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Abstract

The maximum simulated likelihood estimation of random parameter logit
models is now commonplace in various areas of economics. Since these models
have non-concave simulated likelihood functions with potentially many optima,
the selection of “good” starting values is crucial for avoiding a false solution at
an inferior optimum. But little guidance exists on how to obtain “good” starting
values. We advance an estimation strategy which makes joint use of heuristic
global search routines and conventional gradient-based algorithms. The central
idea is to use heuristic routines to locate a starting point which is likely to
be close to the global maximum, and then to use gradient-based algorithms to
refine this point further to a local maximum which stands a good chance of
being the global maximum. In the context of a random parameter logit model
featuring both scale and coefficient heterogeneity (GMNL), we apply this strat-
egy as well as the conventional strategy of starting from estimated special cases
of the final model. The results from several empirical datasets suggest that
the heuristically assisted strategy is often capable of finding a solution which is
better than the best that we have found using the conventional strategy. The
results also suggest, however, that the configuration of the heuristic routines
that leads to the best solution is likely to vary somewhat from application to
application.
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1 Introduction

With an increase in desktop computing power, the estimation of the random param-

eter logit model (RPL) has become increasingly common in empirical applications.

Also known as mixed logit, RPL provides a flexible framework for modeling dis-

crete choice data. RPL can approximate any random utility maximization model

arbitrarily well subject to specifying a suitable joint distribution of parameters (Mc-

Fadden and Train, 2000), and readily incorporate preference heterogeneity between

different individuals alongside panel correlation across observations on the same in-

dividual (Revelt and Train, 1998). These features make RPL especially attractive

when research questions entail the structural analysis of individual preferences from

a microeconomic perspective. Related applications can be found in various areas in-

cluding environmental economics (Layton and Brown, 2000), labor economics (van

Soest et al., 2002), transportation economics (Small et al., 2005), international eco-

nomics (Basile et al., 2008), and health economics (Sivey et al., 2012).

While RPL is specified by augmenting the parameters of the multinomial logit

model (MNL) with random heterogeneity, RPL poses a number of estimation issues

which MNL does not. Perhaps the best known one is that in most applications, the

RPL likelihood is a multidimensional integral which has no closed-form expression and

needs to be numerically approximated by using simulation. This issue has motivated

several studies to explore how best to obtain a more accurate approximation from

a given number of draws from the joint distribution of random parameters (Train,

2009, pp.205-236), and their findings have popularized the use of Halton sequences to

generate draws. While progress has also been made on developing estimation methods

which are more computationally attractive than the classical method of maximum

simulated likelihood (MSL) in certain aspects (Huber and Train, 2001; Harding and

Hausman, 2007; Train, 2008), MSL still remains the most commonly used method as

it can be readily applied in conjunction with almost any joint distribution of random

parameters.

This paper proposes an estimation strategy to address another well-known estima-

tion issue, on which limited practical guidance exists. Specifically, in contrast to its

MNL counterpart, the RPL likelihood is not globally concave and may feature several

local maxima. As in other similar contexts of non-linear estimation, the selection of

“good” starting values for estimated parameters is crucial to avoiding potentially false
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inferences based on the estimates associated with an inferior local maximum. In the

RPL literature, nevertheless, empirical studies rarely provide an explicit discussion of

starting values used, and the question of how to obtain “good” starting values has not

been the subject of inquiry as far as we know. On the basis of a few studies reporting

their starting value search strategies (Greene and Hensher, 2010, p.418; Knox et al.,

2013, p.74), the likely conventional practice is to take the starting values from the

estimated special cases of a preferred RPL specification.

Our proposed estimation strategy makes joint use of heuristic optimization algo-

rithms and usual gradient-based algorithms to obtain the MSL estimates of RPL. The

central idea is to use the heuristic algorithms to locate a starting point which is likely

to be close to the global maximum, and then to use gradient-based algorithms to re-

fine this point further to a local maximum which thus stands a good chance of being

the global maximum. For the heuristic search step, we consider two parsimonious but

effective algorithms which can be easily implemented by non-specialists in heuristic

optimization: the differential evolution (DE) algorithm (Storn and Price, 1997) and

the particle swarm optimization (PSO) algorithm (Eberhart and Kennedy, 1995).

Sometimes called global search routines (Fox, 2007, p.1013), these population-based

algorithms are well-suited to the task of locating candidate solutions away from infe-

rior maxima, as they search comprehensively over the parametric space in looking for

the directions of improvement. As other gradient-free algorithms, however, they tend

to be much slower than gradient-based algorithms in refining a candidate solution

to a nearby maximum. Our estimation strategy exploits the global search efficiency

of the population-based heuristics and the local search efficiency of gradient-based

algorithms, in the sense of Dorsey and Mayer (1995).

We investigate the performance of the DE- and PSO-assisted estimation strate-

gies in four different empirical data sets of varied sizes. While these strategies can

be applied to the estimation of any RPL specification, the four case studies primarily

focus on the generalized multinomial logit model (GMNL) of Fiebig et al. (2010).

The traditional RPL specification that augments MNL with normally distributed co-

efficients is the best known member of the RPL family, so much so that the generic

term “mixed logit” is often used to describe this particular specification. GMNL par-

simoniously extends it by adding extra parameters to capture interpersonal variations

in the overall scale of utility, and tends to perform favorably against other extensions

and variants of the traditional specification (Keane and Wasi, 2013). GMNL has been
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rapidly gaining influence in the empirical literature, as partly attested by its avail-

ability as “canned” commands in software packages like NLOGIT and Stata despite

its relative novelty. Our findings do not appear to be exclusively associated with

GMNL, however, as they remain qualitatively the same when the four case studies

are repeated using the traditional RPL specification.

The results suggest that the DE-assisted strategy is a very effective tool to diagnose

whether a solution obtained by following the conventional practice is a global maxi-

mum. In all four data sets, the DE-assisted strategy locates solutions which improve

on the best conventionally obtained solutions in terms of maximized log-likelihood.

Since the updating rules employed by the heuristic algorithms are partly random, the

DE- and PSO-assisted strategies may find different solutions over different estimation

runs. Under most computational settings we have explored, the DE-assisted strat-

egy finds those improved solutions with high enough empirical frequencies to suggest

that a small number of DE-assisted estimation runs would be sufficient for detecting

whether a preferred conventional solution is at an inferior maximum. While the PSO-

assisted strategy also locates solutions improving on the best conventional solutions

in all four data sets, it does so with much lower empirical frequencies. Moreover,

in each data set, the best solution that attains the highest likelihood we have found

comes from the DE-assisted strategy.

In terms of maximized log-likelihood, the best DE-assisted solution is always far-

ther from the best conventional solution than the latter is from the worst conventional

solution that displays acceptable convergence diagnostics. Yet, in terms of substantive

conclusions, the best DE-assisted and best conventional solutions often show more

agreement than the best and worst conventional solutions. The extent of agreement

between the solutions is application-specific, however, and the estimation strategy we

propose can be used to investigate the robustness of the conclusions drawn from a

conventional solution.

The remainder of this paper is organized as follows. Section 2 reviews the specifi-

cation and MSL estimation of GMNL. Section 3 presents the DE and PSO algorithms.

Section 4 presents the main case studies based on two smaller data sets. Section 5

reports further case studies exploring the applicability of the preceding section’s find-

ings to two larger data sets and other computational settings. Section 6 concludes.
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2 The generalized multinomial logit model

We assume a sample of N individuals who make a choice from J alternatives in each

of T choice situations. The utility person n derives from choosing alternative j in

choice situation t is specified as

Unjt = x′njtβn + εnjt (1)

where xnjt is an L-vector of alternative attributes, βn is a conformable vector of

utility coefficients, and εnjt is an idiosyncratic error term which is independent and

identically distributed as type 1 extreme value. Specifying a non-degenerate density

of βn leads to a random parameter logit model (RPL), which allows for interpersonal

heterogeneity in preferences for variations in different attributes (Revelt and Train,

1998; McFadden and Train, 2000).

In the generalized multinomial logit model (GMNL) of Fiebig et al. (2010), βn is

specified as

βn = µnβ + {γ + µn(1− γ)}ηn (2)

where scalar γ and vector β are deterministic, and random vector ηn is distributed

MVN(0,Σ). Using zn to denote an M -vector of individual n’s characteristics, the

random scale factor µn is further specified as

µn = exp(µ+ z′nθ + τvn) (3)

where scalar τ and vector θ are deterministic, and random scalar vn is distributed

N(0, 1). Scalar µ is a normalizing constant which is calibrated to set the mean of

µn to 1 when θ = 0. This model can be interpreted as one that accommodates both

canonical “coefficient heterogeneity” through individual-specific deviations ηn around

population mean coefficients β, and “scale heterogeneity” through the individual-

specific scale factor µn. Its flexibility is enhanced by the γ parameter which lets scale

heterogeneity affect the two components of coefficient heterogeneity differently.

Conceptually, allowing the scale factor µn to vary by n can be motivated by the

possibility that some individuals make choices which are “noisier”, or less aligned with

variations in the observed attributes, than others. Then, the idiosyncratic unobserv-

ables εnjt would have a larger variance for those individuals, making the scale factor
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smaller.1 As can be seen from equation (2), however, scale heterogeneity is equivalent

to a particular type of coefficient heterogeneity, so the two cannot be sharply distin-

guished from each other (Fiebig et al., 2010, p.398). The main empirical attraction

of GMNL is that the random parameter specification in (2) can approximate a wide

range of preference patterns, some of which would otherwise call for the use of much

less tractable specifications (Keane and Wasi, 2013).

Several other discrete choice models can be derived as special cases of GMNL.

The GMNL-I and GMNL-II models (Fiebig et al., 2010) are obtained by setting γ to

1 and 0, respectively. The GMNL model reduces to the mixed logit model when the

scale factor is assumed to be constant (µn = 1), while the the MNL model with scale

heterogeneity (SMNL) is obtained by constraining the covariance matrix of ηn to 0.

If both of these constraints are imposed simultaneously, the standard multinomial

logit model is obtained. The various special cases of GMNL are summarized below:

• GMNL-I: βn = µnβ + ηn (γ = 1)

• GMNL-II: βn = µn(β + ηn) (γ = 0)

• SMNL: βn = µnβ (var(ηn) = 0)

• Mixed logit (MIXL): βn = β + ηn (µn = 1)

• Standard multinomial logit (MNL): βn = β (µn = 1 and var(ηn) = 0)

The probability that individual n makes a particular sequence of choices is given by:

Sn =

ˆ T∏
t=1

J∏
j=1

[
exp(x′njtβn)∑J
j=1 exp(x′njtβn)

]ynjt

f(βn|β, γ, τ ,θ,Σ)dβn (4)

where ynjt = 1 if the individual chose alternative j in choice situation t and 0 otherwise

and density f(βn|β, γ, τ ,θ,Σ) is implied by equation (2). The parameters ω =

(β, γ, τ ,θ,Σ) can be estimated by maximizing the simulated log-likelihood function

SLL(ω) =
N∑

n=1

ln

{
1

R

R∑
r=1

T∏
t=1

J∏
j=1

[
exp(x′njtβ

[r]
n )∑J

j=1 exp(x′njtβ
[r]
n )

]ynjt
}

(5)

1This directly follows from the usual identification result for discrete choice models that when εnjt
is normalized as an iid variable, the overall scale of utility is inversely related to the true idiosyncratic
variance.
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where β[r]
n is the r-th draw from the density of βn and R is the total number of draws.

The standard approach to maximizing the simulated log-likelihood function is

to use a gradient-based method such as the Newton-Raphson or Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithms. See Train (2009, pp.185-204) among others

for a description of these methods. The researcher starts with an initial guess of the

solution - the starting values - which are then improved upon by the algorithm until

a specified stopping criterion is reached. A well-known limitation of gradient-based

methods is that the algorithm cannot distinguish between local and global maxima,

and will declare convergence if either type of maximum is reached. Thus, unless the

function to be optimized is globally concave, it is not guaranteed that the solution

is the global maximum. This issue is of practical importance since the simulated

log-likelihood function of the GMNL model and its special cases (with the exception

of the MNL model) is not globally concave, much as that of other RPL models. In

particular, different starting values may lead to different solutions, which suggests

that applied researchers should try different sets of starting values to investigate how

sensitive the results are to the particular values used. The choice of starting values

is rarely discussed in applications of GMNL and other RPL models, however. We

present some of the strategies that researchers may employ in the following section.

3 Population-based optimization heuristics

A heavily parametrized non-linear model like GMNL is often estimated in two steps.

First, a more parsimonious special case of the final model is initially estimated, which

in this case ranges from MNL to GMNL-I or GMNL-II. Then, the results are used to

specify a starting point for estimation of the final model. While such a procedure pro-

vides a data-driven basis for making an initial guess, it does not lead to data-driven

guesses about all parameters of the final model, some of which are necessarily con-

strained and not estimated by the special case. In addition, how closely a constrained

maximum resembles an unconstrained maximum is an open question.

This section describes alternative estimation strategies which use population-

based heuristic optimization algorithms to obtain initial guesses about all parameters

of the unconstrained final model. The central idea here is to use heuristic algo-

rithms to locate a point which is likely to be close to the global maximum, and then

to use gradient-based algorithms to improve this point further to a local maximum
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which thus stands a good chance of being the global maximum. Heuristic algorithms

are often used to optimize non-differentiable functions with multiple optima. The

maximum simulated likelihood (MSL) estimation of GMNL involves a differentiable,

albeit non-concave, objective function. As Dorsey and Mayer (1995) suggest, such an

optimization problem allows practitioners to use both gradient-based and heuristic

algorithms in conjunction to exploit the advantage of each. Gradient-based algo-

rithms can locate the global maximum easily if starting values are close to it, but

also miss it easily otherwise. Heuristic algorithms may reach a region containing

the global maximum more easily because they search through the parametric space

more comprehensively for possible directions of improvement. As other gradient-free

algorithms, however, they tend to be much slower in refining a candidate solution

to a nearby maximum, and are also more prone to solutions which fail the first-

and second-order optimality conditions. By exploiting the global search efficiency of

heuristic algorithms and the local search efficiency of gradient-based algorithms, our

estimation strategies aim to address the practical challenges of finding good starting

values and of ensuring that the final solution is at least a local maximum.

We focus on two population-based optimization heuristics, namely the differential

evolution (DE) algorithm of Storn and Price (1997) and the particle swarm opti-

mization (PSO) algorithm of Eberhart and Kennedy (1995). Both algorithms can

be easily implemented by non-specialists in heuristic optimization, as they require

only two tuning inputs to update the model’s parameters over iterations; in addition,

they have been found to outperform many other heuristic algorithms in a wide range

of applications (Gilli and Winker, 2009; Das and Suganthan, 2011). The DE algo-

rithm is much better known in economics, with prior applications in maximum score

estimation (Fox, 2007; Fox and Bajari, 2013) and as a building block of a modified

Bayesian estimation method (Winchel and Kratzig, 2013), as well as in other classes

of numerical optimization tasks (Keller et al., 2004; Krink et al., 2008). Some find-

ings, however, suggest that the PSO algorithm may be better suited to estimation of

high-dimensional econometric models (Gilli and Winker, 2009; Gilli and Schumann,

2010).

The main operational aspects of these algorithms are as follows. Suppose that

there are a total of K parameters in (β, γ, τ ,θ,Σ) and let a candidate solution be the

K-vector of guesses about those parameters. Each algorithm is initialized by gener-

ating P different random starting points forming the initial “population” of candidate
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solutions, where P is a large number. Then, every one of these candidate solutions is

updated over G iterations, or “generations”, where G is another large number. Within

each generation, the rule for updating each solution takes into consideration the pop-

ulation of solutions at the end of the preceding generation. The rule also features

random elements influencing the direction and extent to which each solution gets up-

dated. In the end, the terminal population of P candidate solutions are obtained, and

the best candidate solution in the sense of giving the highest simulated log-likelihood

value is selected as the fully iterated solution.

For further discussion, let ωg,p = (βg,p, γg,p, τ g,p,θg,p,Σg,p) denote a K-vector

of possible values of model parameters. Superscripts p = 1, 2, · · · , P − 1, P and

g =0,1,· · · , G − 1, G identify the pth candidate solution at generation g. Let Ωg =

(ωg,1,ωg,2, · · · ,ωg,P−1,ωg,P) be the collection of P up-to-date candidate solutions as

at g. For later use, we define g′ ≡ g − 1.

Once the initial population Ω0 has been generated, each algorithm can be imple-

mented by setting up a simple loop as follows:

for g = 1 to G {
for p = 1 to P {

DEg,p(F, Cr) or PSOg,p(C, D)

}
}

DEg,p(F, Cr) and PSOg,p(C, D) are the rules that the respective algorithms apply to

compute the updated candidate solution ωg,p. Each rule depends on two “tuning

parameters” (F, Cr) or (C, D), which are user-specified scalar inputs much as the pop-

ulation size P and the number of generations G. We now turn to a more specific

description of each rule.

3.1 Updating process under differential evolution (DE)

The updating rule DEg,p(F, Cr) consists of three main stages: mutation, recombination

and selection. The first two stages produce a K-vector of trial values tg,p. This is

competed against ωg′,p in the last stage, which selects the better of the two vectors

as ωg,p.

The mutation stage uses the amplification factor F and constructs a linear com-

bination of three existing candidate solutions other than ωg′,p. To this end, three
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vectors are randomly drawn from Ωg′\{ωg′,p} with equal probabilities and without

replacement: let these draws be ωg′,z1 ,ωg′,z2 and ωg′,z3 . Their linear combination dg,p

is specified as

dg,p = ωg′,z1 + F(ωg′,z2 − ωg′,z3). (6)

The recombination stage uses the cross-over probability Cr to construct the K-

vector tg,p by combining elements of ωg′,p and dg,p. This step also involves making

K+1 different random draws: a positive integer ig,p is drawn from {1, 2, · · · , K−1, K},
while K scalars ug,pk for k = 1, 2, · · · , K − 1, K are drawn from the standard uniform

distribution. Now, let ωg′,p
k ,dg,pk and tg,pk denote the kth elements of ωg′,p,dg,p, and tg,p

respectively. Each element of tg,p is chosen according to the following criteria:

tg,pk = dg,pk if ug,pk ≤ Cr or k = ig,p (7)

tg,pk = ωg′,p
k otherwise

Due to the role of integer ig,p, tg,p is always different from ωg′,p in at least one element.

The selection stage evaluates the simulated log-likelihood (5) at the updating

target ωg′,p and at the trial vector tg,p. The updated solution ωg,p equals tg,p if

SLL(tg,p) > SLL(ωg′,p), and ωg′,p otherwise. The terminal population ΩG consists

of P candidate solutions which have thus been updated G times. It is the best solution

in ΩG that is passed to a gradient-based algorithm for further improvement.

The role of the amplification factor F can be likened to that of the step size in

gradient-based optimization. In the above updating rule, F is the only component

that can be systematically increased by the user to induce a large extent of paramet-

ric changes between generations. The cross-over probability Cr, on the other hand,

influences how often the parametric changes are finalized. Storn and Price (1997) find

in a range of applications that while F is not a probability, the DE algorithm tends

to perform the best when it is chosen from the (0, 1) interval much as Cr.

3.2 Updating process under particle-swarm optimization (PSO)

The updating rule PSOg,p(C, D) deviates from DEg,p(F, Cr) in that now ωg,p always

changes from ωg′,p even when doing so results in a worse simulated log-likelihood.

Two additional concepts needed for a further exposition. First, define sg,p as the best

pth candidate solution that has been obtained up to generation g: that is, sg,p is the
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best one out of ω0,p,ω1,p, · · · ,ωg−1,p,ωg,p. Likewise, define qg as the best candidate

solution that has been obtained up to generation g: that is, the best one of out

sg,1, sg,2, · · · , sg,p−1, sg,p.
PSOg,p(C, D) uses the acceleration constant C and the inertia weight D to “fly”

ωg′,p towards the best-so-far positions at sg
′,p and qg′ , thereby obtaining the updated

solution ωg,p. The extent of the involved changes, or “velocity of the flight” vg,p,

depends also on two scalars rg,p1 and rg,p2 , each of which is drawn from the standard

uniform distribution.

vg,p = Dvg′,p + C[rg,p1 (sg
′,p − ωg′,p) + rg,p2 (qg′ − ωg′,p)] (8)

ωg,p = ωg′,p + vg,p (9)

The initial velocity v0,p is set to the K-vector of zeros so that v1,p equals a randomly

weighted sum of the updating target’s (ωg′,p) deviations from the two types of best-

so-far candidate solutions.

Once the updated solution ωg,p has been thus computed, sg,p is re-evaluated for use

in the next generation: sg,p equals ωg,p if SLL(ωg,p) > SLL(sg
′,p) and sg

′,p otherwise.

Then, qg is also re-evaluated and set to sg,p when SLL(sg,p) > SLL(sg,p
′
) for all

p′ 6= p. In the PSO context, the terminal population of P candidate solutions refers

to the collection of sG,p for p = 1, 2, · · · , P− 1, P, instead of ΩG per se. It is the best

solution in that collection, which by definition is qG, that is passed to a gradient-based

algorithm for further improvement.

The acceleration constant C can be viewed as a step size parameter, much as the

amplification factor F in the DE updating rule. The inertia weight D controls the

tendency to continue flying in the existing direction of parametric changes. C is often

set to 2 or less, as in the seminal study of Eberhart and Kennedy (1995). Gilli and

Schumman (2010) suggest that setting D to a number less than 1 tends to result in

better performance than setting it to 1 as in the seminal study.

3.3 Further remarks on the use of DE and PSO

In summary, there are three basic user inputs used by both DE and PSO algorithms:

the population size P, the number of generations G, and the initial population Ω0. In

addition, there are two tuning inputs used only by a particular algorithm: amplifica-

tion factor F and cross-over probability Cr for DE, and acceleration constant C and
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inertia weight D for PSO.

A full run through the updating loop of either algorithm evaluates the objec-

tive function P×G times, with each functional evaluation entailing simulated integra-

tion. Specifying larger values for P and G leads to a more comprehensive coverage

of the parametric space, but also requires more computer time. This trade-off, and

our intended use of a fully iterated DE or PSO solution as starting point for fur-

ther gradient-based optimization, make it appropriate to exploit somewhat a smaller

number of functional evaluations than what would be desirable had the fully iter-

ated solution been intended as the final solution. Much in the same vein as Bhat

(1997) sets the maximum number of expectation-maximization (EM) iterations in his

hybrid estimation strategy involving the EM and gradient-based algorithms, we will

specify moderately large values of P and G such that after P×G computations, the

objective function value is likely to vary little with further application of the DE or

PSO algorithm: more information is provided below.

It is customary to initialize Ω0 by taking independent draws from uniform distri-

butions. The selection of bounds for these distributions is not a particularly crucial

determinant of either algorithm’s performance, as each algorithm allows updated can-

didate solutions to exceed those bounds. We will choose bounds so that each of the

resulting initial candidate solutions may be considered reasonable as a starting point

for the GMNL estimation. The configuration of tuning parameters (F, Cr) and (C, D),

on the other hand, systematically influences the entire updating path and is known to

be a crucial determinant, with most well-suited configurations varying from applica-

tion to application. We will experiment with a broad range of possible configurations.

4 Main case studies

This section explores the use of the DE- and PSO-assisted strategies to estimate

GMNL. Each strategy passes a fully iterated DE or PSO solution as a starting point

to a gradient-based algorithm to obtain the final solution. The DE- and PSO-assisted

strategies are tools to improve the chance of finding the global maximum. Like any

other estimation strategy, they are not guaranteed to find the global maximum. From

a practitioner’s standpoint, two empirical performance issues may thus be of primary

interest.

The first issue is how frequently these estimation strategies can find a solution
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which is at least as good as the best that can be obtained using a conventional

strategy. This directly relates to whether the DE- and PSO-assisted strategies are a

useful addition to the practitioner’s toolkit. Starting value search strategies are not

part of the common reporting practice. Our own experience and conversation with

colleagues, however, suggest that most practitioners would follow a similar approach

as Greene and Hensher (2010, p.418) and Knox et al. (2013, p.74): the conventional

strategy is to start from the estimated special cases of GMNL.

The second issue is whether some configurations of DE and PSO algorithms are

conducive to finding such a solution repeatedly. This pertains to how easily the DE-

and PSO-assisted strategies can be implemented in practice. As discussed earlier, each

algorithm involves tuning parameters affecting how candidate solutions get updated

over generations. Without knowing what these parameters need be set to, the DE-

and PSO-assisted strategies would be only slightly less ambiguous than the generic

advice to “try a range of starting values.”

Two empirical case studies are presented below to illustrate the performance issues

in detail. The data come from Pap Smear test and Pizza A choice experiments

analyzed by the developers of GMNL (Fiebig et al., 2010; Keane and Wasi, 2013), and

are available for download from the Journal of Applied Econometrics Data Archive

page for Keane and Wasi (2013). Further information on these data sets is available

in Fiebig et al. (2010, p.404). Of 10 empirical illustrations in Fiebig et al. (2010),

these two have been selected because, in our view, the required optimization problems

are the most representative of what practitioners often face: the number of attributes

(6 in Pap smear test, 8 in Pizza A) is within the range commonly seen in modern

choice experiments (de Bekker-Grob et al., 2012, p.147) and the GMNL specification

to be estimated features uncorrelated normal coefficients.2

Both case studies take as given the preferred GMNL specifications of Fiebig et

al. (2010) and Keane and Wasi (2013), and aim at estimating parameters β, τ , γ

and σ, where the latter denotes the square-root of the elements on the diagonal of Σ

(the off-diagonal elements are assumed to be zero).3 The support of γ is the entire

real line as in Keane and Wasi (2013), instead of (0, 1) as in Fiebig et al. (2010).

2Fiebig et al. (2010) find that in these data sets, the uncorrelated MIXL and GMNL specifications
outperform their correlated counterparts in terms of BIC. Keane and Wasi (2013) conduct more
extensive model fit comparisons, and find that the uncorrelated GMNL specification also perform
favorably against other non-normal mixed logit specifications.

3In both case studies zn = 0 which means that µn simplifies to exp(µ+ τvn).
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All estimation strategies have been implemented in Stata 12.1, and differ only by

which starting points are supplied to the final gradient-based estimation of GMNL.

Following Fiebig et al. (2010), the likelihood functions are simulated by taking 500

draws from each random parameter’s postulated distribution.4 The same 500 draws

of each parameter are used for all estimation strategies to obviate the interference of

simulation noise.

Gradient-based optimization tasks use the clogit, mixlogit and gmnl Stata com-

mands as appropriate, following the default settings of each command unless explained

otherwise; these settings include the use of Stata’s implementation of the Newton-

Raphson algorithm.5 For the DE and PSO algorithms, we coded our own programs

in Stata, using the same simulated likelihood evaluator as gmnl. Before progressing

to the case studies, we will turn to a further discussion of the implementation details

of each estimation strategy.

4.1 Conventional estimation strategy

Implementing the conventional estimation strategy is seemingly straightforward. It

entails estimating initially a model which is nested within GMNL, and then using the

results to start the GMNL estimation run. This process is to be repeated for different

nested models, and the best out of several resulting GMNL solutions is picked as the

preferred solution.

In practice, it is only slightly more, if at all, straightforward than implementing the

DE- and PSO-assisted strategies. Since nested models include fewer parameters, they

provide estimated starting values for only some of GMNL parameters; the practitioner

needs to select custom starting values for the rest, and this selection may affect the

final GMNL solution. The practitioner also needs to decide how the intermediate

solutions are to be computed. All nested models but MNL have non-concave simulated

likelihoods with potentially many maxima. Moreover, both GMNL-I and GMNL-II

nest MIXL and SMNL, both of which in turn nest MNL.

4Keane and Wasi (2013) do not report the number of simulated draws used, but comparisons of
their MIXL and SMNL results with Fiebig et al. (2010) suggest that it is also 500.

5clogit is Stata’s built-in command for estimating MNL. mixlogit is Hole’s (2007) command for
estimating MIXL. gmnl is the same co-author’s (Gu et al., 2013) command for estimating GMNL as
well as its building blocks, SMNL, GMNL-I, and GMNL-II. Gu et al. (2013) note that in Stata, the
Newton-Raphson algorithm tends to outperform quasi-Newton algorithms in terms of the ability to
find a GMNL solution satisfying the usual set of convergence diagnostics.
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Table 1 summarizes the custom values we combined with each nested model’s

estimates to construct a starting point for GMNL. The MNL starting point draws on

the default setting of the gmnl command and provides a basis for specifying other

starting points. MIXL and SMNL were estimated from the same MNL starting point,

ignoring irrelevant parameters. GMNL-I (GMNL-II) was estimated three times, once

from each of the MNL, MIXL and SMNL starting points, again ignoring irrelevant

parameters; GMNL, in turn, was then estimated once from each of the three potential

GMNL-I (GMNL-II) starting points, though only the best of the three resulting

GMNL solutions is reported below.6

In our view, this implementation of the conventional strategy is representative of

what a typical practitioner would do. A few studies commenting on the estimation

process (Greene and Hensher, 2010, p.418; Knox et al., 2013, p.74) only note that

starting values have been obtained from nested models. Also, apart from MNL, each

nested model requires a non-trivial amount of computer time per estimation run,

making it rather cumbersome for the practitioner to experiment with a wide range of

custom values, especially when no relevant guidance exists.

In both case studies, our conventional strategy finds solutions which are different

from what Keane and Wasi (2013) report. Some of our solutions result in higher, and

others worse, log-simulated likelihoods than the corresponding figures in that study.

In addition to variations in the process of constructing starting points, such discrep-

ancy may be attributed to different computing environments (Stata and Matlab), for

example in terms of pseudo-random number generation. We do not pursue the exact

source of the discrepancy because our case studies are not intended as replication

exercises. Moreover, even within the Stata computing environment, we find a range

of different solutions from different starting points.

4.2 DE- and PSO-assisted estimation strategies

The DE and PSO algorithms require, as user inputs, the population size P and the

number of generations G. In addition, both algorithms require an initial population

of P candidate solutions that they can improve over G generations.

Following the common practice, we set P=10K where K is the number of esti-

mated parameters. We also set G=10K. The choice of G varies from application to

6In many cases, the GMNL-I (GMNL-II) starting point that led to the best GMNL solution was
not the one based on the best of three GMNL-I (GMNL-II) solutions.
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application, depending on the nature and purpose of the intended optimization task.7

In preliminary experimentation with simulated data sets, we noticed that both algo-

rithms tended to slow down substantially around the 10Kth generation, motivating

our decision to switch to the gradient-based optimization at that point. To illustrate

this slowdown in an empirical context, Figure 1 plots how a selection of DE and PSO

starting points used in the first case study (Pap Smear) would have varied had G been

set to 420 (or 30K) instead of 140 (or 10K).

The initial population of P solutions is generated as follows. For the GMNL

parameters to be estimated ω = {β, τ , γ,σ}, consider the lower and upper bounds

given by l = {bMNL,0, 0,0} and u ={3×bMNL, 2, 1, 1.5×bMNL}, where bMNL is the

vector of the MNL estimates and 0 is the K-vector of zeros. For each initial solution,

each element of ω is independently drawn from a uniform variable lying between the

corresponding elements of l and u.

The updating process of each algorithm requires two tuning parameters as ad-

ditional user inputs: amplification factor F and cross-over probability Cr in case

of DE, or the acceleration constant C and the inertia weight D in case of PSO.

We follow Gilli and Schumann (2010) in experimenting with 16 pairs, or configu-

rations, of those tuning parameters per algorithm: a DE configuration is in F =

{0.2, 0.4, 0.6, 0.8} × Cr = {0.2, 0.4, 0.6, 0.8}, while a PSO configuration is in C =

{0.5, 1.0, 1.5, 2.0} × D = {0.5, 0.75, 0.9, 1.0}. The resulting configurations are spaced

broadly enough to provide indicative evidence for future applications on what tun-

ing parameter values could be narrowly searched over for further fine-tuning of each

algorithm.

Since the updating process is partly random, different DE or PSO starting points

would result from the same configuration when different random number seeds are

specified for initialization. We have obtained 48 DE starting points and 48 PSO

starting points, by restarting each configuration three times from the same set of

three seeds. In other words, the same set of three different initial populations has

been used to obtain the three starting points associated with each configuration of

each algorithm.

7For example, when optimizing a function with a known global optimum, it may be left unspecified
to let the optimization run to continue until the optimum is reached (Storn and Price, 1997), whereas
when comparing the performance of DE or PSO with that of another algorithm, G may be chosen
so that with P=10K, the same number of functional evaluations results as what the comparator
algorithm has performed to find its preferred solution (Gilli and Winker, 2009).
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4.3 Results: Pap Smear

In this data set, each of 79 individuals faced 32 choice scenarios consisting of two

options, namely get a Pap Smear test or not. These options are described by 6

different attributes, including the alternative-specific constant (ASC) for the get-test

option. Estimating the mean (β) and standard deviation (σ) of the canonical random

coefficient on each attribute results in 14 GMNL parameters.

Table 2 reports in descending order the simulated log-likelihood values (logL here-

after) of the solutions obtained by applying the conventional strategy, along with the

usual diagnostics for checking convergence to a local optimum. Stata classifies all

solutions as “converged”, implying that the Hessian (H) is negative definite and the

weighted gradient norm (g′H−1g) is smaller than -1E-5 in magnitude. Further inspec-

tion suggests that only the MNL-based solution gives warning signs: the inf-norm of

the gradient (‖g‖∞) deviates far way from zero and the Hessian condition number

(κ(H)) exceeds one over the square root of Stata’s machine precision. But this is the

worst solution which is unlikely to be reported by a practitioner who tries alternative

starting points.

The best solution results in logL of -931.065, which is somewhat higher than -934

in Keane and Wasi (2013). It is also a type of local maximum which practitioners

may find particularly convincing as a candidate for the global maximum, because it

can be reached from two different starting points, namely MIXL and GMNL-II.8 The

negligible difference between their convergence diagnostics arises because the MIXL-

based estimates differ marginally from the GMNL-II-based estimates, in or after the

fifth decimal place.

The DE- and PSO-assisted estimation strategies find several solutions which im-

prove on the best conventional solution. The best solution is a DE-assisted one,

resulting in logL of -925.378. Table A1 in Appendix reports the logL results from all

3 starts of 16 configurations of each algorithm. The main features of those results may

be summarized as follows. 16 of 48 DE-assisted solutions (35%) result in logL greater

than -931.065, ranging from -928.034 to -925.378. Considering that some of the 48

solutions include those resulting from configurations not well-suited to the present

application, a prima facie case exists that the DE-assisted strategy is a practically

useful complement to the conventional strategy. In contrast, only 3 out of 48 PSO-

8Both MNL and MIXL starting points led to the same GMNL-II solution that is used as the
starting point for GMNL here.
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assisted estimation runs (6%) result in an improved solution, ranging from -926.671

to -926.308.

Another practically attractive feature of the DE-assisted solutions is clearer in-

dicative evidence on which configurations are likely to work well. Table 3 reports the

top ten logL values found with the aid of each algorithm. A qualitative direction for

fine-tuning the DE configuration to the present application would be “try a big change

to the parameter estimates, but accept the resulting change only occasionally.” No

similar direction emerges in case of PSO, as the top ten solutions are associated with

a wider range of configurations.

To be specific, the top ten DE-assisted solutions are overly represented by config-

urations specifying a large amplification factor F (0.6 and 0.8) and a small cross-over

probability Cr (0.2 and 0.4). When restricting attention to the four implied configu-

rations, 9 out of 12 DE-assisted estimation runs (75%) find an improved solution, and

4 of those 9 runs reach the highest logL of -925.378. In contrast, a small F (0.2 and

0.4) appears not well suited, regardless of the accompanying Cr: only 2 of such 28

DE-assisted runs find an improved solution, none of them reaching the highest logL.

The highest logL has been reached from 6 different DE starting points and displays

appropriate convergence diagnostics. Of course, as in the case of the best conventional

solution, such repeatability does not imply that the underlying solution is the global

maximum. Verifying that a particular solution is the global maximum is considered

to be beyond the scope of our study because, as far as we are aware, no definitive

guideline exists on how such verification is to be performed. We have, however,

verified that the best conventional solution is not the global maximum. Our present

and subsequent analysis focuses on the consequences of basing an empirical analysis

on the best conventional solution when a DE- or PSO-assisted solution is capable of

achieving a higher logL.

Table 4 reports the second-worst and best conventional solutions, along with the

best DE-assisted solution. The second-worst conventional solution (Solution A) re-

sults from the GMNL-I starting point, and is the worst one out of conventional solu-

tion with acceptable convergence diagnostics. In terms of logL, the best conventional

solution (Solution B) gains over Solution A by some 3 points, and there are marked

differences between the coefficient estimates: the mean of “ASC test”, in particular,

is about 2.5 times larger in Solution A than in Solution B (-3.85 vs. -1.51) and many

other estimates disagree even on the first significance figures.
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There are less pronounced differences between the best DE-assisted solution (So-

lution C) and the best conventional solution (Solution B), despite that C improves

on B by 6 logL points, or twice as much as B improves on A. The main difference

between the solutions is that while solution B supports simplifying the model to a

more parsimonious GMNL-II model with a fixed test cost coefficient, solution C does

not support such a simplification as both the estimate of γ and the standard deviation

of the cost coefficient are significant and non-trivial. The remaining differences are

not such that it becomes immediately obvious from simple inspection whether policy-

relevant statistics derived from these solutions, such as the median willingness-to-pay

(WTP) and the predicted choice probability, would be substantively different.9

To facilitate further comparisons, Table 5 reports selected percentiles of WTP

distributions simulated from solutions A, B and C. As expected from the earlier

comparison of A with B, these two solutions imply quite different median WTP,

the primary statistic on which practitioners are likely to focus (e.g. Small et al.,

2005). The implied WTP distributions of B and C, on the other hand, are only

slightly different at the median. The main difference between those two solutions

is that due to heterogeneity in the cost coefficient which is only picked up by C,

the interpercentile ranges of WTP are much more pronounced for C than B.10 As a

result, conclusions regarding the dispersion of the WTP distribution implied by B

may require reconsideration.

Table 6 compares the three solutions in terms of the predicted changes in the

probability of choosing the Pap Smear test in response to attribute level variations.

The baseline specification of the attribute levels has been motivated by what Johar

et al. (2013, p.1853) find plausible in the Australian context. As in the case of the

median WTP, solutions B and C agree on the substantive conclusions, predicting

changes of similar magnitudes and indicating that under the baseline scenario, the

test is more likely to be chosen than not. In this case, however, solution A also

9The WTP for a specific attribute is the utility coefficient on that attribute divided by the
absolute value of the utility coefficient on the price or cost attribute. The WTP distribution can be
simulated first by making simulated draws for all utility coefficients according to equation (2), and
then computing relevant ratios of those simulated coefficients.

10More specifically, the test cost coefficient is very tightly distributed around its mean in B,
whereas it is more dispersed in C implying a higher frequency of drawing coefficients close to zero.
Since draws from the test coefficient distributions enter the denominators of simulated WTP, this
difference can make the WTP distribution of C more dispersed even though other coefficients are
similarly dispersed in B and C.
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yields almost the same results as the others, apart from that in line with its large and

negative ASC, it predicts a smaller baseline probability of the test (0.45) than B (0.57)

and C (0.53). This robustness may stem from the same source as the difficulties of

finding the global maximum, namely that different combinations of parametric values

lead to similar probabilities or likelihoods.

4.4 Results: Pizza A data

In this data set, each of 178 individuals faced 16 choice scenarios consisting of two

hypothetical pizza delivery services. These services are described by 8 different at-

tributes. Estimating the mean and standard deviation of the canonical random coef-

ficient on each attribute results in 18 GMNL parameters.

Table 7 reports logL values attained by the conventional solutions. The MIXL and

GMNL-II starting points again turn out to be two best conventional starting points.

But this time only GMNL-II leads to the highest logL of -1361.84, which lies above

-1372 reported in Keane and Wasi (2013).11 All conventional solutions, including the

worst one, display acceptable convergence diagnostics.

The full set of the DE- and PSO-assisted estimation runs are reported in Appendix

Table A2, and the results agree with the Pap Smear results on two broad conclusions.

First, the best solution is obtained by the DE-assisted strategy and attains logL of

-1356.80. Second, the DE-assisted strategy outperforms the PSO-assisted strategy in

terms of finding a solution improving on the best conventional solution, even though

this time the PSO-assisted strategy does better than in the Pap Smear case study:

42% or 20 out of 48 DE-assisted solutions, and 23% or 11 of 48 PSO-assisted solutions,

improve on the best conventional solution.

The current results, however, are quite different from the previous results in one

important dimension. 11 DE-assisted solutions (23%) and 4 PSO-assisted solutions

(8%) have been declared “not converged” by Stata, because the associated Hessian is

not negative definite and/or g′H−1g exceeds the tolerance level. No solution in the

Pap Smear case study displays this issue.

More importantly, the clear sign of non-convergence is present in the four best

solutions we have obtained. All these solutions are in the “DE-assisted” panel of

Table 8, which reports the 10 best DE-assisted and PSO-solutions. Both ‖ g ‖∞ and

11Only GMNL-II estimated from the SMNL starting point led to this GMNL solution.
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g′H−1g of the four solutions evidently deviate from zero, and in the case of the three

best solutions κ(H) is negative meaning that the Hessian is not negative definite.

Since these are symptoms of an empirically underidentified model, we followed the

advice of Chiou and Walker (2007) for further inquiry. Specifically, we re-estimated

the model by using as starting point the best conventional solution, and making

10,000 draws to simulate the log-likelihood function. As Chiou and Walker point

out, using a larger number of draws unmasks empirical underidentification: while the

best conventional solution displays acceptable convergence diagnostics at 500 draws,

the new estimation run failed to attain convergence.12 We note that, in the case of

the Pap Smear data, similarly starting an estimation run from the best conventional

solution led to convergence within 7 iterations.13 Thus, in the present application, the

use of the DE- and PSO-assisted strategies leads to a practically different implication

from the conventional strategy: namely, that the model needs to be simplified before

the parameter estimates can be readily interpreted.14

Putting the empirical underidentification issue aside, the present case study also

yields more ambiguous guidance on configurations of the DE and PSO algorithms.

As in the Pap Smear application each PSO configuration tends to perform differently

across three restarts, and now the DE configurations also perform somewhat more

erratically. The 10 best DE-assisted solutions in Table 8 vary widely in terms of

Cr, though it still appears to be the case that taking F from {0.6, 0.8}, especially

0.6, is a good choice. The full set of results in Table A2 shows that there are a few

more runs with configurations involving F={0.2, 0.4} that find an improved solution,

on top of the two which already appear in Table 8 (recall that such configurations

performed poorly in the Pap Smear application). We note, however, that restricting

attention to F= {0, 6, 0.8} × Cr= {0.2, 0.4} still seems to be a valid baseline choice:

such configurations find an improved solution in 67% or 8 of 12 runs, and encompass

(F,Cr)= (0.6, 0.4) which finds an improved solution in all three restarts.

12More specifically, logL rose from -1362.46 to -1353.08 after 31 iterations, at which the Hessian
was not negative definite, and no further change occurred during the next 69 iterations.

13LogL rose from -938.273 to 936.399.
14We found no such evidence of empirical underidentification in a mixed logit model estimated on

the same data, where the model followed the same specification as in Section 5.4.
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5 Further case studies

The results described in the previous section suggest that the DE- and PSO-assisted

estimation strategies can be a useful tool for improving the chance of finding the

global maximum in empirical applications. Between the two strategies, the DE-

assisted strategy appears to be the better choice since it improves on the conventional

solution more frequently and is more consistent in terms of which configurations are

likely to perform well. The best conventional and DE-assisted solutions have led to

somewhat (Pap Smear) and quite (Pizza A) different substantive conclusions based

on the estimated GMNL models.

In this section, we explore the applicability of the earlier findings to other empiri-

cal contexts and computational configurations. The discussion is based on additional

sets of estimation results, only a subset of which is reported below for brevity of pre-

sentation. Interested readers are referred to our Online Appendix for other discussed

results.15

5.1 Holiday A data and Mobile Phone data

It is reasonable to ask whether the configurations of DE algorithm which were most

likely to improve on the conventional solution in the previous section (F= {0, 6, 0.8}×
Cr= {0.2, 0.4}) will also perform well in other empirical applications. To examine

this question, we have applied the same configurations to estimate GMNL using the

Holiday A and Mobile Phone data sets from Fiebig et al. (2010) and Keane and Wasi

(2013). These data are on individuals’ choices from hypothetical holiday packages and

from hypothetical mobile phones, respectively. The results are encouraging: the DE-

assisted strategy improves on the best conventional solution in 11 out of 12 restarts

(92%) in Holiday A, and in all of 12 restarts in Mobile Phone (100%). Furthermore,

it is interesting to note that in both data sets the (F = 0.8, Cr = 0.2) configuration

repeatedly locates the best solution we have obtained, just like it did in the Pap

Smear application.

The overwhelmingly better performance of the DE-assisted strategy relative to

the conventional strategy may be explained by underlying computational difficulties.

15The Online Appendix can be accessed at:
https://www.dropbox.com/s/nopimkjotwmsvfu/Dec2014_Hole_and_Yoo_Online_Appendix.

pdf?dl=0.

22

https://www.dropbox.com/s/nopimkjotwmsvfu/Dec2014_Hole_and_Yoo_Online_Appendix.pdf?dl=0
https://www.dropbox.com/s/nopimkjotwmsvfu/Dec2014_Hole_and_Yoo_Online_Appendix.pdf?dl=0


The Holiday A and Mobile Phone data sets have 331 and 493 individuals, respectively,

far more than the 79 and 178 individuals in the Pap Smear and Pizza A data sets.

Thus, the present cases require many more person-specific likelihoods be simulated.

In addition, the Mobile Phone data set requires the estimation of more than 10

extra parameters in comparison with the other data sets. With such factors adding

to computational difficulties, the choice of starting values may become even more

important.16

In both data sets, nevertheless, the best conventional solution and the best DE-

assisted solution still show a large amount of agreement on substantive conclusions.

Table 9 report the best DE-assisted solution along with the worst conventional and

best conventional solutions for Holiday A, and Table 10 report the corresponding

results for Mobile Phone.17 All three solutions display appropriate convergence diag-

nostics for local maxima in both data sets.

Holiday A yields qualitatively similar results to Pap Smear in the previous sec-

tion. The best DE-assisted solution achieves a 22.96-point higher logL than the best

conventional solution (logL = -2490.92 vs -2513.88), and this difference is much larger

than the 9.3 points that the latter gains over the worst conventional solution (logL

= -2523.27). Yet, in terms of the parameter estimates, the difference between the

best DE-assisted and best conventional solutions is not as evident as that of the

best and worst conventional solutions, apart from that the best DE-assisted solution

finds much less coefficient heterogeneity for ‘Airline’ and more for ‘Peak season’. The

comparisons of simulated WTP distributions lead to the same conclusion.

In Mobile Phone, it is also the case that the best DE-assisted solution gains many

more logL points over the best conventional solution than the latter gains over the

worst conventional solution. The logL values of the three solutions are -3937.97, -

3951.66 and -3954.89 respectively. The comparisons of the parameter estimates are

less straightforward in this application as it involves many more parameters, most

16This explanation invites the question of why the DE-assisted strategy was found to perform
worse in the Pizza A application that involves more individuals and parameters. One possibility is
that it is an anomaly due to empirical underidentification. We note that when GMNL is re-estimated
by using 10,000 simulated draws and starting from the best conventional solution at 500 draws, the
estimation run achieves convergence within a few iterations in both the Holiday A and Mobile Phone
data sets, much as in the Pap Smear data set.

17Keane and Wasi (2013) report the logL values of -2512 for Holiday A and -3966 for Mobile
Phone. In comparison, our best conventional solutions yield -2513.88 and -3951.66 in the respective
data sets.
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of which are statistically insignificant at all conventional levels. It is, nevertheless,

evident that the best DE-assisted solution stands out from both the best and worst

conventional solutions. Several standard deviation estimates are significant only in

the best DE-assisted solution, and often larger in magnitude than the corresponding

estimates in one or both of the conventional solutions. Thus, if significant standard

deviations are used to gauge market segments to which particular mobile phone fea-

tures may appeal, the best DE-assisted solution can lead to quite different marketing

decisions than the best conventional solution.

We conclude this subsection with remarks on the PSO-assisted strategy. The

previous section suggests that the performance of various PSO configurations tends

to be erratic across restarts. In the absence of clearer evidence on suitable baseline

configurations, we have applied those drawn from C = {1.5, 2.0} × D = {0.75, 0.9} to

the Holiday A and Mobile Phone data sets by restarting each of the resulting four

configurations three times. The results again suggest that the DE-assisted strategy

outperforms the PSO-assisted strategy: the latter improves on the best conventional

solution less frequently (4 out 12 restarts in Holiday A and 7 out of 12 restarts in

Mobile Phone), and the best PSO-assisted solution achieves worse logL than the best

DE-assisted solution (-2507.70 in Holiday A and -3949.79 in Mobile Phone).

5.2 All data sets: comparison with the random perturbation

strategy

Our use of the DE and PSO algorithms is essentially a sophisticated method for

obtaining a suitable random starting point. As the non-identical results across the

three starts from the same configurations illustrate, each algorithm works by refining

the initial population of several random starting points repeatedly to produce one

improved random starting point. In addition, at least in the Pap Smear and Holiday

A data sets, the best DE-assisted and best conventional solutions resemble each other

closely in terms of parameter estimates. This proximity, together with the inherent

randomness of the DE starting points, leads to the question of whether using a ran-

domly perturbed version of the best conventional solution as starting point could be

considered as an effective substitute for the DE-assisted estimation strategy.

To address this question, we have applied the following random perturbation strat-

egy to all four data sets as follows. For each parameter estimate in the best conven-
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tional solution, a draw is made from a uniform distribution over ±4 standard errors

of the estimate. A perturbed starting value for the relevant parameter is obtained by

adding up the estimate and the uniform draw. Then, a new random starting point

is specified as a vector of the perturbed starting values for all parameters. 20 such

starting points have been generated for each data set, and used to estimate GMNL

via the Newton-Raphson algorithm.

Table 11 reports the best five logL values resulting from the 20 perturbed starting

points. The results suggest that while the perturbation strategy may sometimes

be useful in checking for the robustness of the best conventional solution, it cannot

readily locate or improve on the best DE-assisted solution. In the Pap Smear data,

all five best solutions coincide with the best conventional solution, while in the Pizza

A data, all solutions are worse than the best conventional solution. In the Holiday A

data, all five best solutions improve on the best conventional solution, but even the

very best perturbed solution gains only 1.41 points in terms of logL, much smaller

than the best DE-assisted ’s gain of 22.96 points. In the Mobile Phone data, the

perturbation strategy again turns out to be useful in detecting the inadequacy of the

best conventional solution, which is beat by all five best perturbed solutions, but not

capable of locating or outperforming the best DE-assisted solution.

5.3 Pap Smear and Pizza A: 20 starts

Our findings so far have suggested that good baseline configurations of the DE al-

gorithm can be drawn from F = {0.6, 0.8} × Cr = {0.2, 0.4}. As explained earlier

the starting point for the algorithm is randomly determined, and we now explore the

robustness of the configurations from an alternative angle by restarting each of the

four configurations using twenty different random number seeds instead of three as in

the previous analysis. For this purpose, we use the Pap Smear and Pizza A data sets

whose smaller sizes make them more amenable to a large number of estimation runs.

In each data set, the results over 80 restarts confirm that the performance of these

configurations is consistently good. In the Pap Smear data, 49 out of 80 restarts

(61.25%) improve on the best conventional solution. The frequency is smaller than

the 75% (over 12 comparable restarts) found earlier, but still covers the majority

of cases. In the Pizza A data 62 out of 80 restarts (77.5%) improve on the best

conventional solution, that is with a higher frequency than the 67% found earlier.
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Table 12 reports the ten best DE-assisted solutions found from the 80 restarts in

each data set. The results for the Pap Smear data suggest that (as in the case of the

best conventional solution) repeatedly finding a particular maximum is not a reliable

sign that it is the global maximum. Now, there are two new maxima at the logL values

of -924.359 and -924.788, both of which are higher than the logL of -925.378 in the best

DE-assisted solution found in the previous section, which was reached four times out

of the 12 restarts from the configurations under consideration. An interesting aspect

of the parameter estimates at -924.359 is that like the best conventional solution, the

standard deviation of the cost coefficient is small and insignificant, in contrast with

the “best DE-assisted” solution of the previous section where it is significant. Given

the difficulties of verifying the global maximum in empirical work, it appears prudent

to report all main differences across several maxima found in estimation runs, as

Knittel and Metaxoglou (2014) recommend in the context of the Berry-Levinsohn-

Pakes method of demand estimation.

5.4 All data sets: mixed logit case studies

While our focus so far has been on GMNL, the presence of several local maxima is

a feature of all random parameter logit (RPL) models. Our DE- and PSO-assisted

estimation strategies can be readily adapted to the estimation of other RPL models,

and in this section we explore whether the above findings are generalizable to the RPL

model with normally distributed coefficients and no scale heterogeneity (MIXL). This

model is the best known and arguably most widely estimated RPL specification, to

the point where the generic term “mixed logit” is often used to describe this particular

model (e.g. Fiebig et al., 2010). For the four data sets in use, the preferred MIXL

specification of Fiebig et al. (2010) constrains the off-diagonal elements of Σ to zero,

like their preferred GMNL specification. We take their preferred MIXL specification

as given and estimate the mean (β) and standard deviations (σ) of the normally

distributed coefficients.

For each data set, several MIXL solutions have been obtained using the same

tuning parameter values for the DE and PSO algorithms as in the previous sections.

Only one conventional solution has been obtained in this case since using the MNL

coefficients as starting values is likely to be the most common strategy for estimating

MIXL. As far as we are aware, no previous study has made an explicit mention of
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starting values used in estimating the MIXL specification of interest here, presumably

because the underlying optimization task may be perceived as numerically simple in

that the postulated utility function is linear in parameters and convergence to local

maxima can be achieved from a wide range of starting values.18

The results across the four data sets suggest that our earlier findings on the perfor-

mance of DE- and PSO-assisted strategies are not exclusively associated with GMNL

(see the Online Appendix for detailed results). Despite the relative numerical sim-

plicity of the MIXL optimization task, the DE- and PSO-assisted strategies perform

better than both the conventional strategy and the random perturbation strategy.

The DE-assisted strategy still outperforms the PSO-assisted strategy in that the for-

mer locates solutions improving on the conventional solution with a greater frequency,

and it also finds the best solution out of the ones we have obtained. Moreover, the

DE-assisted results from the Pap Smear and Pizza A data sets show that our preferred

baseline configurations based on Section 4 are well-suited to the MIXL specification

too.

One notable difference when comparing the MIXL and GMNL results is that the

MIXL solutions at various local maxima show much greater agreement in terms of

policy-relevant statistics than the GMNL solutions do. The conventional solution, the

best solution from 20 randomly perturbed starting points and the best DE-assisted

solution can be found in the Online Appendix. Presumably because the random scale

factor, which can influence all other parameters, is absent in MIXL, all three sets

of estimates look very similar and produce almost the same percentiles of the WTP

distribution.

6 Conclusion

It is well known that the log-likelihood function of the random parameter logit model

may feature multiple maxima, and that the final estimates may be sensitive to the

choice of starting values. Only limited documentation and practical guidance exist,

however, on the issue of which starting values to use in the estimation process. In this

paper, we have proposed an estimation strategy which uses the differential evolution

18This contrasts with, for example, the cases of GMNL and an RPL model allowing for log-
normally distributed coefficients. The former postulates a non-linear utility function while the latter
leads to a likelihood function whose local maxima cannot be easily located (Huber and Train, 2001).
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(DE) and particle swarm optimization (PSO) algorithms to obtain starting values.

These heuristic algorithms search over the parameter space much more comprehen-

sively than gradient-based algorithms, and can be expected to locate a point close

to the global maximum more easily. We have applied this strategy in four different

empirical data sets to estimate the generalized multinomial logit model (GMNL),

a random parameter logit model featuring both scale and coefficient heterogeneity.

The objectives of our empirical applications have been to examine how the DE- and

PSO-assisted strategies perform relative to each other as well as to common strategies

that most practitioners are likely to be currently following, and also to investigate

whether there is a particular configuration of each algorithm which repeatedly results

in satisfactory performance. For the common strategies, we have considered (i) the

conventional strategy of starting from the estimated special cases of the final model

and (ii) the random perturbation strategy of taking random starting points around

the best solution found via (i).

Our findings suggest that the DE-assisted strategy can be a very effective tool to

diagnose the adequacy of the modeling results obtained using the conventional strat-

egy. In all four data sets, the DE-assisted strategy has located solutions which attain

higher log-likelihood values than what the PSO-assisted strategy and the conventional

strategy have found. Those improved solutions have been obtained with high enough

empirical frequencies to suggest that a small number of DE-assisted estimation runs

would be sufficient for detecting the potential inadequacy of a currently preferred

conventional solution. In contrast, the random perturbation strategy has failed to

improve on the best conventional solution in two of the four data sets, in addition to

resulting in worse solutions than the best DE-assisted solution in all data sets.

The best DE-assisted solution has always achieved a larger gain in the log-likelihood

over the best conventional solution than the latter has achieved over the worst con-

ventional solution. These larger gains make it interesting to note that in two of the

four case studies (Pap Smear and Holiday A), the best DE-assisted and best conven-

tional solutions overlap more in terms of substantive conclusions, such as the median

willingness-to-pay, than the best and worst conventional solutions do. It therefore

seems possible for the policy implications of a carefully selected conventional solution

to remain valid even when the solution is at an inferior local maximum.

An attractive feature of our heuristically assisted estimation strategy is its versa-

tility. Once programmed, it can be readily applied to maximize the log-likelihood of
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other random parameter logit models. As briefly discussed, we have obtained qual-

itatively similar findings on the heuristically assisted estimation of the traditional

random parameter logit model featuring normally distributed coefficients and a fixed

scale parameter. We leave further application of our estimation strategy to other

random parameter logit models to future research.

As a final remark, our results clearly suggest that repeatedly finding a particular

maximum from several starting points is not reliable evidence that it is the global

maximum. For example, in one empirical data set (Pap smear test), the conven-

tional strategy found a particular maximum repeatedly when the optimization pro-

cess started from several estimated special cases of GMNL, as well as from randomly

perturbed points around that maximum. Yet, the initial runs of the DE-assisted

strategy described in Section 4 repeatedly located a higher maximum, and the extra

runs of the same strategy described in Section 5 resulted in an even higher maximum.

Given the difficulties of verifying the global maximum in empirical work, it appears

prudent to embrace the recommendation that Knittel and Metaxoglou (2014) make in

a different context of non-linear optimization: namely to report the main differences

across several optima found during the estimation process.
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Figure 1. Pap Smear: selected update paths over generations
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Best DE (PSO) and Worst DE (PSO) refer to the DE (PSO) starting points that led to the best and

worst final solutions in the Pap Smear case study in Section 4.3. The figure plots how these starting

points had been updated until the 140th generation, at the end of which they were passed to the

gradient-based algorithm, and also how they would have been updated if the algorithm continued

without termination until the 420th generation.
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Table 1. Starting values based on special cases of GMNL

MNL MIXL SMNL GMNL-I GMNL-II

β Est. Est. Est. Est. Est.

σ 0.10 Est. 0.10 Est. Est.

τ 0.25 0.25 Est. Est. Est.

γ 0 0 0 0 0

Est. indicates that the restricted model produces the relevant parameter estimates that can be
directly used as starting values for GMNL.
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Table 2. Pap Smear: conventional solutions

Starting point logL ‖g‖∞ g′H−1g κ(H)

MIXL -931.065 8.64E-07 -2.06E-14 998.8549
GMNL-II -931.065 2.92E-05 -4.29E-11 998.9412

SMNL -932.133 5.46E-08 -5.30E-16 606.9426
GMNL-I -934.091 1.95E-07 -2.12E-14 4732.774

MNL -960.317 13.04914 -9.22E-06 1.72E+18a

logL, g and H refer to the simulated log-likelihood, its gradient (as a column vector) and Hessian
respectively. The infinity norm of g, ‖g‖∞, is the largest element of g in absolute value. κ(H) is
the 2-norm condition number of H, defined as λmax/λmin where λmax and λmin are the largest and
smallest eigenvalues of -H. Superscript a indicates that H is ill-conditioned (i.e. κ(H) > 6.7E+07).
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Table 3. Pap Smear: 10-best DE- and PSO-assisted solutions

A. DE-assisted solutions

F Cr logL ‖g‖∞ g′H−1g κ(H)

0.8 0.6 -925.378 1.44E-07 -1.78E-15 2033.113
0.8 0.2 -925.378 9.77E-07 -1.22E-14 2033.185
0.8 0.2 -925.378 6.64E-05 -3.18E-11 2033.347
0.6 0.6 -925.378 8.07E-05 -1.35E-10 2033.3
0.6 0.4 -925.378 0.0001 -2.21E-10 2033.109
0.8 0.2 -925.378 0.000438 -3.75E-09 2033.296
0.8 0.4 -925.409 3.92E-07 -3.02E-15 3018.498
0.8 0.4 -925.409 9.32E-05 -2.26E-10 3018.577
0.6 0.2 -926.308 5.84E-06 -1.37E-11 936.3411
0.6 0.2 -926.308 0.00062 -4.03E-08 936.369

B. PSO-assisted solutions

C D logL ‖g‖∞ g′H−1g κ(H)

1.5 0.90 -926.308 4.74E-06 -9.87E-13 936.3309
1.5 1.00 -926.308 0.000377 -4.39E-08 936.2917

2 0.90 -926.671 5.08E-08 -3.56E-17 1240.651
1.5 0.75 -932.176 5.49E-05 -6.57E-12 4973.183
0.5 0.90 -932.176 0.000197 -1.04E-10 4969.639

1 0.75 -932.376 7.26E-09 -6.85E-18 2174.327
2 0.50 -932.376 5.33E-08 -9.91E-16 2174.169

0.5 1.00 -932.376 4.00E-07 -1.64E-14 2173.287
1 0.90 -934.091 1.90E-08 -2.92E-16 512.7021

0.5 0.50 -934.091 1.02E-07 -6.73E-16 512.736

F, Cr, C and D indicate tuning parameter values leading to relevant starting points. logL is in bold if
it is greater than the highest logL (MIXL starting point) in Table 2. See notes to Table 2 for other
information.
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Table 4. Pap Smear: GMNL parameter estimates

A. 2nd worst conv. B. Best conventional C. Best DE-assisted
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

If know doctor 1.367*** (0.290) 1.202*** (0.240) 1.329*** (0.286)
[2.764***] (0.515) [1.803***] (0.246) [2.340***] (0.377)

If doctor is male -3.595*** (0.657) -2.196*** (0.339) -2.775*** (0.556)
[3.828***] (0.642) [2.760***] (0.405) [3.472***] (0.479)

If test is due 5.565*** (1.211) 4.763*** (0.650) 4.969*** (0.824)
[4.691***] (0.911) [3.530***] (0.451) [3.478***] (0.553)

If doctor recommends 3.090*** (0.689) 1.835*** (0.293) 2.226*** (0.422)
[2.943***] (0.559) [1.681***] (0.254) [1.201***] (0.238)

Test cost -0.339*** (0.101) -0.327*** (0.094) -0.245** (0.096)
[0.602***] (0.165) [0.022] (0.054) [0.180**] (0.076)

ASC for test -3.852*** (1.056) -1.507*** (0.346) -2.281*** (0.512)
[4.140***] (0.747) [4.447***] (0.517) [4.099***] (0.607)

γ 0.102** (0.045) 0.081 (0.054) 0.152*** (0.055)
τ 1.304*** (0.230) 0.940*** (0.144) 0.962*** (0.158)

logL -934.091 -931.064 -925.378

For each named attribute, the corresponding elements of β and σ (in [.]) are reported. “The 2nd
worst conv.” and “Best conventional” respectively refer to GMNL-I and MIXL/GMNL-II starting
point solutions in Table 2. “Best DE-assisted” refers to the first 6 solutions in Table 3. *, **, ***
indicate statistical significance at the 10%, 5% and 1% levels, respectively.
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Table 5. Pap Smear: simulated WTP distributions

Willingness-to-pay for p(10) p(25) p(50) p(75) p(90)

If know doctor:
2nd worst conv. -121 -35 8 51 145

Best conventional -39 -2 36 76 114
Best DE-assisted -156 -32 41 122 284

If doctor is male:
2nd worst conv. -244 -96 -27 45 206

Best conventional -182 -128 -67 -8 48
Best DE-assisted -455 -212 -83 21 207

If test is due:
2nd worst conv. -292 -64 41 135 340

Best conventional -5 65 144 222 293
Best DE-assisted -184 45 156 321 682

If doctor recommends:
2nd worst conv. -162 -35 21 79 205

Best conventional -14 19 57 94 129
Best DE-assisted -73 28 69 135 287

Figures are in $s. Each willingness-to-pay (WTP) distribution has been simulated by making 100,000
draws from the joint density of utility coefficients according to the solutions in Table 4. p(Q) denotes
the Qth percentile of the simulated distribution.
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Table 6. Pap Smear: predicted choice probabilities

A B C

Base choice probability 0.45 0.57 0.53

Change when test is not due -0.24 -0.27 -0.26
Change when don’t know doctor -0.06 -0.06 -0.07

Change when doctor is female +0.15 +0.12 +0.15
Change when doctor recommends +0.12 +0.09 +0.11

Change when test cost is zero +0.04 +0.05 +0.04

A, B and C are respectively based on 100,000 draws from the joint density of utility coefficients
according to “2nd worst conv.”, “Best conventional” and “Best DE-assisted” solutions in Table 4.
The base choice probability is the probability of choosing a test (over no test) when the test is due,
the patient knows the doctor, the doctor is male, the doctor makes no recommendation, and the
cost is $30. Each row reports how this probability changes when each attribute changes from its
base level.
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Table 7. Pizza A: conventional solutions

Starting point logL ‖g‖∞ g′H−1g κ(H)

GMNL-II -1361.84 1.45E-05 -4.88E-12 173280.2
MIXL -1365.17 1.30E-06 -1.58E-12 20000.77
MNL -1368.44 3.98E-05 -1.51E-09 182428.5

GMNL-I -1374.45 0.003018 -1.71E-08 3409.606
SMNL -1395.5 4.60E-06 -8.35E-13 442.66

See notes to Table 2.
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Table 8. Pizza A: 10-best DE- and PSO-assisted solutions

A. DE-assisted solutions

F Cr logL ‖g‖∞ g′H−1g κ(H)

0.6 0.8 -1356.8 18479.79 -51.2587n -1.42E+19
0.8 0.4 -1357.17 1665.752 -0.16408n -3.35E+20
0.6 0.2 -1357.17 1887.993 -0.16469n -5.19E+20
0.6 0.4 -1357.17 298.4716 -0.16521n 6360351
0.6 0.2 -1357.53 0.002223 -2.33E-06 4232703
0.6 0.4 -1357.64 0.000897 -4.58E-07 2195944
0.8 0.8 -1357.64 0.002647 -1.12E-06 2567936
0.4 0.8 -1359.03 0.000146 -4.24E-10 41664.38
0.8 0.8 -1359.11 4.60E-06 -5.65E-11 175508.2
0.4 0.2 -1359.11 0.001924 -4.17E-09 171543.3

B. PSO-assisted solutions

C D logL ‖g‖∞ g′H−1g κ(H)

1.5 0.5 -1359.3 0.002958 -1.89E-07 177189.4
1.5 0.75 -1360 0.001075 -2.63E-06 184407.5

1 0.9 -1360.09 0.000029 -2.40E-08 219779.6
2 0.5 -1360.29 6.21E-05 -1.26E-10 32379.59
2 1 -1360.29 0.000188 -4.50E-10 32251.78
2 1 -1360.29 0.000264 -9.16E-10 32340.78

0.5 1 -1360.71 0.00854 -9.80E-09 218317.4
1 0.9 -1360.76 1.71E+12 -0.02901n .
1 0.5 -1360.79 0.000654 -1.94E-08 448585.6
2 0.75 -1360.9 0.000794 -1.57E-06 823405.7

logL is in bold if it is greater than the highest logL (GMNL-II starting point) in Table 7. Superscript
n indicates that Stata has declared convergence failure since |g′H−1g| exceeds the tolerance criterion
(1E-5). See notes to Table 2 for other informaiton.
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Table 9. Holiday A: GMNL parameter estimates

A. Worst conventional B. Best conventional C. Best DE-assisted
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Price -1.009*** (0.287) -0.826*** (0.148) -0.735*** (0.178)
[0.565***] (0.159) [0.921***] (0.178) [1.000***] (0.295)

Overseas destination 0.775*** (0.265) 0.391*** (0.094) 0.411*** (0.088)
[4.007***] (1.089) [3.105***] (0.602) [2.922***] (0.704)

Airline -0.125 (0.082) -0.083 (0.070) -0.062 (0.079)
[0.183*] (0.099) [0.552***] (0.151) [0.101**] (0.047)

Length of stay 1.805*** (0.477) 1.268*** (0.261) 1.354*** (0.320)
[1.546***] (0.424) [1.197***] (0.233) [1.306***] (0.328)

Meal inclusion 1.796*** (0.474) 1.314*** (0.233) 1.478*** (0.403)
[1.617***] (0.474) [1.130***] (0.217) [1.564***] (0.354)

Local tours availability 0.722*** (0.238) 0.552*** (0.128) 0.606*** (0.190)
[0.636***] (0.216) [0.529***] (0.130) [0.658***] (0.178)

Peak season 0.277** (0.114) 0.143* (0.073) 0.146** (0.065)
[0.913***] (0.298) [0.047] (0.077) [0.241**] (0.103)

4-star accommodation 2.817*** (0.763) 2.037*** (0.364) 2.023*** (0.444)
[2.341***] (0.627) [2.061***] (0.424) [1.883***] (0.444)

γ -0.056** (0.025) -0.142*** (0.045) -0.144*** (0.049)
τ 1.416*** (0.170) 1.205*** (0.132) 1.264*** (0.166)

logL -2523.271 -2513.880 -2490.917

The worst and best conventional solutions result from MIXL and MNL starting points respectively,
and display acceptable convergence diagnostics. The best DE-assisted solution results from con-
figuration F = 0.8 and Cr = 0.2. Table OA1 and Table OA2 in Online Appendix provide related
computational results. See notes to Table 4 for other information.
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Table 10. Mobile Phone: GMNL parameter estimates

A. Worst conventional B. Best conventional C. Best DE-assisted
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

No voice comm. 0.045 (0.057) 0.063 (0.055) 0.064 (0.087)
[0.134] (0.105) [0.069] (0.118) [0.037] (0.090)

Voice dialing 0.100* (0.054) 0.085 (0.058) 0.125 (0.085)
[0.013] (0.087) [0.131] (0.163) [0.233***] (0.067)

Voice operation -0.155** (0.063) -0.136** (0.060) -0.099 (0.087)
[0.167] (0.103) [0.098] (0.143) [0.254***] (0.086)

No push to com. 0.056 (0.059) 0.054 (0.058) 0.043 (0.075)
[0.161**] (0.081) [0.005] (0.083) [0.213***] (0.077)

Push to talk 0.059 (0.056) 0.039 (0.060) 0.060 (0.075)
[0.069] (0.087) [0.245***] (0.080) [0.206***] (0.072)

Push to share pics/video -0.025 (0.061) -0.021 (0.055) 0.055 (0.074)
[0.041] (0.110) [0.027] (0.127) [0.096*] (0.056)

Personal e-mail -0.035 (0.071) -0.059 (0.057) 0.004 (0.082)
[0.034] (0.081) [0.032] (0.089) [0.089] (0.086)

Corporate e-mail 0.080 (0.057) 0.065 (0.056) 0.051 (0.076)
[0.147] (0.102) [0.106] (0.122) [0.058] (0.048)

Both e-mails -0.060 (0.059) -0.058 (0.057) -0.233** (0.094)
[0.147*] (0.087) [0.085] (0.085) [0.085] (0.054)

WiFi -0.016 (0.031) -0.023 (0.031) -0.059 (0.045)
[0.006] (0.051) [0.012] (0.051) [0.008] (0.044)

USB calbe/cradle 0.095** (0.043) 0.086** (0.034) 0.184*** (0.061)
[0.088] (0.163) [0.047] (0.072) [0.131***] (0.048)

Thermometer 0.049 (0.034) 0.063* (0.037) 0.052 (0.047)
[0.134] (0.083) [0.185***] (0.066) [0.151***] (0.049)

Flashlight 0.063* (0.034) 0.045 (0.033) 0.083 (0.061)
[0.029] (0.061) [0.075] (0.069) [0.003] (0.062)

Price/100 -1.214*** (0.264) -1.110*** (0.143) -1.880*** (0.302)
[1.096***] (0.176) [1.066***] (0.144) [0.945***] (0.210)

ASC for purchase -0.574*** (0.151) -0.661*** (0.175) -1.182*** (0.253)
[2.542***] (0.437) [2.639***] (0.281) [4.122***] (0.907)

γ -0.108 (0.186) -0.234** (0.114) -0.502*** (0.130)
τ 0.852*** (0.263) -0.804*** (0.115) 1.715*** (0.162)

logL -3954.893 -3951.662 -3937.969

The worst and best conventional solutions result from SMNL and GMNL-I starting points respec-
tively, and display acceptable convergence diagnostics. The best DE-assisted solution results from
configurations (F,Cr) = (0.6,0.2), (0.6,0.4) and (0.8,0.2). Table OA4 and Table OA5 in Online
Appendix provide related computational results. See notes to Table 4 for other information.
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Table 11. Simulated log-likelihood at 5-best perturbed solutions

Pap mear Pizza A Holiday A Mobile Phone

DE-assisted -925.378 -1356.8 -2490.92 -3937.97
Conventional -931.065 -1361.84 -2513.88 -3951.66

Perturbed -931.065 -1363.2 -2512.47 -3943.01
Perturbed -931.065 -1363.99 -2512.47 -3947.98
Perturbed -931.065 -1365.21n -2512.49 -3949.8
Perturbed -931.065 -1365.81 -2512.49 -3949.8
Perturbed -931.065 -1366.63 -2512.49 -3949.8

The first two rows report the best DE-assisted and best conventional solutions respectively. The
remaining five rows report the five best solutions resulting from 20 random starting points around
the best conventional solution: see Section 5.3 for how those starting points have been generated.
Boldface indicates a higher simulated log-likelihood than what the best conventional solution has
attained. Superscript n indicates that Stata has declared convergence failure since |g′H−1g| exceeds
the tolerance criterion (1E-5).
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Table 12. 10-best DE-assisted solutions over 20 starts per configuration

A. Pap Smear

F Cr logL ‖g‖∞ g′H−1g κ(H)

0.8 0.2 -924.359 1.07E-06 -5.45E-15 3741.156
0.8 0.2 -924.359 6.55E-07 -9.14E-15 3741.275
0.8 0.2 -924.359 2.99E-06 -7.60E-14 3741.364
0.8 0.4 -924.359 6.90E-06 -1.35E-13 3740.987
0.8 0.4 -924.359 1.27E-05 -3.03E-13 3741.41
0.8 0.2 -924.359 2.23E-05 -8.58E-11 3741.099
0.8 0.4 -924.359 0.000052 -2.18E-10 3740.992
0.8 0.4 -924.359 0.000286 -6.84E-10 3740.659
0.8 0.4 -924.788 7.61E-07 -1.34E-14 4324.144
0.8 0.2 -924.788 0.000341 -3.07E-10 4322.18

B. Pizza A

F Cr logL ‖g‖∞ g′H−1g κ(H)

0.8 0.4 -1352.91 2.39E-04 -7.91E-09 283510.5
0.8 0.2 -1353.91 4.01E+02 -1.26E-01n 1.57E+07
0.8 0.2 -1354.58 4.06E-04 -1.44E-08 124508.8
0.8 0.2 -1355.67 10.47107 -5.07E-02n 433304.1
0.8 0.4 -1355.9 0.001573 -2.21E-08 601560.5
0.8 0.2 -1356.84 7.441122 -6.84E-04n -1.31E+19
0.6 0.4 -1357.17 12815.33 -4.34E-01n -1.17E+17
0.6 0.4 -1357.17 1.50E+03 -1.65E-01n -7.76E+20
0.6 0.2 -1357.17 353.063 -1.65E-01n 8613358
0.6 0.2 -1357.17 503.7171 -0.16532n 1.82E+07

Information for panel A is the same as in notes to Table 3. Information for panel B is the same as
in notes to Table 8. The results in those tables have been obtained by restarting each configuration
3 times. The results in this table have been obtained by restarting each configuration 20 times.

45



Appendix

Table A1. Pap Smear: all DE- and PSO-assisted solutions in Section 4

A. DE-assisted solutions

F Cr Start 1 Start 2 Start 3

0.2 0.2 -937.763 -940.832 -934.466
0.2 0.4 -934.466 -934.466 -935.134
0.2 0.6 -934.091 -934.6 -934.091
0.2 0.8 -926.384 -934.091 -940.832
0.4 0.2 -934.603 -934.091 -934.091
0.4 0.4 -934.091 -934.091 -934.814
0.4 0.6 -934.091 -934.091 -934.091
0.4 0.8 -926.384 -934.091 -932.376
0.6 0.2 -926.308 -934.091 -926.308
0.6 0.4 -926.384 -934.814 -925.378
0.6 0.6 -926.384 -925.378 -926.384
0.6 0.8 -926.384 -931.783 -936.769
0.8 0.2 -925.378 -925.378 -925.378
0.8 0.4 -935.455 -925.409 -925.409
0.8 0.6 -928.034 -925.378 -937.897
0.8 0.8 -949.114 -934.091 -937.826

B. PSO-assisted solutions

C D Start 1 Start 2 Start 3

0.5 0.5 -936.018 -934.091 -936.018
0.5 0.75 -934.603 -937.763 -936.153
0.5 0.9 -934.091 -932.176 -936.043
0.5 1 -934.091 -936.559 -932.376

1 0.5 -934.091 -946.345 -934.091
1 0.75 -932.376 -936.518 -934.49
1 0.9 -934.091 -934.091 -936.018
1 1 -934.091 -934.091 -936.043

1.5 0.5 -936.018 -971.979 -934.091
1.5 0.75 -932.176 -957.961 -942.731
1.5 0.9 -934.603 -934.129 -926.308
1.5 1 -938.321 -934.603 -926.308

2 0.5 -932.376 -955.963 -935.977
2 0.75 -936.018 -971.979 -959.567
2 0.9 -934.603 -954.306 -926.671
2 1 -938.276 -957.961 -938.898

F, Cr, C and D indicate tuning parameter values leading to relevant starting points. The simulated
log-likelihood at each solution is reported, and is in boldface if it exceeds the highest logL (MIXL
starting point) in Table 2.
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Table A2. Pizza A: all DE- and PSO-assisted solutions in Section 4

A. DE-assisted solutions

F Cr Start 1 Start 2 Start 3

0.2 0.2 -1363.69 -1375.04 -1368.93
0.2 0.4 -1375.04 -1371.05 -1368.93
0.2 0.6 -1366.91 -1374.07 -1361.37
0.2 0.8 -1377.3 -1377.17 -1379.4
0.4 0.2 -1360.9n -1366.91 -1359.11
0.4 0.4 -1364.58 -1368.29n -1363.42n

0.4 0.6 -1365.68 -1360.9n -1360.9n

0.4 0.8 -1364.76 -1359.03 -1363.5
0.6 0.2 -1363.68 -1357.53 -1357.17n

0.6 0.4 -1361.8 -1357.17n -1357.64
0.6 0.6 -1361.8 -1360.29 -1366.91
0.6 0.8 -1362.23 -1356.8n -1363.44
0.8 0.2 -1362.29 -1360.79 -1360.73
0.8 0.4 -1357.17n -1362.29 -1365.3
0.8 0.6 -1368.43n -1366.46 -1360.37
0.8 0.8 -1357.64 -1359.11 -1367.92n

B. PSO-assisted solutions

C D Start 1 Start 2 Start 3

0.5 0.5 -1375.04 -1380.17 -1369.54
0.5 0.75 -1366.36 -1378.21 -1368.93
0.5 0.9 -1374.82n -1366.9 -1371.21
0.5 1 -1360.71 -1365.36 -1372.35

1 0.5 -1363.03 -1363.48 -1360.79
1 0.75 -1363.48 -1388.5 -1372.08
1 0.9 -1360.09 -1360.76n -1365.84
1 1 -1370.4 -1365.61 -1377.73

1.5 0.5 -1368.78 -1359.3 -1363.48
1.5 0.75 -1364.83 -1360 -1375.46
1.5 0.9 -1382.65 -1387.44 -1367.97
1.5 1 -1369.04 -1371.21 -1367.78

2 0.5 -1381.54 -1376.35n -1360.29
2 0.75 -1373.2 -1383.7 -1360.9
2 0.9 -1367.69 -1374.84 -1365.83n

2 1 -1361.65 -1360.29 -1360.29

F, Cr, C and D indicate tuning parameter values leading to relevant starting points. The simulated
log-likelihood at each solution is reported, and is in bold-face if it exceeds the highest logL (GMNL-II
starting point) in Table 7. Superscript n indicates that Stata has declared convergence failure since
|g′H−1g| exceeds the tolerance criterion (1E-5).
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