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Abstract

Latent class, or finite mixture, modelling has proved a very popular, and
relatively easy, way of introducing much-needed heterogeneity into empirical
models right across the social sciences. The technique involves (probabilisti-
cally) splitting the population into a finite number of (relatively homogeneous)
classes, or types. Within each of these, typically, the same statistical model
applies, although these are characterised by differing parameters of that distri-
bution. In this way, the same explanatory variables can have differing effects
across the classes, for example. A priori, nothing is known about the behav-
iours within each class; but ex post, researchers invariably label the classes
according to expected values, however defined, within each class. Here we
propose a simple, yet effective, way of parameterising both the class prob-
abilities and the statistical representation of behaviours within each class,
that simultaneously preserves the ranking of such according to class-specific
expected values and which yields a parsimonious representation of the class
probabilities.
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1 Introduction and Background

Latent class, or finite mixture, modelling has been applied in a wide variety of areas

of economics ranging from consumer behaviour (see, for example, Reboussin, Ip,

and Wolfson 2008, Chung, Anthony, and Schafer 2011), to health economics (see,

for example, Deb and Trivedi 2002, Bago D’Uva 2005b, Bago D’Uva 2005a) to trans-

port mode choice (see, for example, Shen 2009) as a relatively straightforward way

of introducing much-needed unobserved heterogeneity into empirical models right

across the social sciences. For example, they typically represent a much more par-

simonious representation of such heterogeneity than a standard random parameters

approach, and moreover lend themselves to a much richer characterisation of the

data under consideration by being able to group relatively homogeneous individuals

into probabilistically defined, but unobserved, classes (or types, or clusters).

The technique involves (probabilistically) splitting the population into a finite num-

ber of (relatively homogeneous) classes, or types. Within each of these, typically,

the same statistical model applies, although these are characterised by differing pa-

rameters of that particular distribution. In this way, the same explanatory variables

can have differing effects across the classes.

Particularly with respect to examples of such empirical models in economics, several

(related) estimation strategies are invariably employed. Firstly, although a priori

nothing is known about the behaviours within each class, ex post researchers invari-

ably label the classes according to expected values (EV s), however defined, within

each class. Secondly, class probabilities do not respect the eventual labeling and

ordering of the classes by EV . Instead, they are estimated using multinomial logit

probabilities, which can be become very heavily parameterised as the number of

potential classes considered rises. And finally, the optimal number of unobserved

classes is determined by a combination of model selection (or information) criteria

(IC) and model (non-)convergence.1 As IC metrics contain a penalty term for the

1As an excellent example of an application of latent class modelling, and also as an example of
the above points, see Bago d’Uva and Jones (2009).
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number of parameters estimated, they will clearly be affected by a non-parsimonious

representation of the class assignment probabilities.

Here we propose a simple, yet effective, way of parameterising both the class prob-

abilities and the statistical representation of behaviours within each class, that si-

multaneously preserves their ranking according to class-specific expected values and

which yields a parsimonious representation of the class probabilities. Explicitly

we enforce ordering in the EV s across classes and suggest an ordered probabilistic

specification for the class assignment probabilities, that is both consistent with the

ordering in the EV s across classes and offers a much more parsimonious represen-

tation of the class assignment probabilities.

The model proposed here bears some superficial resemblance to that in Yang, O’Brien,

and Dunson (2011), whose specification posits a latent class structure that governs

the allocation of individuals to class specific subpopulations Fj. The (stochastic)

ordering aspect of the model applies to Fj, not to the classes. One specification (dis-

carded as insuffi ciently general) has Fj a normal population with ordering imposed

on the means. The class allocation mechanism, their equation (4), is a multinomial

(unordered) logit model extended to accommodate unobserved heterogeneity. In our

specification, the ordering applies to the class allocation equation. The underlying

implication being that class allocation itself is governed by positioning on the latent

index. The class specific population is characterised by, in this case, a generic linear

regression model.

Our approach is generally applicable to the analysis of any output variable which em-

bodies a notion of ordering (either cardinal or ordinal). We illustrate our proposed

technique with an example drawn from the existing health economics literature,

which relates to modelling obesity levels as reflected by body mass index (BMI).

The results show a clear preference for the suggested approach over standard ones.

We also undertook a small Monte Carlo experiment which showed the fragileness of

existing techniques and the robustness of the newly suggested approach. In short,

regardless of the true data generating process considered for the class-assignment

probabilities, the suggested technique works as well, or better, than standard ap-
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proaches.

2 Econometric Framework

In a standard latent class model (LCM) the random variable of interest, is as-

sumed to be drawn from a population ofQ unknown and unobserved subpopulations,

with corresponding mixing proportions πq. Thus the overall density for individual

i (i = 1, . . . , N), f(yi|xi,θ), is an additive mixture density of Q distinct densities

weighted by their appropriate mixing probabilities πq. The πq are defined such that∑Q
q=1 πq = 1 and πq ≥ 0 ∀q, q = 1, . . . , Q. The outcome variable of interest is yi,

affected by the (kx × 1) vector of covariates in the model, xi, and where θ denotes

all of the parameters of the model.

We will assume the existence of Q latent classes, or types. These are heterogeneous

across classes as to how they react to observed covariates, but homogeneous within

each class. The corresponding mixture density is

f(yi|xi, π1, . . . , πQ; θ1, . . . , θQ) =

Q∑
q=1

πq × f(yi|xi, θq). (1)

The usual approach to address estimation of πq is to use a multinomial logit (MNL)

form of the probabilities of these, given by

πq =
exp(γq)∑Q
a=1 exp(γa)

, (2)

where γq (= 1, ..., Q) is a set of constants that are used to calculate class probabilities,

and exp() is the exponential function, and where one of the γq is normalised to

zero. However, the choice of functional form for this class assignment function

is clearly inconsequential when class probabilities are treated as constants across

individuals. However, this is not so when one considers an extension to this model

that is increasingly used when the researcher has some prior reasoning as to the

determinants of class membership; this involves an explicit parameterisation of the

class assignment equation with respect to available covariates. Again, along the
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lines of the MNL model this would become:

πq =
exp(z′iγq)∑Q
k=1 exp(z

′
iγk)

(3)

where zi is a (kz × 1) vector of explanatory variables that help allocate individuals

to each of the unobserved classes. The MNL specification is evident in most (if not

all) studies where class assignments are expressed as prior functions of covariates

(“generalised”). Indeed, all modern econometric software estimates generalised la-

tent class models in this manner.2 Estimation can now be undertaken, using either

the EM algorithm, or standard maximum likelihood techniques, based on equations

(1) and (3).

After estimating potentially numerous variants of the LCM with regard to the

possible number of (unknown) classes, the researcher will then clearly be faced with

the choice of the most appropriate Q, Q∗. There are non-trivial issues here with

regard to statistical testing across different values of Q∗ = 1, . . . versus any other

potential value: for example, in testing the null of Q∗ = 1 versus the alternative

of Q∗ = 2, then under the null γ (and therefore neither πq) is (are) identified.

Presumably for this reason, and moreover because the choice is essentially a model

selection one, researchers invariably rely on the so-called information criteria (IC)

metrics. These are a standard method of choosing across (potentially) non-nested

models (although this is not a prerequisite). Specifically, with regard to choosing

the optimal number of classes, the technique involves choosing Q∗ such that

Q∗ = arg min
Q
IC (Q) , (4)

where:

IC (Q) = −2ˆ̀
Q + λNpQ; (5)

λN is a deterministic function of N ; and pQ is the total number of parameters

estimated in the Q class LCM . Some common choices of λN include the following:

λN = lnN BIC/SC (Schwarz 1978)
λN = 2 AIC (Akaike 1987)
λN = 1 + lnN CAIC (Bozdogan 1987)
λN = 2 ln lnN HQIC (Hannan and Quinn 1979).

(6)

2To the best of the authors’knowledge. We use the term “generalised”here to denote the case
where the class assignment probabilities are a function of covariates.
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These criteria are derived from differing principles and as a result have differing

properties; for example AIC has been shown to favour “large” models (see, for

example, Hurvich and Tsai (1989)). There is no general agreement on the optimal

criterion in the LCM setting, although there seems to be an empirical preference

for AIC (despite - because of? - its preference for large models).

Post model estimation two estimates of the probability of class membership are

available; prior probabilities are obtained by simply evaluating equations (2) or (3).

However, more common, are the posterior, or based on the data, probabilities such

that

Pr (qi |yi ) =
πq
(
zi, γq

)
× f(yi|xi, θq)∑Q

k=1 πk (zi, γk)× f(yi|xi, θk)
. (7)

The posterior probabilities answer the question: given that we observe yi what it is

the probability that the individual belongs to class q?

Our point of departure concerns the specification of fq(yi|xi, θq). Clearly the data
at hand will dictate the functional form for the specification of this density: if yi is a

stochastic count, a Poisson or a Negative Binomial would be appropriate; an ordered

discrete variable - an Ordered Probit/Logit; a censored continuous variable - a Tobit

formulation; a continuous variable - a linear regression function; and so on. However,

a defining feature of many empirical examples of LCMs is an ex post labelling of

the Q classes based upon estimated EV s within each of the q = 1, . . . , Q classes.

Where ordinality exists, but there are no obvious EV s as such (for example in an

Ordered Probit model) researchers might label classes according to the distribution

of predicted probabilities at the “low”to the “higher”ends of the choice set.

It is useful here, to consider the determination of observed yi within each q = 1, . . . , Q

class. We consider a latent index function of the form

y∗i,q = x′iβq + εi,q (8)

where βq are the response parameters and εi,q a disturbance term. For example, if

there were no subpopulations we would have the set-up of

y∗i = x′iβ + εi. (9)
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The y∗q of equation (8) will be related to observations within group yi,q via a map-

ping dictated by f(yi|xi, θq). That is, in a linear regression model, yi,q = y∗i,q. In a

Tobit setting, yi,q = max
(
0, y∗i,q

)
. And so on. Regardless of the model, EV s (or

probabilities for models such as the Ordered Probit) on the assumption of underly-

ing ordinality or cardinality of observed yi, are monotonically related to the index

x′iβq: ensuring that x
′
iβq=1 ≤ x′iβq=2 ≤ · · · ≤ x′iβQ will therefore be a necessary and

suffi cient condition to ensure that EVi,q=1 ≤ EVi,q=2 ≤ · · · ≤ EVi,Q. For example,

take the case of health-care utilisation addressed in Bago d’Uva and Jones (2009).

The authors are interested, for example, in whether “low users”are more (or less)

income elastic than “high users”. That is, they wish to firstly identify high and

low use classes, and then to ascertain whether the drivers across these classes differ

in magnitudes (and/or directions of effects). So, clearly the ranking of the classes

(by expected values) is paramount in Bago d’Uva and Jones (2009), as well as in

(nearly) all of the related literatures, as is the identification of these classes. Thus

although in Bago d’Uva and Jones (2009) these classes are labelled ex post, below

we suggest an easy way in which this can be enforced in estimation.

By defining generically EV ∗i,q as the index x
′
iβq (positively, and monotonically related

to the true EV, EVi,q), then this implicit ordering can be enforced via an estimation

strategy as

EV ∗i,q=1 = EVi,q=1 (10)

EV ∗i,q=2 = EV ∗i,q=1 + exp
(
x′iβq=2

)
EV ∗i,q=3 = EV ∗i,q=2 + exp

(
x′iβq=3

)
... =

...

where the specification of EVi,q=1 is likely to be model-specific. For example, in

a linear regression EVi,q=1 = x′iβq; whilst in a count Poisson regression EVi,q=1 =

exp
(
x′iβq

)
; and so on. This is convenient in that ordering is ensured, it is applicable

to a wide range of models, and has the added benefit that βq, q > 2, can be directly

interpreted as differential effects with respect to EV ∗i,q−1. Moreover, any variables

that have no differential effects across neighbouring EV ∗q s are likely to manifest

themselves by having large negative coeffi cients (due to the exp (.) transformation).
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Thus far we have shown how to enforce ordering with respect to expected values

(broadly defined) in a latent class set-up. We now turn to the identification of the

class probabilities. In the literature, there appear to be two major stands of how to

address these. Firstly some authors do not wish to explain these class probabilities

with respect to covariates, but then generally ex post attempt to explain the (now

individual-varying) posterior probabilities of class membership by regressing them

on a range of observed characteristics. However, if significant correlations are found

in this second step, in some instances this could well cast doubt on the validity of

the results from the first step. That is, model estimation and ex post estimates

of quantities of interest, including estimates of the posterior probabilities, as this

(these) would appear to be based on a mis-specified model. In general we would

expect that the effect of omitted factors (variables) in a model is transmitted to the

results estimated for the included factors (variables), in ways that are typically hard

to predict, but regardless are likely to result in biased and mis-specified models.

If one has a notion that the classes are driven by observables, then clearly these

should be allowed for in the modelling process. Indeed, as noted, it is possible

that by ignoring these variables in estimation biased and mis-specified models will

result. Researchers who take this approach (that is, entertain generalised latent class

models) generally take the view that the classes, or types, are time-invariant (a kind

of a “fixed effect”) and therefore best explained by any time-invariant variables

available to the researcher.

Therefore, on the assumption that the researcher is parameterising the classes (pre-

sumably with respect to time-invariant variables), it is possible to reconsider the

specification of the functional form for these probabilities. This are usually speci-

fied in the MNL form as per equation (3) above. This may be less than optimal

for several important reasons. Firstly, it appears to represent a description of the

probabilities that does not take advantage of the subsequent ordering applied to the

estimated classes. Secondly, theMNL form embodies the undesirable Independence

from Irrelevant Alternatives property.3 Here this would imply that the odds ratio

3See, for example, Fry and Harris (1996).
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of the probability of any one class membership relative to any other, is independent

of any additions to, or deletions from, the choice set. The probability of say, an

individual being in class 1 (however labelled) relative to class 2, is independent of

the possible existence of classes 3, 4 and 5. Clearly, as a priori the number of classes

is unknown, this appears to be a somewhat untenable assumption. Indeed, in any

other choice modelling situation, a MNL model approach would be unlikely to be

considered.

The final reason why we believe that MNL class probabilities might not be ideal,

relates to the number of estimated parameters such an approach entails: each addi-

tional class mandates an additional kz parameters in the class assignment equations.

This can have two adverse related consequences. Firstly, this can result in a very

highly parameterised model for even small values of Q which will often cause numer-

ical convergence problems. The true model with Q∗ classes, where Q∗ is a “large”

number, might not even enter the researcher’s potential choice set due to numerical

convergence issues. The second reason why a highly parameterised model, such as

theMNL, might not be an ideal representation of the class assignment equation(s),

relates to the IC metrics invariably used to determine the appropriate number of

classes. As shown in equation(s) (3) above, all such metrics are “adversely”affected

by the penalty term (λNpQ) , which regardless of the metric, is an increasing func-

tion of pQ. That is, the IC’s all depend on pQ, and since the model size is not being

determined by the likelihood statistic, but rather by the IC, there is a premium on

parsimony: this puts the MNL form at a disadvantage compared to a more com-

pact model. These two issues (of non-convergence and a larger IC penalty function)

could jointly, or independently, result in a selected Q∗ that is “too small”, and hence

potentially bias any subsequent findings. Indeed, in the bulk of such empirical exam-

ples of LCMs we witness a preponderance of values of Q∗ ≤ 3. Consider, once more,

the case of health-care utilisation considered by Bago d’Uva and Jones (2009). This

research attempted to uncover the “true”number of underlying classes of individuals

with respect to health-care utilisation, and moreover to ascertain any behavioural

differences across the so identified classes (with a focus on income). Thus in using

a more parsimonious form for the class probabilities, it may be that more than two
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classes would have been identified, and that on this basis class-specific results might

have been contaminated by a merging of heterogeneous classes.4

For all of the above reasons, we propose replacing the MNL probabilities with

Ordered Probit (OP ) ones (Greene and Hensher 2010). With the parameterisation

suggested above of equation(s) (10) our class equation output variables
(
y∗i,q
)
will

necessarily be ordered by EV ∗q , such that such an OP formulation for the class

probabilities will be internally, and explicitly, consistent with this ordering.

By defining an unobserved latent variable, q∗i as a driver of the unobserved classes,

itself a function of observed characteristics zi with unknown weights γ and a (stan-

dard normally distributed) error term ui, then OP probabilities of class membership

can be derived along the following lines. Let q∗i be of the form

q∗i = z′iγ + ui, (11)

where zi has no constant term (for normalization). This latent variable translates

to the (here, unobserved) ordered, discrete, class outcomes qi (qi = 1, 2, ..., Q) via

the mapping

qi = q · 1
{
µq−1 < q∗i ≤ µq

}
,

where −∞ = µ0 < µ1 < . . . < µQ−1 < µQ = ∞ are the boundary parameters with

µ =
(
µ1, . . . , µQ−1

)′
to be estimated in addition to γ. Under the assumption of

normality, the OP probabilities are given by

f (qi|zi; θOP ) = Φ
(
µqi − z

′
iγ
)
− Φ

(
µqi−1 − z

′
iγ
)
,

where θ = (γ, µ).

Moreover whereas the MNL approach is based upon an underlying system of Q− 1

latent utility equations (Greene 2012), and hence Q−1 parameter vectors, the OP is

based upon a single utility index with accordingly a single unique set of parameters

per covariate. Increasing the number of classes in a OP set-up simply requires

estimation of one additional boundary parameter, and not kz as in the MNL one.

4The authors state that they only considered at most a 2-class model; although not stated this
may well have been due to convergence issues for larger class variants.
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3 Application: Body Mass Index

Given the serious health related issues associated with obesity, it is not surprising

that modelling body mass index (BMI) and obesity rates are attracting increasing

interest from both academics and policy-makers. Furthermore, as reported by the

World Health Organisation (WHO) in 2011, since 1980, adult obesity rates have

doubled worldwide. It is important to select an appropriate modelling approach

in the context of such an important and highly relevant policy application. The

determination of BMI levels have previously been addressed in the literature using

a latent class framework (Greene, Harris, Hollingsworth, and Maitra 2014). The

justification of such an approach here was based on medical evidence that an obe-

sity predisposing genotype is present in 10% of individuals (Herbert, Gerry, and

McQueen 2006): that is, it is (medically) very likely that individuals are genetically

predisposed to being in different BMI classes.5

We analyse data drawn from the British Household Panel Survey (BHPS). The

BHPS is a longitudinal survey of private households in Great Britain, 1991 to 2008,

and was designed as an annual survey of each adult member of a nationally represen-

tative sample. The first wave in 1991 achieved a sample of some 5,500 households,

covering approximately 10,300 adults from 250 areas of Great Britain. The same

individuals are re-interviewed in successive waves and, if they split off from their

original households are also re-interviewed along with all adult members of their new

households. The BHPS is a rich source of information on labour market status,

socio-demographic and health variables. In waves 14 (2004) and 16 (2006), informa-

tion was collected on weight and height, which we use to calculate individuals’BMI.

Accordingly our data set comprises of 22,430 observations covering individuals aged

16 and over. The average BMI in the sample is 27.06, with a standard deviation of

5.45 (Table 1), which lies in the lower end of the overweight BMI category suggested

by the WHO.

5We note here that health professionals may not deem BMI an ideal measure of weight-related
health status; however, it is still widely used for such and indeed is still collected in many major
household surveys.
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As justified above, we treat class membership as time-invariant and search for prox-

ies for different genetic types to explain membership of these classes. Following

the related literature, we include all available time invariant characteristics, such

as birth cohort, gender and ethnicity.6 In the outcome equation, we again follow

the received literature (see, for example, Cutler, Glaeser, and Shapiro 2003, Chou,

Grossman, and Saffer 2004, Brown and Roberts 2013, Greene, Harris, Hollingsworth,

and Maitra 2014) and control for age, number of children, marital status, household

income, employment status, highest level of educational attainment, number of ciga-

rettes smoked per day and a binary indicator for being active (specifically whether

the individual walks, swims or plays sport at least once a week). Finally, we also in-

clude a set of eleven controls capturing a wide range of health problems, namely

problems with: arms, legs, hands, etc.; sight; hearing; skin conditions/allergy;

chest/breathing; heart/blood pressure; stomach or digestion; diabetes; anxiety, de-

pression, etc.; migraine; and cancer.7 Descriptive statistics for the variables included

in the empirical analysis are presented in Tables 1 and 2. In brief, the sample is

evenly split by gender; just over half of the sample are married; and nearly 60% are in

full-time employment. The majority of the sample is white, and having a vocational

qualification is the most common highest educational attainment category.

Insert tables 1 and 2 about here

We firstly compare a range of different models using standard IC metrics in order to

ascertain the preferred approach. We then present detailed estimation results based

on our preferred specification. In order to evaluate the validity of the modelling

approach suggested in Section 2 above, we compare the results from estimating

numerous different models: we start with a one class linear regression model and then

successively increase the number of latent classes within both a standard framework

(unrestricted) and our new proposed framework (restricted8). We stopped searching
6Unfortunately there are no other, possibly more relevant, time-invariant variables available in

the data.
7We consider the possible existence of reverse causation below.
8Note that here, and subsequently, we use the term restricted, not so much in the parameteric

sense, but more-so in that this joint approach (across class probabilities and expected values) will
necessary enforce ordering in the final expected values.
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for more potential classes when convergence problems were encountered within each

framework. Convergence problems were encountered at Q = 6 for the restricted

approach and 3 for the unrestricted approach. Therefore in total, we consider 6

potential models with regard to the standard IC metrics, which are presented in

Table 3.

The IC metrics all support the three, four and five latent class restricted models (i.e.,

using the newly suggested approach) over the two latent class unrestricted model

(the current standard approach). This supports the modelling approach detailed

in Section 2 above. The AIC and HQIC support the five latent class restricted

model over the four latent class restricted model, whilst the BIC and CAIC do

the opposite. In addition to the IC metrics we also look at simple correlations

of the actual versus (prior probability weighted) predicted values for each model.

This is labelled Correlation in Table 3. From these, we can see that the degree

of correlation between the actual and the predicted values increases as we move

from the one class to the five latent class restricted model, which further endorses

the modelling approach detailed in Section 2. Based on a combination of the IC

metrics and the correlation of actual versus predicted values, we take the restricted

5-class model as our preferred specification.

Insert table 3 about here

Table 4 presents the increasing pattern in the EV s from classes 1 to 5 for the

restricted five latent class model and from classes 1 to 2 for the unrestricted two

latent class model.9 The EV s for classes 4 and 5 lie in the obese range defined by the

World Health Organisation (WHO) as a BMI of 30 and above. Indeed, worryingly,

for class 4, the average posterior probability is “large”(at 0.22), suggesting that a

large proportion of the population lie in this class. On the other hand, only 6% of

the population is estimated to be in the top BMI range. The dispersion within

these classes is relatively large, at 3. 8 (σ4 = exp (1.333)) and 5.9 (σ5 = exp (1.767))

9Note that these are evaluated at sample means of covariates, and for the overall value, weighted
by prior probabilities. Averaged individual EV s gave very similar results.
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respectively, for classes 4 and 5 (compared to the dispersion in the earlier classes).

Only 6% of individuals are estimated to be in the lowest BMI class, with a tight

distribution (σ1 = 1.9) ; with an EV of just over 20, this would class these (according

to the WHO) in the low end of normal weight. Nearly 30% of individuals are

estimated to be in the upper end of normal (WHO classified as 18.5− 24.9) with an

EV of 23. However, the largest class (40%) would be WHO classified as overweight

(EV = 26) , with a variability larger than the lower classes, but smaller than the

higher ones (σ3 = 2.5).

These findings are quite distinct from the estimates from the traditional approach.

With EV s at 25 and 32, these distributions are quite dispersed (with σ1 = 3.3

and σ2 = 5.9), which could be hiding the additional classes uncovered by the new

approach. We re-visit this below, but one possible explanation is theMNL approach

is suffering from convergence problems as a result of “over-fitting”such that it cannot

entertain the “true”number of classes.

The class membership equation is reasonably well-specified (see Table 5), with the

birth cohort controls generally driving the statistical significance.

Insert tables 4 and 5 about here

In Tables 6 and 7, we present the partial effects associated with our preferred five

class restricted model (for demographic, and health-related variables, respectively).

As would be expected, the partial effects differ quite dramatically across the five

classes in terms of both size and statistical significance. In the case of age, the partial

effects are positive and statistically significant in all five classes and increasing in

magnitude from class 1 to class 5. The effect of being married follows a less distinct

pattern, with the partial effects being positive and statistically significant in classes 1

to 4. A reduction in the magnitude of the effect is apparent from classes 1 to 3, then

increasing in the case of class 4. Being employed has a significant positive effect in

classes 1 and 2 only. Having a degree as the highest level of educational attainment

is the only educational attainment variable to have a statistically significant effect,
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with a statistically significant negative effect found for classes 2 to 5, which becomes

more pronounced from classes 2 to 5. The number of cigarettes smoked is inversely

associated with BMI in classes 1 to 5, with the largest inverse effect found in class

5.

Being active is positively associated with BMI in class 1 and inversely associated

with BMI in classes 3 to 5. With respect to this variable as well as the health con-

dition ones, we note the potential for reverse causation and that our findings relate

to correlations rather than causal relationships. As expected due to the differences

associated with the various health conditions, there is a wide degree of variability

in terms of the partial effects with respect to sign, magnitude and statistical sig-

nificance. For example, having a heart problem is positively associated with BMI

across all five classes, with the largest effect observed in class 4, whereas the effects

of mental health problems are generally statistically insignificant at the 1% level

across the 5 classes.

Insert tables 6 and 7 about here

These results illustrate how such an approach (LCM), can highlight interesting dif-

ferential partial effects across classes. However, the latent class approach may be

simply used by some, as a tool to allow for more unobserved heterogeneity into the

modelling exercise. Here one would assume that the researcher would be interested

only in overall partial effects, and not those split by class. So, if the overall par-

tials from both the 5-class restricted model and the 2-class unrestricted one were

very similar, it could be argued that our suggested approach has very little benefit

and/or effect in practice. Table 8 compares the overall (prior probability weighted)

partial effects across the restricted 5-class model and the unrestricted 2-class model.

Although the general pattern of results is broadly consistent across the two models,

there are some substantive differences in terms of size and statistical significance for

a number of explanatory variables (suggesting that using the unrestricted 2-class

model may be yielding biased results). For example, age has a much larger effect in

the restricted 5-class model, whereas the three labour market status variables are
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Figure 1: Kernel Densities of Observed BMI and OLS Predictions

statistically significant in the 2-class unrestricted model and statistically insignifi-

cant in the 5-class restricted model. The effects of education, number of cigarettes

smoked and being active are more consistent across the two models although there

are some differences in the magnitudes of the various effects. This is also the case

for the health problems, where they are statistically significant at the 1% level.

Such differences highlight the importance of selecting an appropriate modelling ap-

proach especially in the context of policy-relevant applications such as determining

the influences on BMI.

Insert table 8 about here

To further explore behaviours within the estimated classes, and also to ascertain the

overall appropriateness of our approach, we take a closer look at some estimated

densities. Firstly, in Figure 1, we present kernel densities of both the raw BMI

data, and that implied if simple regression techniques had been applied to model it.

Clearly, the latter does a relatively poor of explaining the observed density.
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Figure 2: Kernel Density Estimates by Class

In Figure 2 we plot the implied estimated densities by class. The (enforced) ordering

in these densities is evident, as their measures of central tendency (and dispersion)

clearly increase over classes 1 to 5. Taken in consideration with their posterior

probabilities, we can see that individuals have a very low chance of being in either

the lowest or the highest BMI range classes. However, individuals in these are

clearly likely to have very low and high, respectively, BMI levels with relatively low

probabilities of having very high BMI values (for class 1) and very low levels (class

5). Interestingly, although freely estimated, the spread of these distributions clearly

also increases with class. An implication of this is that although the highest BMI

range class has a very high EV , it appears that behavioural choices, for example,

can indeed help these individuals into more healthy BMI ranges. On the contrary,

individuals in either of the lowest two classes, appear to be very likely closely bound

to their class-specific EV s of low to mid 20s.

Finally, in Figure 3 we present (prior) probability weighted aggregate predicted

and actual densities. As is clearly evident, our approach does an excellent job
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Figure 3: Kernel Density Estimates of Actual BMI and Overall Predicted BMI

in predicting the empirical density, especially as compared to a simple regression

approach (Figure 1). Again, we would suggest that this is a further validation of

the suggested approach.

3.1 Robustness Checks

An obvious robustness check against which to compare our model results, is to

consider a constants-only variant, where following much of the LCM literature, the

class-assignment prior probabilities are simply modelled as constants. To this end we

re-estimate our model removing all covariates from the class equations. For reasons

of space, we do not report the full set of results from this exercise.10 However,

in Table 9 we present the model selection metrics from this exercise, along with

the ones for our preferred model. Thus we can see that for all IC measures and

for the values for Correlation, our approach consistently out-performs all possible

contenders for the constants-only version (the overall preferred figures are presented

10These are available from the authors on request.
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in bold, and those for the constants-only versions in italics). There is disagreement

across the IC metrics as to the preferred number of classes, with BIC and CAIC

favouring 3-classes, AIC 5-classes, and HQIC 4-classes. Taking these findings in

conjunction with the fit of the model, as defined by the correlation values, we take

the 3-class constants-only version as the preferred specification here.

The constants-only approach appears to favour a smaller number of classes, and

in terms of the metrics considered, appears to perform worse than our preferred

approach. However, again, if the researcher is predominantly interested in overall

partial effects, then if the two approaches yield very similar results in this respect,

one would presumably favour the less generalised approach. To address this, in

Table 10 we compare (prior probability weighted) overall marginal effects from the

3-class constants-only approach with those previously presented from our preferred

approach. In the final column we also present percentage differences in these. It

is clear that the approach undertaken is consequential for these summary partial

effects. For example, we find both large absolute and relative, changes in partials

across the approaches, and moreover even changes in signs and significance levels

of effects. For example, the (estimated) effect of age is almost halved; the number

of children turns from insignificance to a significantly positive effect (as does “not

in the labour force”); the effect of being employed increases over fourfold; and so

on. However, we also note that large differences are not evident across-the-board:

for example, the effect of the health problem (arms, legs, etc.) remains effectively

unchanged (at 0.774 as compared to 0.732); as does the number of cigarettes smoked

(-0.042 to -0.028); and being active (-0.530 compared to -0.479). We would surmise

that the variables exhibiting the largest differences are probably those most severely

affected by ignoring the omitted covariates in the class equation (that is, presumably

the most highly correlated with the omitted drivers of the class equation); and those

where the change is negligible, would be less affected (and presumably less strongly

related to the omitted class covariates).

The second robustness check we consider, is that in our (BMI) output equation, as

noted (as discussed above), we have several health indicators with the rationale that
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BMI is affected by say, health problems related to breathing. However, clearly the

strong possibility of reverse causation exists here, with the health condition not only

causing the BMI level (in part), but also BMI levels (in part) contributing to the

various health conditions. If we had appropriate identifying variables for these health

conditions, that could be considered independent to BMI, we could apply the usual

techniques for allowing for this endogeneity (for example, along the lines of Rivers

and Vuong 1988, Terza, Basu, and Rathouz 2008). As always, such variables are hard

to find and justify here, so instead we simply remove those likely offending variables

(all of the health related ones and the activity one) and re-estimate the model.

Reassuringly the results are effectively unchanged. Thus, we still find that theMNL

can only entertain up to a 2-class model; whereas the OP approach can go as high as

5. The IC metrics similarly choose both OP 4 - and 5-class over the MNL 2-class

one, and moreover are split between the choice between the two former (whilst the

correlation measure again favours the OP 5-class model). Moreover, class-specific

(and overall) EV s, partial effects and posterior probabilities are similarly extremely

close to those models with the potentially endogenous variables included, overall

leading us to the conclusion that the original results were not unduly affected by

endogeneity.

4 Does the MNL approach tend to “over-fit”?

The empirical results presented above with regard to the new suggested approach,

and the more traditional (MNL) one, tend to suggest that the latter might be sub-

ject to “over-fitting”, and that this could adversely affect the number of potential

classes one could consider as appropriate. In essentially estimating a separate equa-

tion for each of the classes, it may well be that one, or more, covariates has no, or

little, variation within a particular class, for example. Clearly issues such as this

will adversely affect identification and model estimation.

To ascertain whether this is a likely finding for our application, we undertook a

small Monte Carlo experiment. Here we used a 50% random sub-sample of obser-
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vations used in the empirical example (which was held constant for the course of

the experiment), and exactly the same model set-up as above with regard to the

covariates in the model. For estimation purposes this left us with N = 11, 203 ob-

servations. We explicitly generated the class probabilities via the MNL form, for

a 4-class model, and then estimated the model via the OP and MNL procedures

as described above. Coeffi cients for all parts of the model were simply generated as

random numbers from a (standard) normal distribution, and then held fixed. The

exceptions to this were the constants in the regression equations, which were set at

20, 30, 40 and 50, to ensure that the EV differed across the four classes, and the

baseline MNL parameters which, as usual, were normalised to zero.

The results were really quite illuminating. What we found was that whilst the newly

suggested (OP ) procedure only encountered convergence problems in 15% of cases,

the MNL (the true data generating process) did so in a remarkable 43% of cases.11

Although it would be a stretch to generalise these findings to all such MNL class

models, it will clearly be a potential problem in many instances, and one that the

suggested procedure will predominantly circumvent.12

5 Conclusions

Building on the observation that in most empirical examples authors ex post rank

and label their identified classes according to class-specific expected values, we ex-

tend the latent class methodology by proposing a procedure that allows for this

ranking in estimation. We also develop a functional form for the class probabili-

ties that is more parsimonious than the familiar multinomial logit model. There

are numerous reasons why the MNL probabilities may not be an ideal choice in

such a situation for the applied researcher (in addition to the fact that it does

not take advantage of the ubiquitous ranking of classes post estimation). These

11Full Monte Carlo results are available from the authors on request. Due to the length of time
to estimate all models, the number of Monte Carlo repetitions was limited to 100.
12Indeed, we did not record in how many instances there was no variation in any variables within

a particular class.
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include both the unattractive Independence from Irrelevant Alternatives property

(which appears particularly an issue for latent class modelling), as well as yielding a

very heavily parameterised model. Indeed, it is our conjecture that researchers are

quite often restricted in the number of classes they can estimate due to numerical

convergence issues: a case of “over-fitting”(a finding confirmed by a small Monte

Carlo experiment). Indeed, in our empirical example, only a two-class variant could

be considered using traditional, MNL, class probabilities, whereas our suggested

approach could estimate up to five.

The empirical example attempted to identify an unknown number of inherent classes

with respect to peoples’weight related health status, or BMI, levels. As noted, the

traditional approach could only estimate a 2-class model, which would have been

the preferred model in this case. However, our ordered approach could consider,

and indeed favoured, a much more flexible mixing distribution, with up to 5-classes

being supported.

The technique is widely applicable: wherever a latent class model is being applied to

an output variable which embodies any ordinal, or cardinal, ordering. The suggested

approach is only useful if covariates appear in the class probabilities. Otherwise the

proposed model amounts only to a one-to-one reparameterisation. We would also

suggest that, in general, explaining the classes with observed heterogeneity will be

preferable, and will provide more reliable estimates of the posterior probabilities of

class membership, and will be less likely to be adversely affected by any omitted

variable bias. Indeed, in the empirical application, using a constants-only approach

did appear to lead to biases in the summary partial effects measures.
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Table 1: Descriptive statistics; demographics

Standard
Variable Mean Deviation

BMI 27.059 (5.45)
Birth cohort 1940 0.158 (0.36)
Birth cohort 1950 0.168 (0.37)
Birth cohort 1960 0.201 (0.40)
Birth cohort 1970 0.160 (0.37)
Birth cohort 1980 0.115 (0.32)
Birth cohort 1990 0.004 (0.06)
Female 0.504 (0.50)
White 0.976 (0.15)
(Log of) age 3.784 (0.42)
Married 0.560 (0.50)
Number of children 0.575 (0.96)
(Log of) household income 10.190 (0.74)
Employed 0.583 (0.49)
Not in the labour force 0.159 (0.37)
Unemployed 0.028 (0.16)
Degree 0.143 (0.35)
Vocational degree 0.286 (0.45)
A-level 0.117 (0.32)
GCSE 0.167 (0.37)

Table 2: Descriptive statistics; health

Standard
Variable Mean Deviation

Health problem: arms, legs, hands, etc. 0.297 (0.46)
Health problem: sight 0.056 (0.23)
Health problem: hearing 0.093 (0.29)
Health problem: skin conditions/allergy 0.114 (0.32)
Health problem: chest/breathing 0.136 (0.34)
Health problem: heart/blood pressure 0.198 (0.40)
Health problem: stomach or digestion 0.086 (0.28)
Health problem: diabetes 0.049 (0.22)
Health problem: anxiety, depression, etc. 0.084 (0.28)
Health problem: migraine 0.070 (0.25)
Health problem: cancer 0.050 (0.22)
Number of cigarettes 3.598 (7.31)
Active 0.577 (0.49)
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Table 3: Model selection metrics

BIC AIC CAIC HQIC Correlation

Linear Regression 138, 210 138, 014 138, 236 138, 080 0.2759
2-class (restricted) 134, 442 133, 982 134, 503 134, 135 0.2970
3-class (unrestricted) 134, 437 133, 977 134, 498 134, 131 0.2975
3-class (restricted) 134, 128 133, 464 134, 216 133, 685 0.2001
3-class (unrestricted) − − − − −
4-class (restricted) 134,088 133, 221 134,203 133, 510 0.3045
4-class (unrestricted) − − − − −
5-class (restricted) 134, 160 133,089 134, 302 133,446 0.3087
5-class (unrestricted) − − − − −

Note: preferred model for each metric in bold.

Table 4: Expected values, averaged posterior probabilities and dispersion parameters

Q = 5;OP Q = 2;MNL
Expected Posterior Expected Posterior

V alue probability ln (Dispersion) V alue probability ln (Dispersion)

Class 1 20.37 (0.24)∗∗ 0.06 0.667 (0.06)∗∗ 25.09 (0.05)∗∗ 0.28 1.184 (0.01)∗∗

Class 2 23.24 (0.17)∗∗ 0.27 0.687 (0.05)∗∗ 31.91 (0.20)∗∗ 0.72 1.767 (0.01)∗∗

Class 3 26.46 (0.22)∗∗ 0.39 0.929 (0.04)∗∗ − − −
Class 4 31.27 (0.48)∗∗ 0.22 1.333 (0.04)∗∗ − − −
Class 5 37.61 (0.86)∗∗ 0.06 1.767 (0.05)∗∗ − − −
Overall 26.90 (0.04)∗∗ − − 27.00 (0.04)∗∗ − −
Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively. The preferred model for each

metric in bold.

Table 5: Class membership equation; preferred specification

Variable Estimated coeffi cient Standard error

Female −0.252 (0.02)∗∗

Birth cohort 1940 0.488 (0.04)∗∗

Birth cohort 1950 0.685 (0.06)∗∗

Birth cohort 1960 0.862 (0.08)∗∗

Birth cohort 1970 0.908 (0.10)∗∗

Birth cohort 1980 0.775 (0.13)∗∗

Birth cohort 1990 0.826 (0.23)∗∗

White 0.142 (0.06)∗∗

µ1 −1.032 (0.10)∗∗

µ2 0.162 (0.13)∗∗

µ3 1.231 (0.14)∗∗

µ4 2.221 (0.14)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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Table 6: Class-specific partial effects; demographics

Variable Class 1 Class 2 Class 3 Class 4 Class 5

(Log of) age 1.278 2.226 3.355 3.894 4.417
(0.23)∗∗ (0.20)∗∗ (0.41)∗∗ (0.80)∗∗ (1.21)∗∗

Married 0.612 0.605 0.447 0.752 −0.012
(0.14)∗∗ (0.09)∗∗ (0.10)∗∗ (0.21)∗∗ (0.49)

Number of children 0.011 −0.084 0.045 −0.179 0.120
(0.08) (0.05) (0.06) (0.12) (0.21)

(Log of) household income 0.004 0.123 0.099 −0.219 −0.521
(0.11) (0.08) (0.09) (0.14) (0.35)

Employed 0.759 0.438 0.271 0.483 0.362
(0.22)∗∗ (0.13)∗∗ (0.17) (0.37) (0.96)

Not in the labour force −0.434 −0.243 −0.027 0.147 0.984
(0.27) (0.16) (0.18) (0.40) (1.02)

Unemployed −0.614 −0.015 0.134 0.475 2.208
(0.65) (0.30) (0.32) (0.62) (1.23)∗

Degree −0.421 −0.683 −0.771 −1.571 −2.433
(0.25)∗ (0.15)∗∗ (0.19)∗∗ (0.37)∗∗ (0.77)∗∗

Vocational degree 0.235 −0.362 −0.206 −0.168 −0.555
(0.19) (0.11)∗∗ (0.12)∗ (0.26) (0.57)

A-level 0.197 −0.132 −0.526 −0.742 −0.762
(0.25) (0.15) (0.20)∗∗ (0.34)∗∗ (0.72)

GCSE −0.083 −0.234 0.054 −0.011 −2.067
(0.20) (0.12)∗ (0.14) (0.33) (0.83)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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Table 7: Class-specific partial effects; health

Variable Class 1 Class 2 Class 3 Class 4 Class 5

Health problem: arms, legs, hands, etc. 0.001 0.589 0.675 1.314 1.033
(0.20) (0.09)∗∗ (0.11)∗∗ (0.23)∗∗ (0.58)∗

Health problem: sight −0.381 −0.398 −0.097 −0.257 0.273
(0.24) (0.16)∗∗ (0.17) (0.39) (0.99)

Health problem: hearing −0.081 −0.301 −0.354 −0.218 0.355
(0.18) (0.13)∗∗ (0.15)∗∗ (0.31) (0.78)

Health problem: skin conditions/allergy 0.212 0.221 0.128 0.484 −0.791
(0.18) (0.12)∗ (0.14) (0.26)∗ (0.80)

Health problem: chest/breathing −0.274 0.166 0.393 0.649 1.956
(0.17) (0.11) (0.12)∗∗ (0.25)∗∗ (0.58)∗∗

Health problem: heart/blood pressure 1.109 1.104 1.482 2.053 1.807
(0.16)∗∗ (0.10)∗∗ (0.14)∗∗ (0.26)∗∗ (0.71)∗∗

Health problem: stomach or digestion −0.548 −0.434 −0.132 0.275 −0.429
(0.21)∗∗ (0.13)∗∗ (0.15) (0.28) (0.88)

Health problem: diabetes 0.735 1.047 1.816 2.580 2.149
(0.25)∗∗ (0.18)∗∗ (0.18)∗∗ (0.35)∗∗ (1.21)∗

Health problem: anxiety, depression, etc. −0.343 −0.198 0.230 0.245 1.442
(0.21) (0.14) (0.15) (0.31) (0.71)∗∗

Health problem: migraine −0.302 −0.166 0.094 1.334 −2.449
(0.23) (0.15) (0.16) (0.32)∗∗ (1.50)

Health problem: cancer −0.029 −0.014 0.304 0.543 1.867
(0.35) (0.16) (0.21) (0.37) (0.91)∗∗

Number of cigarettes −0.042 −0.059 −0.032 −0.027 −0.081
(0.01)∗∗ (0.01)∗∗ (0.01)∗∗ (0.01)∗∗ (0.03)∗∗

Active 0.500 −0.017 −0.473 −1.049 −2.461
(0.13)∗∗ (0.08) (0.10)∗∗ (0.19)∗∗ (0.44)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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Table 8: Overall partial effects

Q = 5;OP Q = 2;MNL

(Log of) age 3.113 (0.38)∗∗ 0.915 (0.20)∗∗

Married 0.539 (0.08)∗∗ 0.611 (0.08)∗∗

Number of children −0.036 (0.04) 0.026 (0.04)
(Log of) household income −0.001 (0.06) 0.039 (0.06)
Employed 0.392 (0.16)∗∗ 1.057 (0.13)∗∗

Not in the labour force −0.015 (0.18) 0.431 (0.15)∗∗

Unemployed 0.241 (0.34) 1.015 (0.25)∗∗

Degree −0.991 (0.12)∗∗ −0.888 (0.12)∗∗

Vocational degree −0.238 (0.10)∗∗ −0.106 (0.10)
A-level −0.441 (0.14)∗∗ −0.286 (0.13)∗∗

GCSE −0.161 (0.12) −0.180 (0.11)
Health problem: arms, legs, hands, etc. 0.774 (0.09)∗∗ 0.748 (0.08)∗∗

Health problem: sight −0.209 (0.19) −0.309 (0.15)∗∗

Health problem: hearing −0.258 (0.16)∗ −0.288 (0.13)∗∗

Health problem: skin conditions/allergy 0.185 (0.11)∗ 0.099 (0.11)
Health problem: chest/breathing 0.436 (0.11)∗∗ 0.514 (0.10)∗∗

Health problem: heart/blood pressure 1.499 (0.10) ∗ ∗ 1.406 (0.10)∗∗

Health problem: stomach or digestion −0.164 (0.14) −0.165 (0.12)
Health problem: diabetes 1.732 (0.24)∗∗ 1.851 (0.17)∗∗

Health problem: anxiety, depression, etc. 0.152 (0.14) 0.160 (0.15)
Health problem: migraine 0.132 (0.16) −0.120 (0.14)
Health problem: cancer 0.336 (0.19)∗ 0.267 (0.16)∗

Number of cigarettes −0.042 (0.01)∗∗ −0.038 (0.00)∗∗

Active −0.530 (0.07)∗∗ −0.478 (0.07)∗∗

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.

Table 9: Model selection metrics; comparison with constants-only approach

BIC AIC CAIC HQIC Correlation

Linear Regression 138, 210 138, 014 138, 236 138, 080 0.2759
5-class (restricted) 134,160 133,089 134,302 133,446 0.3087
2-class (constants) 134, 526 134, 126 134, 579 134, 260 0.2748
3- class (constants) 134 , 319 133, 715 134 , 399 133, 916 0 .2755
4-class (constants) 134, 349 133, 542 134, 456 133 , 810 0.2754
5-class (constants) 134, 522 133 , 511 134, 656 133, 848 0.2753

Note: preferred model for each metric in bold. Preferred model for the constants-only versions in
italics.
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Table 10: Overall partial effects; comparison with constants-only approach

5-class restricted 3-class constants only Difference (%)

(Log of) age 3.113∗∗ 1.729∗∗ 80.0
Married 0.539∗∗ 0.713∗∗ −24.4
Number of children −0.036 0.079∗∗ −146.0
(Log of) household income −0.001 0.054 −101.6
Employed 0.392∗∗ 1.747∗∗ −77.6
Not in the labour force −0.015 1.002∗∗ −101.5
Unemployed 0.241 1.787∗∗ −86.5
Degree −0.991∗∗ −0.844∗∗ 17.3
Vocational degree −0.238∗∗ −0.036 554.3
A-level −0.441∗∗ −0.335∗∗ 31.4
GCSE −0.161 −0.205∗ −21.6
Health problem: arms, legs, hands, etc. 0.774∗∗ 0.732∗∗ 5.8
Health problem: sight −0.209 −0.267∗ −21.9
Health problem: hearing −0.258∗ −0.306∗∗ −15.6
Health problem: skin conditions/allergy 0.185∗ 0.095 95.0
Health problem: chest/breathing 0.436∗∗ 0.532∗∗ −17.9
Health problem: heart/blood pressure 1.499∗∗ 1.317∗∗ 13.8
Health problem: stomach or digestion −0.164 −0.044 271.4
Health problem: diabetes 1.732∗∗ 1.914∗∗ −9.5
Health problem: anxiety, depression, etc. 0.152 0.266∗ −42.9
Health problem: migraine 0.132 −0.066 −298.0
Health problem: cancer 0.336∗ 0.257 30.4
Number of cigarettes −0.042∗∗ −0.028∗∗ 47.4
Active −0.530∗∗ −0.479∗∗ 10.6

Notes: ∗∗ and ∗ denote significant at 5, and 10% size, respectively.
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