81,1.37) (1.76, 1.02,1.41) (1.80,0.81,1.38)
5 (1.65,0.78,1.30) (1.69,0.86,1.42) (1.79,0.87,1.26) (1.71,0.87,1.36)
6 (1.73,0.84,1.28) (1.75,0.84,1.28) (1.92,0.93,1.33) (1.80,0.88,1.33)
7 (1.81,0.89,1.32) (1.68,0.97,1.21) (2.05,0.77,1.37) (1.76,0.91,1.35)
8 (1.66,0.73,1.25) (1.94,0.82,1.04) (1.78,0.75,1.30) (1.69,0.74,1.25)
9 (1.76,0.75,1.28) (1.84,0.82,1.24) (1.77,0.79,1.30) (1.70,0.81,1.35)
10 (1.75,0.78,1.33) (1.88,0.82,1.34) (1.84,0.85,1.32) (1.80,0.81,1.37)
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Table S.2: Model parameter values for bjkrt across groups and times for j=1 and k = 5.

Time Group 1 Group 2 Group 3 Group 4
1 (1.84,0.89,1.26) (1.73,0.87,1.34) (1.80,0.91,1.31) (1.85,0.91,1.24)
2 (1.68,0.86,1.44) (1.85,0.76,1.27) (1.69,0.89,1.10) (1.71,0.82,1.33)
3 (1.77,0.91,1.34) (1.75,0.81,1.24) (1.66,0.86,1.32) (1.75,0.83,1.31)
4 (1.71,0.82,1.33) (1.74,0.95,1.36) (1.77, 1.08,1.49) (1.80,0.86,1.34)
5 (1.75,0.78,1.30) (1.63,0.84,1.44) (1.69,0.87,1.31) (1.74,0.88,1.32)
6 (1.73,0.86,1.23) (1.77,0.88,1.38) (1.82,0.83,1.23) (1.80,0.78,1.43)
7 (1.81,0.89,1.32) (1.78,0.87,1.21) (2.01,0.77,1.27) (1.76,0.81,1.25)
8 (1.86,0.73,1.29) (1.94,0.84,1.44) (1.76,0.85,1.31) (1.79,0.84,1.25)
9 (1.71,0.75,1.28) (1.86,0.82,1.24) (1.87,0.79,1.30) (1.70,0.86,1.43)
10 (1.69,0.78,1.43) (1.98,0.91,1.34) (1.85,0.88,1.34) (1.77,0.86,1.39)

Table S.3: Model parameter values for bjkrt across groups and times for j=2 and k = 2.

Time Group 1 Group 2 Group 3 Group 4
1 (1.54,0.66,1.41) (1.51,0.62,1.44) (1.70,0.61,1.36) (1.65,0.66,1.34)
2 (1.49,0.55,1.42) (1.60,0.71,1.36) (1.63,0.51,1.29) (1.67,0.71,1.31)
3 (1.62,0.63,1.34) (1.57,0.69,1.44) (1.69,0.56,1.34) (1.62,0.68,1.30)
4 (1.77,0.89,1.47) (1.66,0.61,1.37) (1.76, 1.02,1.31) (1.70,0.71,1.28)
5 (1.75,0.88,1.50) (1.69,0.66,1.32) (1.79,0.97,1.26) (1.61,0.77,1.36)
6 (1.73,0.85,1.38) (1.65,0.74,1.38) (1.92,0.93,1.33) (1.80,0.78,1.43)
7 (1.81,0.89,1.32) (1.69,0.97,1.21) (1.95,0.87,1.35) (1.76,0.87,1.35)
8 (1.86,0.93,1.35) (1.94,0.92,1.24) (1.78,0.75,1.30) (1.69,0.74,1.35)
9 (1.86,0.85,1.38) (1.94,0.91,1.34) (1.75,0.75,1.27) (1.80,0.84,1.45)
10 (1.75,0.78,1.33) (1.78,0.82,1.34) (1.74,0.85,1.32) (1.70,0.71,1.30)

Table S.4: Model parameter values for bjkrt across groups and times for j=2 and k = 4.

Time Group 1 Group 2 Group 3 Group 4
1 (1.64,0.79,1.46) (1.63,0.81,1.39) (1.70,0.84,1.36) (1.75,0.91,1.44)
2 (1.68,0.76,1.44) (1.65,0.76,1.37) (1.69,0.89,1.20) (1.71,0.92,1.43)
3 (1.67,0.81,1.35) (1.75,0.81,1.34) (1.76,0.86,1.32) (1.65,0.81,1.46)
4 (1.74,0.72,1.33) (1.64,0.75,1.36) (1.77, 1.01,1.39) (1.80,0.86,1.34)
5 (1.75,0.78,1.30) (1.63,0.84,1.34) (1.69,0.87,1.31) (1.74,0.84,1.32)
6 (1.63,0.86,1.33) (1.67,0.88,1.38) (1.72,0.83,1.33) (1.70,0.78,1.36)
7 (1.71,0.79,1.32) (1.78,0.77,1.31) (2.01,0.77,1.27) (1.76,0.81,1.35)
8 (1.66,0.73,1.29) (1.64,0.74,1.34) (1.77,0.85,1.31) (1.71,0.74,1.25)
9 (1.71,0.75,1.28) (1.66,0.82,1.24) (1.77,0.79,1.30) (1.70,0.76,1.33)
10 (1.69,0.78,1.33) (1.68,0.81,1.34) (1.85,0.88,1.34) (1.77,0.76,1.31)
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Table S.5: Model parameter values for cjkrt across groups and times for j=1 and k=1.

Time Group 1 Group 2 Group 3 Group 4
1 (0.74,0.96) (0.77,0.98) (0.79,0.95) (0.81,0.95)
2 (0.79,0.92) (0.72,0.95) (0.71,0.91) (0.76,0.92)
3 (0.81,1.01) (0.79,0.91) (0.76,0.94) (0.77,0.88)
4 (0.77,0.94) (0.70,0.93) (0.72,0.97) (0.79,0.89)
5 (0.74,0.95) (0.86,0.99) (0.83,0.90) (0.74,0.84)
6 (0.75,0.99) (0.67,0.91) (0.73,0.99) (0.76,0.95)
7 (0.68,0.89) (0.75,0.97) (0.69,0.92) (0.69,0.86)
8 (0.64,0.88) (0.74,0.92) (0.68,1.12) (0.69,0.87)
9 (0.73,0.84) (0.74,0.96) (0.66,0.86) (0.79,0.95)
10 (0.74,0.88) (0.74,0.82) (0.68,1.02) (0.69,0.88)

Table S.6: Model parameter values for cjkrt across groups and times for j=1 and k=5.

Time Group 1 Group 2 Group 3 Group 4
1 (0.64,0.75) (0.67,0.73) (0.59,0.71) (0.61,0.75)
2 (0.69,0.72) (0.62,0.75) (0.61,0.71) (0.66,0.72)
3 (0.71,0.81) (0.68,0.71) (0.56,0.70) (0.67,0.78)
4 (0.67,0.74) (0.60,0.73) (0.62,0.77) (0.69,0.79)
5 (0.64,0.75) (0.76,0.75) (0.63,0.70) (0.64,0.74)
6 (0.65,0.79) (0.57,0.71) (0.63,0.79) (0.66,0.75)
7 (0.58,0.79) (0.65,0.77) (0.59,0.72) (0.65,0.76)
8 (0.54,0.68) (0.64,0.70) (0.58,0.81) (0.69,0.79)
9 (0.63,0.64) (0.64,0.76) (0.66,0.76) (0.63,0.75)
10 (0.64,0.78) (0.64,0.72) (0.68,0.77) (0.61,0.78)

Table S.7: Model parameter values for cjkrt across groups and times for j=2 and k=4.

Time Group 1 Group 2 Group 3 Group 4
1 (0.45,0.55) (0.47,0.53) (0.39,0.51) (0.41,0.55)
2 (0.49,0.52) (0.42,0.55) (0.41,0.49) (0.36,0.52)
3 (0.41,0.51) (0.38,0.51) (0.46,0.50) (0.37,0.48)
4 (0.47,0.54) (0.40,0.53) (0.42,0.47) (0.39,0.49)
5 (0.44,0.55) (0.46,0.55) (0.43,0.50) (0.44,0.54)
6 (0.45,0.49) (0.47,0.51) (0.43,0.49) (0.46,0.55)
7 (0.38,0.59) (0.45,0.57) (0.39,0.52) (0.45,0.56)
8 (0.44,0.48) (0.44,0.50) (0.38,0.51) (0.39,0.49)
9 (0.66,0.84) (0.64,0.86) (0.66,0.85) (0.63,0.80)
10 (0.72,0.68) (0.74,0.82) (0.78,0.87) (0.81,0.79)
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Figure S.1: Heat map displaying the average number of hospitalizations across different
waves and self reported health status.
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Figure S.2: Plot showing the distribution of individuals across the number of hospitalizations
for different waves.
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