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Abstract. 

 
In recent years, an important number of impact studies have attempted to 
examine the effect of credit on income poverty; however, many of these studies 
have not paid sufficient attention to the problems of endogeneity and selection 
bias. The few exceptional cases have employed econometric techniques that 
work at the village level. The problem is that the concept of village is 
inappropriate in the urban context where a large percentage of microfinance 
organisations in the developing world actually operate. This paper presents an 
econometric approach which controls for endogeneity and self-selection using 
data from a quasi-experiment designed at the household level, and conducted in 
three urban settlements in the surroundings of the Metropolitan area of Mexico 
City. The paper provides an estimation of the impact of credit, employing 
different equivalence scales in order to measure the sensitivity of the poverty 
impact to the intra-household distribution of welfare. We find a link between 
poverty impacts and lending technology. Group-based lending programmes are 
more effective in reducing the poverty gap but in doing so, they achieve 
insignificant impacts on the poverty incidence. By contrast, individual lending 
programmes reported significant and small impacts at the upper limits of 
deprivation but insignificant impacts on the poverty gap.  
 
JEL Classification: C24; C81; O16; O17; O18; O19 
Keywords: endogeneity; selection bias; microfinance; credit; income poverty; 
impact analysis; Mexico. 
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Introduction 
 

The role of credit in the process of economic development and poverty 

reduction is an issue of ongoing debate. In the past, it was common for the state 

to intervene in those “strategic sectors” that had difficulty in accessing capital, 

assuming a trickle-down effect that would ultimately benefit the poor. In this 

spirit, many state-banking institutions, were established in many developing 

countries in the middle 1940s and early 1950s under quasi- Keynesian principles 

of financial repression designed to enhance investment (referred to by Vogel 

and Adams (1997) as the direct credit paradigm); but this approach has been 

heavily criticised by the Ohio School1 for aggravating inefficiencies in the 

financial sector and deepening the problems of moral hazard and adverse 

selection.  

 

Since the late 1970s and early 1980s, a set of innovations2 known today as 

microfinance were developed by institutions such as the Bangladeshi Grameen 

Bank, the Unit Desa System of the Bank Rakyat in Indonesia and the Bolivian 

BancoSol that made possible for institutional lenders to reduce informational 

costs related to the screening, incentive and enforcement problems, and for the 

poor to access institutional financing. Although microfinance institutions have 

become the preferable subsidy-recipients seen as more effective channels to 

reach the poor, the hypothesis that they have impacts on poverty reduction has 

not been adequately tested in most of the cases, particularly in the urban 

context, with a few exceptions in rural credit markets, e.g. Hulme and Mosley 

(1996); Pitt and Khandker (1998a and 1998b), and Coleman (1999), see also the 

review by Morduch and Haley (2002).  

 

This paper presents an econometric approach that control for the problems of 

                                                 
1 For an illustrating example, see Adams, Graham and von Pischke (1984). 
2 Materialised in the form of inter alia, banking technology, financial services or institutional 
arrangements. For a discussion on this issue see Larivière and Martin (1998). 
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endogeneity and self-selection using data from a quasi-experiment designed at 

the household level and in the urban context. Our methodology also allows the 

evaluation of potential differences between group lending and individual 

lending technology regarding poverty impacts, particularly when the cost of 

borrowing is included in the analysis. The paper is divided as follows: Section 1 

briefly presents the research design and the selected case-study organisations 

before discussing, in section 2 the econometric estimation procedure. Section 3 

examines the effects of programme participation on households’ income 

whereas section 4 presents the findings regarding poverty impacts. Section 5 

concludes. 

 

1. Research design  
 

In order to collect primary data, we designed a type of quasi-experiment that is 

often referred to as a non-equivalent, post test-only quasi-experiment (Campbell and 

Stanley 1966), in which two groups of households were interviewed: treatment 

and control. A major problem that emerges with the non-equivalent, post test only 

quasi-experiment, referred hereafter as simply quasi-experiment, is that the two 

groups, treatment and control, may differ in important ways that influence the 

decision of borrowing and thus, the outcome of interest. In other words, there 

might be unobservable factors related to e.g. individual efforts, abilities, 

preferences and attitudes towards risk that could affect the internal validity of 

the study. 

 

In order to reduce potential selection problems, households who had self-

selected to participate in a credit programme and had been accepted by the 

lender and therefore were actively participating in the credit programme were 

eligible to be sampled as treatment group. Participants with loans in arrears were 

also included in the group in order to strengthen the internal validity. Similarly, 

households who had self-selected to participate in a credit programme and had 

been accepted by the lender, but had not received a loan by the time the quasi-
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experiment was conducted, were eligible to be sampled as the control group. 

Additionally, we followed a geographical criterion, consisting in operationalising 

the quasi-experiment amongst households living in the same settlement, in 

areas with a minimum level of socio-economic and cultural homogeneity, in 

order to hold constant factors such as infrastructure, cost of inputs and local 

prices3.  

 

The quasi-experiment was conducted amongst 148 households living in three 

urban settlements in the surroundings of the Metropolitan area of Mexico City, 

where three case-study organisations operate: 1) Servicios Financieros 

Comunitarios (FINCOMUN); 2) Centro de Apoyo al Microempresario (CAME), 

and 3) Programas para la Mujer Mexico (PROMUJER). In this sense, we had tree 

locations, one for each case-study organisations.  

 

1.1 The case-study organisations 
 

The first case-study organisation is Fincomun. The organisation operates in San 

Miguel Teotongo, a neighbourhood with 80,000 inhabitants located in the 

Iztapalapa District, to the eastern periphery of Mexico City, one of poorest of 

the metropolitan area. Unlike most of the microfinance organisations in the 

country, Fincomun heavily relies on individual lending. By the end of 2004, after 

10 years of operation, the organisation had almost 26 thousand borrowers (60% 

were women), with a loan portfolio of around 170 million pesos (17 million US 

dollars). The number of active borrowers, and the loan portfolio increased at an 

impressive rate of 302% and 256%, respectively in the period 1994-2004, where 

the portfolio at risk for more than 30 days was in the order of 4.98%. 

 

The second organisation under study is CAME. It mainly operates in the Chalco 

Valley, one of the most densely populated municipalities in the country with 

about 324 thousand inhabitants. The Chalco Valley is located to the eastern 

                                                 
3 For a copy of the instruments of data collection, contact me at: m.nino@sheffield.ac.uk   
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periphery of the Metropolitan area of Mexico City and remains as one of the 

poorest in the region. CAME began operations in 1993 employing the 

methodology of village banks. By the end of 2003, CAME had more than 40,000 

active members, grouped in 1,600 income-generating groups or village banks. 

Women integrated 80% of these groups. Compulsory savings range from 10% 

to 12% depending on the loan size, and have grown at an annual average rate of 

98% from 1995 to 2003, amounting more than 138 million pesos by the end of 

period. Deposits represented 2.38 times the loan portfolio that resulted in a 

loan-to-savings ratio of 42%. 

 

Finally, the third organisation under examination is Promujer. This organisation 

mainly operates in Tula City and the surrounding areas in the State of Hidalgo, 

one of the poorest in the country. About 90,000 inhabitants live in Tula city, 

which is located at the centre of the country, two hours from Mexico City. 

Promujer employs the methodology of communal banks that combines group 

lending and training as the main services provided. In first quarter of 2004, the 

organisation reported 7,300 active borrowers with a loan portfolio that 

averaged 7.8 million pesos. Only women can participate in the credit 

programme, which reported a portfolio at risk for more than 30 days in the 

order of only 0.6%.  

 

2. The econometric estimation procedure 
 

To begin with, our exposition considers the case where household i decides to 

participate in a credit programme in order to finance any specific productive 

activity. The amount of capital supplied is exogenously determined by the 

lender L, who set up this maximum threshold according to level of participation 

in the programme. The lender is expected to exploit several screening, incentive 

and enforcement devices to deal with the problems of moral hazard and 

adverse selection that are related to borrowers’ behaviour (Akerlof 1970; Besley 

and Coate 1995; Hoff and Stiglitz 1990). Some of these devices are, inter alia, 
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progressive lending, compulsory savings schemes, periodical repayment 

schedules, and so on.  

 

Given the particular environment in underdeveloped financial markets, the 

demand for credit is assumed to be rationed by the lender (Stiglitz and Weiss 

1981), and endogenously determined by household characteristics such as the 

stock of human capital, individual preferences and attitude towards risks. Our 

primary concern is to estimate the effect of credit on the outcome to be 

investigated , which is observed through the income variable. We consider 

the following model:   

iY

 

i i iY X I uiβ δ= + +  (1) 

 

where iX  is a vector of exogenous households characteristics and iI  is a 

dichotomous variable with value = 1I  if household i is a programme 

participant,  otherwise. The model measures the impact of programme 

participation by the coefficient of the parameter estimate, 

= 0I

δ . An important 

assumption here is that programme participation is always voluntary. The 

variable iI  cannot be treated as exogenous if we assume a potential problem of 

selection bias, i.e. if the decision of a household of whether or not to participate 

in the credit programme depends not only on the effort, abilities, preferences 

and attitudes towards risk that generate individual self-selection, what we refer 

to as a demand-related bias, but also on the selectivity discrimination made by 

credit programmes, referred here to as a supply-related bias)4. An illustrative 

example of the latter appears when credit officers at Fincomun screen out 

applicants with no previous business experience, or when village-bank’s 

members at CAME, or solidarity groups at Promujer reject new applicants who 

do not live in the same neighbourhood. We consider, thus, a specification 
                                                 
4 The problem of selectivity has been widely discussed in several fields, in particular the labour 
market [Heckman (1974, 1979); Cogan (1980); Lee (1978); Abowd and Farber (1982), among 
many others]; however, just recently it began to be addressed in the literature of microfinance. 
Some examples are Pitt and Khandker (1998a, 1998b) and Coleman (1999). 
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equation in the form:  

 

1 1 1i i iY 1iuβ δ += X + I  (for programme participants) (2)

2 2 2i iY 2iuβ= X +  (for non participants) (3)

*
1 1 1I 1γ ε−= Z  (4)

*
2 2 2I 2γ ε−= Z  (5) 

 

where  is defined by two components: iI *
1I  refers to the decision of a household 

of whether or not to participate in a credit programme, and *
2I refers to the 

decision of the credit officer or group members of whether or not to accept such 

applicants. In this sense, 

 

1 1I =  if household i chooses to participate in the credit programme 

1 0I = , otherwise 

2 1I =  if household i is accepted by group members or the credit officer 

2 0I = , otherwise 

Population

Household’s decision
not to participate

(I1 = 0)

Household’s decision
to participate

(I1 = 1)

Credit officer’s
decision to lend

(I2 = 1)

Credit officer’s
decision not to lend

(I2 = 0)

Treatment group Control group  
Figure  1. The decision process for programme selectivity. Adapted from Maddala (1999) 

 

A problem emerges here when we cannot observe households who choose 

either to participate or not, and households who are either accepted or rejected 
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by credit officers or group members, i.e. 1 2I I I= + , but just as a single indicator 

1 2I I I= ⋅ . As a result, what we observe is household i self-selecting to 

participate in the credit programme and being accepted by the lender. Thus, we 

can only specify the distribution of households who have been accepted to 

participate in the programme ( *
2I ) and then estimate the parameter 2γ , if these 

households have previously self-selected ( 1 1I = ). Our estimation strategy 

therefore will focus on households who have satisfied the condition 1 2I I I= ⋅  

(see figure 1). 

 

Maddala (1999) suggests to define *
2I  over the whole population i.e. identify 

households with business activity or living in the same neighbourhood, and 

then analyse the model from the truncated sample where the parameters 1γ   

and 2γ  can be estimated by maximising a likelihood function, e.g. Probit or 

Tobit. The argument is, Maddala states, that in principle *
2I  exists even for the non-

applicants (1999:261). Thus, the observed  can be defined as  if  iY 1iY Y= i 1i =I , 

and  if  , where the participation decision function is given by 2iY Y= i

i

0i =I

*
i iI Z γ ε= = . In another paper, Maddala (1977) derives the covariance matrix as 

follows: 

 

  (6) 
⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

11 12 1ε

12 22 2ε

1ε 2ε

σ σ σ
σ σ σ
σ σ 1

1i 2i iCov(u ,u ,ε ) ⎟
⎟

 

that enables us to evaluate the impact of programme participation on the 

outcome of interest,  by comparing the expected outcome for treatment and 

control groups. Notice that both groups are participants with a time-variance 

difference that accounts for the length of membership. Consequently, control 

groups are integrated by households who just joined the credit programme. We 

follow the specification: 

iY
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 1 1i iY 1iuβ= X +  (for treatment group) (7) 

 2 2i iY 2iuβ= X + (for control group)  (8)  

 
and  

 
*

1 2 1 2
( )1 0 ( )
( )

i
i i i i i

i

ZE Y I E Y I X V
Z

φ γβ β σ
γ

= − = = − + +
Φ

 (9) 

 

where *
2 1( )ε εσ σ σ= − ( ); φ ⋅  and ( )Φ ⋅  are the density of the distribution function 

and the cumulative distribution function of the standard normal, respectively, 

and . Under self-selectivity, , therefore equation (9) will report 

greater coefficients. In other words, households with comparative advantages 

will benefit more from the credit programme than disadvantaged households. 

However, since we surveyed households that satisfied the condition 

, we believe to have considerably reduced the selection problem. 

( ) 0E V = * 0σ >

1 2 0I I I= ⋅ >

 

2.1 Using the Heckman procedure with iI  as endogenous regressor 
 

Despite the fact that we believe that our sample strategy addresses the problem 

of self-selectivity, we may still encounter a problem of endogeneity in the 

model of programme participation if the explanatory variable iI  is correlated 

with unobservable factors that are relegated to the error term . In other 

words,  may contain an omitted variable that is uncorrelated with all 

explanatory variables except 

iu

iu

iI . In order to control for the potential 

endogeneity problem we follow a Heckit estimation procedure (Heckman 1979) 

with an identifying instrumental variable (IV)5. This Maximum Likelihood 

method follows the model: 

                                                 
5 See Wooldridge (2002), Greene (2003) and Maddala (1999) for a detailed discussion on the 
properties of the identifying instrument. 
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  (10) y
i i y iY X I uβ δ= + + i

i I
i i I iI X Zβ γ= + + u  (11) 

 

where iX  is a 1 x K vector of household characteristics that capture not only 

conventional variables such as age, sex, and the dependency ratio, but also 

elements related to the stock of household capitals such as years of formal 

education (human capital); housing ownership and the state of the property 

(physical capital); and the number of household members at work and the 

number of years in business as proxy variables for the characteristics of the 

labour market. We introduce an exogenous regressor iZ  in equation (11) as the 

identifying instrument that will not be included in equation (10). iZ  is an 

observable variable distinct from those in iX  that affect iI  but not the outcome 

of interest  conditional on iY iI . In other words, the instrument must be partially 

correlated with iI , i.e. the coefficient on iZ  must be nonzero, 0γ ≠ , so 

, whilst ( , ) 0I
i iCov Z u ≠ iZ  must be uncorrelated with , so , where 

the projected error,  is uncorrelated with 

iY ( , ) 0y
i iCov Z u =

E( ) 0y
iu = iZ . Selecting an appropriate 

instrument becomes a crucial, but also a complex, task for our estimation.  

 

The Heckit procedure allows us to test for the assumption of no self-selectivity 

by estimating the inverse Mills ratio, ( ) ( )
( )

φ
λ

⋅
⋅ ≡

Φ ⋅
, resulting from the relationship 

between the density of the distribution function, ( )φ ⋅ , and the cumulative 

distribution function of the standard normal, ( )Φ ⋅  in equation (11). As 

suggested by Heckman (1979), we can estimate consistently the parameters Iβ  

and γ  by exploiting the properties of the first stage Probit estimation and then 

get the estimated inverse Mills ratio, λ
∧

. In the second stage we obtain the 
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parameters yβ  and δ  from Ordinary Least Squares (OLS) with the inverse 

Mills ratio added to the regressors as follows:  

 
y

i i y i y iY X L I M uβ θ δ λ= + + + + i  (12) 

 

where we have also included  that is a 1 x K vector of financial market 

characteristics which captures the effect of formal and informal financial agents 

such as banks, moneylenders and rotating savings and credit associations 

(ROSCAS) that compete in the market with microfinance organisations. The 

rationale behind incorporating these variables into  rely on the assumption 

that if we do not control for the effect of other intermediaries on the outcome of 

interest , then the parameter 

iL

iL

iY δ  that captures the effect of programme 

participation may be inconsistent, i.e. we could wrongly attribute some 

outcomes to microfinance organisations when in fact they come from for 

example, ROSCAS.  

 

The two-stage Least Square (2SLS) procedure yields consistent estimates in the 

parameter of interest δ  (Wooldridge 2002) where M and λ  are the inverse 

Mills ratio and its parameter estimate, respectively. A simple way of testing for 

self-selectivity is under the null hypothesis of no selection bias, 0 :H 0λ = , using 

the usual 2SLS t statistic. When 0λ ≠  we may have a problem of self-selectivity. 

  

2.2 Selecting the instrumental variable 
 

In order to select the instrumental variable, we analysed instruments used by 

other researchers. Pitt and Khandker (1998a), for example, have exploited a 

particular exogenous rule that organisations such as Grameen Bank and BRAC 

in Bangladesh have set up in order to restrict programme participation to non-

poor households. This exogenous rule is related to land-ownership, and has 
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been defined as households owning more than half an acre of land. However, in the 

context of urban Mexico, this instrument would be inappropriate:  

 

Firstly, microfinance organisations in Mexico do not impose any asset-specific 

restriction for programme participation. Secondly, unlike the context of rural 

Bangladesh, agricultural activities in the surroundings of Mexico City are non-

existent. Thirdly, land-ownership is not a reliable indicator of well-being in the 

urban context. Finally, the technique of maximum likelihood estimation 

followed by Pitt and Khandker was designed to use village fixed effects6; 

however, the concept of village is in itself inappropriate in the urban context, 

where poor settlements are highly populated.  

 

Given the presence of credit rationing in the market, it is reasonable to assume 

that the level of programme participation, iI , is exogenously determined by the 

lender, i.e. microfinance organisations require a set of minimum requirements 

to participate in the programme. Thus, we decided to concentrate on the supply 

side in order to identify the instrument iZ .  

 

 In the beginning we considered an observable variable with computational 

values that varied from household to household and which reflected the 

heterogeneity of the cost of borrowing. We computed this variable by 

estimating the cost of transportation per credit cycle , in which we capture 

the physical and geographical characteristics of the accessibility to the branch, 

in addition to the opportunity cost of borrowing , as a proxy of the income 

forgone for attending weekly meetings and other activities.  

T
iC

O
iC

 

We transformed this variable into logarithmic form, in order to test for the 

underlined assumptions of no correlation between the identifying instrument 

and the income variable as follows: 
                                                 
6 The authors used a weighted exogenous sampling maximum likelihood-limited information 
maximum likelihood-fixed effects (WESML-LIML-FE) approach. 
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LGINCOMEPC = β1 AVEDUi + β2 HOWNERi + β3 HESTATEi + β4 TIMEBUSi  
+ β5 WWORKERi + β6 DEPENDRATIOi + β7 AGEi + β8 WOMANi  
+ β7 MARITALi + θ1 ROSCASi + θ2 FORMALCREDITi + θ3 MONEYLENDERi + δ 
LGMAXCREDITi + γ LGCOSTBORROWPCi

 

We found that, in the case of Fincomun, the coefficient γ  of 

LGCOSTBORROWPC rejected the null 0 :H 0γ =  at 5% level of significance (see 

table 1), throwing out any possibility of using this variable as the identifying 

instrument in the impact estimation for the three institutions participants in the 

study as a whole7. However, this variable gives us important information 

regarding the elasticity of demand for credit in relation to the cost of borrowing. 

For example, a one percent change in the cost of borrowing gives rise to a 1.574 

percent change in the amount of credit demanded from borrowers at Fincomun, 

ceteris paribus, and this elasticity was in the order of 1.705 and 1.458 for 

participants at CAME and Promujer, respectively.  

 
Table 1.Identifying equations on functional form 
Logarithm of the cost of borrowing (LGCOSTBORROWPC) as identifying instrument 
Dependent variable in (11): logarithm of the maximum amount of credit borrowed (LGMAXCREDIT) 
Dependent variable in (12): logarithm of monthly income per adult equivalent 1 in pesos of 2004 
(LGINCOMEPC)  
 FINCOMUN CAME PROMUJER 
 Eq. 11 Eq. 12 Eq. 11 Eq. 12 Eq. 11 Eq. 12 
LGCOSTBORROWPC 1.574 0.325 1.705 0.082 1.458 0.055 
 (21.18)*** (2.05)** (10.74)*** (0.62) (14.61)*** (0.50) 
Observations 55 55 46 46 47 47 
R-squared  0.44  0.49  0.41 
Absolute value of t statistics in parentheses    
   
* significant at 10%; ** significant at 5%; *** significant at 1%  
 

We found that these elasticities are correlated with the level of households’ 

earnings. This is simply because those households with better business 

opportunities and higher expected returns also absorb a higher opportunity 

cost of borrowing, particularly when screening and enforcement devices such 

as periodical repayment schedules, exploited by group lending programmes, 

                                                 
7 We tested the 0γ ≠  condition in (11) and (12) by computing a heteroskedasticity-robust t 
statistic after OLS estimation. 

 14



are very time-intensive. 

 

The problem is that in fragmented credit markets, where the immediate option 

is the moneylender, borrowers may decide to remain in the programme in 

order to take advantage of progressive lending and borrow the maximum 

amount of capital available in order to minimise these costs. This behaviour 

may continue as long as the percentage change in the loan size is larger than the 

percentage change in earnings, i.e. progressive lending is available, and the 

credit market remains monopolistically concentrated. We discuss this issue 

regarding poverty impacts in sections 4 and 5. 

 

In order to derive the identifying instrument, we tried to exploit the first 

component of LGCOSTBORROWPC, i.e. the logarithm of the cost of 

transportation per credit cycle, lo , (referred here as LGCOSTRANSPC). Our 

argument here relies on the idea that there is a correlation between programme 

participation and accessibility to the branch but we do not see how this 

instrument may affect the income variable. We assume that the correlation 

between  and 

g T
iC

log T
iC iI  emerges from two sources:  

 

First, microfinance organisations may decide to set up lending restrictions to 

households living a considerable distance from the branch due to the 

transaction costs implicitly related to the monitoring and enforcement 

processes. Regarding this particular issue, the Managing Director of Fincomun 

stated in an interview that a fundamental criterion for the organisation was to 

operate in a geographical radius that did not exceed a journey of 30 minutes 

walking or by public transport from the branch to the house of the applicant8. 

 

Second, we should expect, as mentioned earlier, a process involving individual 

                                                 
8 In fact, this policy appeared to be a common practice amongst MFIs in Mexico. For example, 
the mean value for a time-dimensional variable that measured the distance from the 
household’s residence to the branch was 20 minutes for the case of Fincomun (only outward 
journey); 21 minutes for CAME and 25 minutes for Promujer. 
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choice where households reporting high transaction and opportunity costs of 

participation would either have high incentives to borrow the largest amount of 

capital accessible in order to compensate these costs or may simply decide drop 

out or not to participate in the first place.  

 

Our survey collected information on the cost of transportation per week given 

the periodicity of the group meetings; however there were a substantial number 

of missing values in the dataset that reflected the individual choice of walking 

to the branches rather than using public transport (see table 2). Since several 

programme participants walk to attend periodical meetings, we decided to 

explore the attributes of the time dimension that captured the information 

about the distance from the residence (or businesses) of the programme 

participant to the branch, as a proxy of accessibility, in substitution of . log T
iC

 
Table  2 Cost of transportation per credit cycle 

  Figures in pesos of 2004  
 Sample Mean Maximum Minimum Missing values 
FINCOMUN 55 99.78 1280 0 39 
CAME 46 29.91 320 0 39 
PROMUJER 47 60.60 320 0 32 
Pooled sample 148 65.62 1280 0 110 

 

Our survey collected information on the time (in minutes) that participants 

spent since they left home (or business) until they arrived at the branch. This 

variable was weighted when public transport was used in order to add the time 

that they would have consumed if they had walked to the branch. We coded 

this identifying instrument as DISTANCE. 

 
Table  3. DISTANCE as identifying instrument  
Dependent variable in (11): logarithm of maximum amount of credit borrowed (LGMAXCREDIT)† 
Dependent variable in (12): logarithm of monthly income per capita in pesos of 2004 (LGINCOMEPC) 
 FINCOMUN CAME  PROMUJER 
 Eq. (11) Eq. (12) Eq. (11) Eq. (12) Eq. (11) Eq. (12) 
DISTANCE 0.028 -0.000 0.073 0.005 0.066 -0.005 
 (1.88)** (0.09) (2.15)** (0.94) (1.92)* (1.57) 
Absolute value of t statistics in parentheses    
* significant at 10%; ** significant at 5%; *** significant at 1%   
† The Heckman procedure transforms LGMAXCREDIT into a dummy variable for treatment group = 1 if Ii 
> 0. 
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When we estimated the reduced form equation (11) with DISTANCE as 

identifying instrument  for each of the microfinance organisations, the p-

values of the t statistic for the coefficient 

iZ

γ  rejected the null of 0 :H 0γ = , i.e. it 

reflected the statistically significance correlation between accessibility and 

participation; however, when we included  in equation (12), the parameter 

estimate 

iZ

γ  accepted the null of no correlation against the outcome of interest  

(see table 3). As a result we were able to use DISTANCE as the identifying 

instrument for the Heckit procedure.  

iY

 

One of the reasons for choosing the Heckit procedure is due to its structural 

qualities. On the one hand, it enables us to test for the assumption of no self-

selectivity by exploiting the non-linearity properties of the inverse Mills ratio 

(coded in the regression equation as MILLS). As discussed above, we conducted 

the quasi-experiment in a way to reduce the problem of self-selectivity; 

however, we needed to test the hypothesis of no selection problem. The results 

accepted the null of no self-selectivity, confirming that we followed an 

appropriate methodological procedure during the data collection.  

 
Table  4 Robustness of DISTANCE as instrumental variable  
Endogenous explanatory variable in (12): Logarithm of the maximum amount of credit borrowed 
(LGMAXCREDIT)† 
Dependent variable in (12): logarithm of monthly income per capita (LGINCOMEPC) 
 FINCOMUN CAME PROMUJER 
 Equation 

(12) on 
functional 
form 

Equation 
(12) with 
DISTANCE 
as 
instrument 

Equation 
(12) on 
functional 
form 

Equation (12) 
with 
DISTANCE 
as instrument 

Equation 
(12) on 
function
al form 

Equation (12) 
with 
DISTANCE  
as instrument 

LGMAXCREDIT 0.591 0.595 0.103 0.088 0.629 0.582 
 (2.48)** (3.39)*** (0.59) (0.90) (1.98)** (1.88)* 
MILLS 0.258 0.653 0.089 0.043 -0.053 0.261 
 (0.58) (1.57) (0.67) (0.15) (0.14) (1.05) 
DISTANCE 0.002  0.006  -0.006  
 (0.32)  (1.13)  (1.06)  
Absolute value of z statistics in parentheses.  
* significant at 10%; ** significant at 5%; *** significant at 1%  
† The Heckman procedure transforms the LGMAXCREDIT variable into a dummy variable for treatment 
group = 1 if Ii > 0 
 
 
On the other hand, the Heckit procedure allows us to test for the quality of the 

identification variable, and provides us with important information about the 
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robustness of the estimation. In order to do so, the identifying instrument 

DISTANCE was included in (12) alongside with the other exogenous variables, 

including the inverse Mills ratio. The identification is achieved by exploiting the 

properties of the inverse Mills ratio that result from the non-linear relationship 

of the exogenous variables in the reduced form equation (11). The coefficients 

and significance levels of LGMAXCREDIT and MILLS are reported in Table 4. 

After running the identification equation, the coefficients of the endogenous 

explanatory variable in the estimation equations as well as the Mills ratio for 

each organisation under study remained stable. The consistency of the results 

confirms the robustness of DISTANCE as the instrumental variable in our 

estimation.  
 
3. Results from the second-stage Heckit estimation: the impact of 

programme participation on households income 
 

We now turn to the results from the estimation of the impact of programme 

participation on households’ income presented in table 6. We have estimated  

in (12) by employing the logarithm of income per capita and three different 

definitions of income per adult equivalent as the dependent variable. The use of 

adult equivalence scales is generally justified given the fact that children 

normally have lower consumption expenditure than adults and therefore they 

should be given a lesser weight. Some studies (e.g. Drèze and Srinivasan 1997) 

suggest that additional adults should be weighted less than the first adult after 

taking into account economies of scale.  

iY

 

Poverty rates can be sensitive to equivalence scales and thus, alter the 

conclusions reached on the impact of microfinance on poverty reduction. In this 

sense, it becomes important to look at this particular issue. There have been 

recent attempts to attach weights to the distribution of wealth in developing 

countries by assigning adult equivalencies to household members according to 

their age and sex [e.g. May, Carter and Posel (1995) in South Africa and 

Hentschel and Lanjouw (1995) in Ecuador]; however, given the lack of a general 
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consensus regarding the use of equivalence factors in the context of Mexico, we 

decided to follow the approach adopted by Rothbarth (1943). 

 

The equivalence factor takes the form , where  is the 

equivalence factor for household h,  is the number of adults (from age 18 to 

65) and  is the number of children in household h. The parameter θ is equal 

to 1 and Ф has different values corresponding to the age and sex of every child. 

In this sense, boys in the range 0-5 years have a Ф value of 0.661 while girls 

have one of 0.609; boys in the range of 6 to 12 years have a parameter Ф of 0.750 

while girls have one of 0.664; young men in the range of 13 to 18 years have a 

parameter of 0.633 while young women in the same range of age have a weight 

of 0.635. Finally elderly men and women (65 years of age and older) were 

assigned values of 0.553 and 0.570, respectively. For the purpose of our analysis, 

we will refer to this measurement as equivalence factor 1 (IAE1). 

θ)( hhh KAe Φ+= he

hA

hK

 

We also include in our estimations other equivalence factors in order to conduct 

a sensitivity analysis. We follow, therefore, the adult equivalence scales 

developed by Wagstaff and van Doorslaer (1998) where it is given the 

parameters Ф and θ a value equal to 0.75 and children are defined as those aged 

less than 14 years. We refer to this measurement as equivalent factor 2 (IAE2). 

Additionally we employ the OECD modified equivalence scale based on 

Hagenarrs et al, (1998) which weights the first adult with 1, additional adults 

with 0.5 and children aged 14 and less with a weight of 0.3. In our analysis we 

refer to this product as the income per adult equivalent 3 (IAE3). For 

comparative purposes, we have also included income per capita as another 

proxy of distribution of household wealth. 

 

As we were expecting, after taking into account distributional factors, the level 

of individual welfare was affected by equivalent factors, with income per capita 

being the measurement that most over-stated the level of deprivation (see table 

5). For analytical purposes, we focus on the income per adult equivalent 1. 
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Table  5. Intra-household distribution of income by equivalent factors 
Figures in pesos of  2004 FINCOMUN CAME PROMUJER 

  Treatment Control Treatment Control Treatment Control 

 Average household IC per month  9,899 4,831 6,567 5,219 6,339 6,663 

 Household income as a % of 
treatment group  100% 49% 100% 79% 100% 105% 

Average monthly IC 2,338 1,372 1,707 1,473 1,711 1,503 

 IC as a % of treatment group  100% 59% 100% 86% 100% 88% 
Average monthly IAE1 a/ 2,684 1,533 1,963 1,699 2,010 1,766 
 IAE1 as a % of treatment group  100% 57% 100% 87% 100% 88% 
Average monthly IAE2 b/ 3,545 1,945 2,524 2,106 2,546 2,364 
 IAE2 as a % of treatment group  100% 55% 100% 83% 100% 93% 
Average monthly IAE3 c/ 4,208 2,271 2,982 2,474 3,040 2,836 
 IAE3  as a % of treatment group  100% 54% 100% 83% 100% 93% 
a/ Income per adult equivalent 1 follows the approach developed by Rothbarth (1943), 
B/ Income per adult equivalent 2 follows Wagstaff and van Doorslaer (1998). 
c/ Income per adult equivalent 3 follows the OECD modified equivalence scale based on 
Hagenarrs et. al, (1998). 

 20

In order to calculate the percentage change of income per adult equivalent of 

treatment households relative to the control group, we took the antilog of the 

parameter estimate 

 

Note that the coefficient of the inverse Mills ratio revealed no evidence of 

selection bias (see table 4 in section 2.2), allowing us to concentrate on the OLS 

estimation. If we had encountered endogeneity problems, we should have 

focused on the Heckit estimation. The econometric results of the impact of 

programme participation on income are shown in table 6. The parameter 

estimate δ  of the impact variable, iI , reports the difference in the mean log 

income per adult equivalent of treatment households relative to the control 

group. The slope coefficients show, as expected, a positive sign for each of the 

three credit programmes; however, the coefficients were only statistically 

significant different from zero in the case of Fincomun. 

 

 

iI  and computed (  (Halvorsen and Palmquist 

1980).

1) 100eδ − ×



     FINCOMUN CAME PROMUJER Pooled sample
       OLS Heckit OLS Heckit OLS Heckit OLS Heckit

LGMAXCREDIT         0.553 0.595 0.126 0.088 0.110 0.582 0.313 0.115
 (2.53)** (3.39)***

 
 (0.81)

 
 (0.90) (0.73) (1.88)* (3.52)*** (1.75)* 

       

         
 

       

         
 

       

         
 

       

Dependent variable (  in Equation 12): logarithm 
of monthly income per capita in pesos of 2004 
(LGINCOMEPC) 

iY

MILLS 0.653
(1.57) 

0.043
(0.15) 

0.261
(1.05) 

0.129
(0.61) 

LGMAXCREDIT
 

0.548 0.588 0.140 0.099 0.102 0.701 0.315 0.121
(2.57)** (3.27)***

 
 (0.91)

 
 (1.00) (0.67) (2.33)** (3.59)*** (1.81)*

Dependent variable ( in Equation 12): logarithm 
of monthly income per adult equivalent 1 in pesos 
of 2004 (LGINCOMEPAE1) a/  

iY

MILLS 0.671
(1.57) 

-0.010
(0.03) 

0.293
(1.18) 

0.118
(0.08) 

LGMAXCREDIT
 

0.605 0.554 0.109 0.063 0.067 0.691 0.314 0.111
(2.91)*** (3.05)***

 
 (0.80)

 
 (0.68) (0.44) (2.53)** (3.75)*** (1.74)*

Dependent variable ( in Equation 12): logarithm 
of monthly income per adult equivalent 2 in pesos 
of 2004 (LGINCOMEPAE2) b/  

iY

 

MILLS 0.676
(1.57) 

0.183
(0.65) 

0.294
(1.28) 

0.226
(1.09) 

LGMAXCREDIT
 

0.611 0.558 0.095 0.066 0.065 0.737 0.313 0.109
(2.93)*** (3.14)***

 
 (0.71)

 
 (0.70) (0.43) (2.75)*** (3.74)*** (1.69)*

Dependent variable ( in Equation 12): logarithm 
of monthly income per adult equivalent 3 in pesos 
of 2004 (LGINCOMEPAE3) c/ 

iY

MILLS 0.661
(1.57) 

0.180
(0.63) 

0.311
(1.35) 

0.219
(1.05) 

 21

Table  6. The impact of programme participation on households’ income  

Endogenous explanatory variable ( iI in Equation 12): Logarithm of the maximum amount of credit borrowed (LGMAXCREDIT) † 

Robust t statistics in parentheses  
* significant at 10%; ** significant at 5%; *** significant at 1% 
† The Heckman procedure transforms LGMAXCREDIT into a dummy variable for treatment group = 1 if Ii > 0 
a/ Income per adult equivalent 1 follows the approach developed by Rothbarth (1943), and it has been used by the Mexican government to identify poverty lines at 
national level.  
b/ Income per adult equivalent 2 follows the approach developed by Wagstaff and van Doorslaer (1998).   
c/ Income per adult equivalent 3 follows the OECD modified equivalence scale based on the work of Hagenarrs et. al  (1998). 



 
For example, if we estimate the antilog of δ  when the logarithm of monthly 

income per adult equivalent 1 was derived as the dependent variable we obtain 

, suggesting that ceteris paribus, the median income per adult 

equivalent of treatment households with at least one year of programme 

participation at Fincomun was higher than that of the control groups by about 

73%. 

0.548 1.7297e =

 

We observed nevertheless a degree of variability in the coefficient of iI  when 

different definitions of income per adult equivalent were introduced, 

suggesting that the impact analysis of microfinance might be sensitive to intra-

household distribution of welfare. Surprisingly, the parameter estimate δ  in the 

regression equation was positive but not significantly different from zero in the 

case of CAME and Promujer. In other words, although we were expecting a 

positive effect of programme participation on the level of individual welfare, 

there was no evidence to confirm this relationship. The starting point in 

examining the reasons of the insignificant levels of δ  was to see the degree to 

which it might be related to the severity of deprivation amongst households’ 

participants. 

 

In fact, some researchers have found that very poor borrowers are more likely 

to report low income impacts not only because they are engaged in low-return 

self-employment activities (Hulme and Mosley 1996; Husain 1998; Zaman 1998; 

Wood and Shariff 1997)9, but also because the process of decision making under 

uncertainty is driven by risk-averse behaviour, particularly at low levels of 

income (Ravallion 1988; Sinha and Lipton 1999). The problem is that the 

estimation procedure provides us with information on the impact of 

programme participation at the mean of the dependent variable; however, it 

does not tell us to what extent those participants are actually poor. 

Furthermore, notice that the parameter δ  measures the average impact of 

                                                 
9 Self-employment represented 85%, 65% and 71% of the income sources, for treatment 
households at Fincomun, CAME and Promujer, respectively. 
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programme participation on ; however, it does not take into consideration the 

effect of borrowing over time. 

iY

 

Treatment households with say five years of membership are expected to report 

a greater impact than those households with just one or two years of 

membership. This is in part due to the effect of progressive lending that 

continuously increases the credit limit of borrowers. In order to address the 

latter issue we extend the Heckman procedure to a Tobit selection equation in 

section 3.1, before we concentrate in section 4 on examining the impacts on 

poverty reduction. 

 

3.1 Substituting the Heckit procedure for a Tobit selection equation: the 
impact of borrowing on households’ income 

 

We replaced the treatment dichotomous variable iI  in equation (11) by a 

continuous variable, , that measures the maximum amount of credit 

borrowed during the last credit cycle. We assume that  is exogenously 

determined by the lender L, who defines this maximum threshold according to 

level of participation in the programme. Thus we have the following 

specification equation    

iC

iC

 
* c
i i c iC X Z uβ γ= + + i

>

i ≤

   (13) 
 
where   
 

*max(0, )i iC C= , i.e.  (14) 

  (for treatment group) (15) * *    if    0i i iC C C=

*0      if    0iC C=  (for control group)  (16) 

 
and  
 

2~ (0,i iu X Normal )σ  
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Consequently,  takes a maximum value and a lower threshold zero in the 

form of a censored Tobit model (Tobin 1958) with a  for treatment groups 

and  for control groups

iC

0iC >

0iC = 10. In this way we believe to be capturing a more 

precise measure of the impact of programme participation by using  in the 

reduced form equation, where 

iC

δ  now measures the impact of credit per 

additional unit of capital borrowed. Notice that the use of OLS for the sub-sample 

for which will produce inconsistent estimators of 0iC > cβ  and γ , since we are 

using only the data on uncensored observations (Wooldridge 2002), causing a 

downward bias result (Greene 2003)11. Thus, the Tobit model implies that the 

probability of observing  and 0iC > 0iC =  are ( )φ ⋅  and , 

respectively, where 

*( 0) (ip C < = Φ 0)

( )φ ⋅  and ( )Φ ⋅  denote the same density function and the 

cumulative density function of the standard normal analysed above in section 2. 

These assumptions are very similar to those implied in the probit selection 

equation, but now the log-likelihood function takes the form 

 

 
0 0

ln ln ln ln 1
i i

i i c i c

C C

C X XL βσ φ
σ σ> =

⎛ − ⎞ ⎛⎛ ⎞ ⎛= − + + −Φ⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝⎝ ⎠ ⎝

∑ ∑ β ⎞⎞
⎟⎟
⎠⎠

 (17) 

 

which generates three conditional mean functions12: one of the latent variable 

, which can be used to understand the unobservable factors (e.g. individual 

preferences, attitudes towards risk or entrepreneurship) that affect the 

propensity to borrow from microfinance organisations; one of the observed 

dependent variable , which can be used to understand the determinants of 

the level of borrowing by treatment and control groups alike; and one of the 

uncensored observed dependent variable 

*
iC

iC

0i iC C > , which can be used to 

                                                 
10 Since we have a data-censoring case demanding the variable to follow a homoskedastic 
normal distribution, we use a logarithmic transformation in our estimation strategy to make 
this assumption more reasonable. 

*
iC

11 Goldberger (1972) and Greene (1981) have proved that the ratio of the OLS estimates to the 
maximum likelihood estimates get close to the proportion of data uncensored. 
12 For further details on the derivation of the conditional mean functions, see Greene (2003). 
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understand the determinants of the level of borrowing by treatment households 

alone.  

 

We are particularly interested in looking at the conditional mean function of the 

observed dependent variable  that is censored at zero for control groups, and 

have disturbances normally distributed. In other words, we are interested in 

examining the observed factors that affect the level of household borrowing 

between treatment and control groups.  

iC

 

We can estimate now a credit function for the level of programme participation, 

which is determined by the marginal effects of the independent variables on the 

maximum amount of capital borrowed during the last credit cycle, as 

follows:  

iC

 
c

i c i c i i cC X Z Lα β γ θ= + + + + iu  (18) 

 

where iX  is a 1 x K vector of household characteristics; iZ  is a set of observable 

variables distinct from those in iX  that affect  but not the outcome of interest 

 conditional on  that plays the role of the identifying instruments;  is a 

vector of financial market characteristics; 

iC

iY iC iL

cα , cβ , γ  and cθ  are the intercept and 

the unknown parameters, respectively whereas  is the error term that 

captures unmeasured household characteristics that determine borrowing 

levels.  

c
iu

 

The function for the outcome of interest , i.e. income per adult equivalent, 

conditional on the level of programme participation  takes the form  

iY

iC

 
y

i y i y i y iY X L Cα β θ δ= + + + + iu    (19) 
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where yα , yβ , yθ  and δ  are the intercept and the unknown parameters 

respectively, whilst  is the error term reflecting unmeasured determinants of 

 that vary from household to household. Given that we are including  as 

the explanatory variable in (23), we may expect some level of endogeneity 

emerging now from the lenders’ policy-specifics that affect the upper limit of 

credit available and not only the accessibility to it, as discussed earlier when the 

Heckman procedure was estimated.  

y
iu

iY iC

 

To select an identifying instrument for the Tobit selection equation, additional 

to DISTANCE, becomes once again an essential and difficult task. This 

instrument must satisfy the same conditions as in section 2 to enable us to 

estimate a 2SLS Tobit procedure, the type of method that Amemiya (1984) has 

referred to as Type III Tobit model. We derive this estimation equation as 

follows: 

 i y i y i y i iY X L C R ieα β θ δ υ= + + + + +  (20) 
 
 
where iR  and υ are the predicted Tobit residuals and its parameter estimate, 

respectively, and (y y
i i i ie u E u R≡ − ) , where ( ,  are assumed to be 

independent of 

)i ie R

iX , i.e. ( , )i i iE e X R 0= . The predicted residuals from the Tobit 

equation are estimated when  in (22) and then included as another 

regressor in (24) to yield consistent and efficient estimators (Wooldridge 2003). 

The null of no selection bias is tested in similar fashion as the Heckit procedure; 

however, we now use the 2SLS heteroskedasticity-robust t statistic on the 

predicted residuals: when 

0iC >

0υ ≠  we encounter a selection problem. 

 

In order to identify the additional instrument contained in iZ , we explored the 

incentive devices employed by the case-study organisations that could affect  

but not the outcome of interest . The selected identifying instrument was the 

length of membership, computed as the number of years of programme 

participation and coded as MEMBERSHIP. This variable was assumed to be 

iC

iY
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related to progressive lending, an incentive device exploited by microfinance 

organisations to deal with the problem of moral hazard and reduce operational 

costs in the long run. 

 
Table  7. Identifying instruments for the Tobit selection equation   
Dependent variable in (22): logarithm of the maximum amount of credit borrowed (LGMAXCREDIT) 
Dependent variable in (23): logarithm of monthly income per adult equivalent 1 in pesos of 2004 
(LGINCOMEPAE1) 
 FINCOMUN CAME  PROMUJER 
 Eq. (22) Eq. (23) Eq. (22) Eq. (23) Eq. (22) Eq. (23) 
MEMBERSHIP 2.235 

(6.80)*** 
-0.024 
(0.19) 

2.074 
(6.78)*** 

0.018 
(0.29) 

5.487 
(10.36)*** 

-0.003 
(1.22) 

DISTANCE 0.060 -0.001 0.058 0.004 0.042 0.340 
 (2.60)** (0.41) (1.76)* (0.88) (2.84)*** (1.65) 
Absolute value of t statistics in parentheses    
* significant at 10%; ** significant at 5%; *** significant at 1%   
 

When we estimated equation (22) with DISTANCE and MEMBERSHIP as the 

identifying instruments contained in vector iZ , the p-values of the t statistic for 

the coefficient γ  for each of the case-study organisations rejected the null of 

0 : 0H γ =

iC i

, i.e. it reflected the statistically significance correlation between the 

maximum level borrowing,  and the two instruments contained in Z ; 

however, when we included iZ  in equation (23), the parameter estimate γ  

accepted the null of no correlation against the outcome of interest Y  (see table 

7). We also followed Klein’s rule of thumb (1961) to test the instruments for 

potential problems of collinearity. None of the auxiliary regressions with 

DISTANCE and MEMBERSHIP as dependent variables reported a higher 

i

2R  

than the one obtained from the main regression equation (22), rejecting any 

serious problem of collinearity. As a result we were able to use DISTANCE and 

MEMBERSHIP as identifying instruments for the Tobit selection procedure. The 

econometric results of the impact of credit on individual income using 

equivalent factors are shown below in table 8.   
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     FINCOMUN CAME PROMUJER Pooled sample
       OLS 2S-Tobit OLS 2S-Tobit OLS 2S-Tobit OLS 2S-Tobit

LGMAXCREDIT         0.065 0.070 0.014 0.003 0.015 -0.043 0.037 0.044
 (2.82)***        

      

         
        

      

         
        

      

   
 

  

(1.41) (0.80)
 

(0.09) (0.83) (0.94) (3.67)***
 

(2.38)**
Dependent variable ( in Equation 21): logarithm 
of monthly income per capita in pesos of 2004 
(LGINCOMEPC) 

iY

RESID  -0.007
(0.12) 

0.012
(0.41) 

0.048
(1.30) 

-0.008
(0.42) 

LGMAXCREDIT
 

0.064 0.075 0.015 0.003 0.015 -0.049 0.036 0.045
(2.88)*** (1.57) (0.89)

 
(0.07) (0.79) (1.12) (3.77)***

 
(2.51)**

Dependent variable ( in Equation 21): logarithm 
of monthly income per adult equivalent 1 in pesos 
of 2004 (LGINCOMEPAE1) a/  

iY

RESID  -0.014
(0.25) 

0.014
(0.47) 

0.052
(1.46) 

-0.010
(0.52) 

LGMAXCREDIT
 

0.070 0.085 0.012 0.004 0.010 -0.045 0.037 0.050
(3.21)*** (1.96)*

 
(0.77)

 
(0.14) (0.56) (1.03) (3.91)***

 
(2.87)***

Dependent variable ( in Equation 21): logarithm 
of monthly income per adult equivalent 2 in pesos 
of 2004 (LGINCOMEPAE2) b/  

iY

RESID -0.019
(0.39) 

0.008
(0.28) 

0.045
(1.28) 

-0.016
(0.89) 

LGMAXCREDIT
 

0.070 0.010 0.004 0.010 -0.047 0.037 0.050
(3.24)*** 

 
(1.94)* (0.69) (0.12) (0.55) (1.10) (3.89)***

 
 (2.87)***

Dependent variable ( in Equation 21): logarithm 
of monthly income per adult equivalent 3 in pesos 
of 2004 (LGINCOMEPAE3) c/ 

iY

RESID

0.086 

-0.019 
(0.39) 

 0.007 
(0.25) 

 0.047 
(1.34) 

-0.016
(0.84) 

Table  8 The impact of borrowing on households’ income  
Endogenous explanatory variable ( in Equation 20): Logarithm of the maximum amount of credit borrowed (LGMAXCREDIT)  iC

Robust t statistics in parentheses  
* significant at 10%; ** significant at 5%; *** significant at 1% 
a/ Income per adult equivalent 1 follows the approach developed by Rothbarth (1943), and it has been used by the Mexican government to identify poverty lines at 
national and local level.  
b/ Income per adult equivalent 2 follows the approach developed by Wagstaff and van Doorslaer (1998).   
c/ Income per adult equivalent 3 follows the OECD modified equivalence scale based on the work of Hagenarrs et. al, (1998).  



 

Notice that the predicted residuals from the second-stage Tobit selection 

equation report statistically insignificant levels in the parameter estimates υ , 

confirming, as in the Heckit procedure, the assumption of no selectivity13. It is 

possible to argue thus that the decision process that involves increasing levels 

of borrowing is largely a function of the policy-specifics that are exogenously 

determined, and linearly correlated to progressive lending (captured by the 

length of membership). 

 

The parameter estimate δ  of the impact variable, , reported a positive sign 

for each of the three microfinance organisations; however, the coefficients were 

only significantly different from zero in the case of Fincomun. More precisely, 

the econometric results suggest that if the maximum amount of capital 

borrowed by treatment households had gone up by x%, the income per adult 

equivalent 1 had increased in the order of 0.064x% relative to the control group, 

ceteris paribus. This result is important for two reasons: 

iC

 

First, it confirms that our findings are in line with the statistically significant 

impacts that we reported in equation 12; however, by substituting  for iC iI  we 

were able to discount the effects that older borrowers have on the average 

impact of programme participation, allowing us to obtain a more accurate 

estimation. Second, our results confirm the findings of other researchers (e.g. 

Morduch 1998; Coleman 1999) in relation to the small (or insignificant) effects 

that microcredit has on the level of individual income.  

 

However, we could expect that an absolute change in the level of income, 

deriving from a proportional change in earnings relative to a change in the 

maximum amount of capital borrowed is heavily dependent on the level of 

                                                 
13 The Hausman test also imposed the assumption of exogeneity, by no rejecting the null of no 
systematic difference between the covariance matrixes of the OLS and the 2S-Tobit estimators: 

0.24 in the case of Fincomun; 2 (13)χ = 2 (13)χ = 0.13 in the case of CAME, and 2.11 in 
the case of Promujer. 

2 (12)χ =
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initial welfare. In other words, if we are interested in examining poverty 

impacts, we should expect larger effects from credit amongst those households 

who are better off. We examine this particular issue in section 4 by looking at 

the relationship between the severity of deprivation and poverty impacts from 

the case-study organisations. 

 

4. The impact of credit on poverty reduction 
 
 
To begin the discussion, we proceed to calculate the incidence of poverty and 

poverty gap amongst households’ members by computing four different 

monetary thresholds of income deprivation: 

 

Poverty line 1 (PL1). It measures the incidence of extreme poverty, and has been 
calculated at 784.5 pesos per month.  
 
Poverty line 2 (PL2). It measures the incidence of poverty, and has been 
computed at 1507.5 pesos per month.  
 
Poverty line 3 (PL3). It measures the incidence of moderate poverty and has been 
calculated at 1881 pesos per month 
 
World Bank’s poverty line, which is fixed at US$ 2 a day 
 

The use of several critical thresholds of human deprivation is justified for two 

reasons: firstly, there is a widespread recognition that the conventional relative 

poverty line of US $2 a day is too low for the existing domestic prices in the 

country. Secondly, by computing several poverty lines we were able to analyse 

how deep the case-study organisations were reaching the poor, and to measure 

the magnitude of the poverty impacts by levels of deprivation.  

 

We followed the Sedesol (2002) criteria to identify the PL1 as the lowest 

threshold of income required to fulfil the minimum nutritional requirements to 

have a healthy living. A food-based poverty line. The PL2 includes the basket of 

basic goods plus other components such as health care and basic education. A 

capabilities-based poverty line. The PL3 adds to the PL2 components that are 
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considered as important in a social context, such as housing, clothing and 

public transport. An asset-based poverty line. These poverty lines have been 

derived for the urban context. 

 

The estimation of the incidence of poverty and poverty gap are presented in 

table 9. Incidence of poverty has been computed as the percentage of 

programme participants whose income per adult equivalent 1 was below the 

selected poverty line. In other words, the incidence of poverty (also known as 

headcount index) shows the share of households that could not afford to buy 

the basket of basic goods that was previously selected by the INEGI-ECLAC 

(1993). We have also estimated the poverty gap by estimating the mean 

aggregate income per adult equivalent shortfall relative to the poverty line 

across the sample.  

 
Table  9 Poverty and human deprivation amongst programme participants 
Figures in percentages   
  FINCOMUN CAME PROMUJER 

Concept Sample 
size Control Treated Control Treated Control Treated 

Overall 148 34.5 65.5 39.1 60.9 44.7 55.3 
Incidence of  extreme 
poverty (PL1) c/ 

       

≤ 784.5 pesos per month 10 15.8 11.1 11.2 0 0 3.9 
Poverty gap  43.4 28.2 13.5 0 0 5.1 
Depth of poverty (in pesos)  341 221 106 0 0 43 
Incidence of poverty (PL2)        
≤ 1507.5 pesos per month 60 63.2*** 27.8 50.0 42.9 33.3 38.5 
Poverty gap  38.1 36.2 35.0 20.2 17.5 21.2 
Depth of poverty (in pesos)  574 545 527 304 263 319 
Incidence of moderate 
poverty (PL3) 

       

≤ 1881 pesos per month 87 73.7** 36.1 77.8 67.9 61.9 53.9 
Poverty gap  44.8 39.3 34.1 25.4 23.3 30.6 
Depth of poverty (in pesos)  842 738 642 477 439 576 
World Bank's poverty line        
≤ US$ 2 a day 7 15.8 8.3 5.6 0 0 0 
Poverty gap  33.6 23.7 1.1 0 0 0 
Depth of poverty (in pesos)  225 159 7 0 0 0 
The statistically significant association in the cross-tabulations are indicated by the Chi-square values for 
the cell as a whole at 0.001 (*); 0.01 (**); 0.05 (***); and 0.1 (****) levels of significance.  
c/ Poverty lines are derived in prices of 2004, following Sedesol (2002)   
 

We observed a larger incidence of poverty amongst treatment households at 

CAME and Promujer than at Fincomun when PL2 and PL3 were employed. For 

example, although 43% and 39% of treatment households at CAME and 
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Promujer, respectively, reported earnings that were below the minimum 

requirement to satisfy their basic needs according to the PL2, in comparison to 

28% at Fincomun, only in the case of Fincomun we found a statistically 

significant association at 0.05 level between treatment and control groups in 

relation to the incidence of poverty. More precisely, the empirical evidence may 

suggest a significant relationship between programme participation and 

poverty reduction. Unfortunately we did not collect panel data to confirm this 

relationship. What we can say, however, is that the case-study organisations 

were reaching the poor at different levels of deprivation. To illustrate this, take 

the case of the depth of deprivation amongst poor borrowers (see also figure 2).  

Figure  2 The relationship between average borrower income and 
the length of membership 
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The computed poverty gap was larger amongst participants at Fincomun than 

at CAME and Promujer. Poor borrowers at Fincomun had to cover, on average, 

an income shortfall of 545 pesos per month in order to cross the PL2, whereas 

poor borrowers at CAME and Promujer had to cover only 304 and 319 pesos, 

respectively. As suggested before, we might have the case here where some 

organisations (e.g. Fincomun) are more effective at reducing the number of 

poor households but only by lifting those who were closest to the poverty line, 

with low impacts on the poverty gap. Other organisations (e.g. CAME and 
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Promujer) might be more effective in reaching the extreme poor but by doing 

so, they report low insignificant effects on the overall incidence, bringing the 

extreme poor closer to the poverty line. One way to find out whether our 

assumptions are correct is by estimating the marginal effects of borrowing 

across the poverty lines. In order to do so, we ran a Probit estimation equation 

in the form 

 

 i i iPL C uiα δ= + +   (21) 

 

where the dependent variable  is a binary variable that takes the values  iPL

 
thi⎧

⎨
⎩

i

1 if  household is below the poverty linePL =  
0 otherwise                                                 

 

and  is the same continuous variable in equation (22) that measures the 

maximum amount of credit borrowed in logarithmic form. We have run (25) 

with  adopting different poverty lines and using by default the definition of 

income per adult equivalent 1. In this sense  was coded as POORPL1 when 

households were below the incidence of extreme poverty, PL1; POORPL2, 

when households were below the PL2; POORPL3, when households were 

below PL3, and POOR2US when households were below the World Bank’s 2 

US dollar a day poverty line. For comparative purposes, we have also run 25 

with 

iC

iPL

iPL

iI  as a substitute for  where iC iI  is the dichotomous variable previously 

defined with value = 1I  for treatment households and  for control groups.  = 0I

 

By estimating the marginal effects of  we were able to capture in iC δ  the 

impact of a relative change in the amount of capital borrowed by a poor household on 

the probability of staying below the poverty line. Alternatively, if we included 

iI  in the Probit equation, we were able to capture in δ  the impact of the 

individual choice of a poor household to participate in a credit programme on the 
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probability of staying in poverty. We present the results in table 10. Our 

findings reveal interesting information regarding the level penetration of the 

case-study organisations and their poverty impacts: 

 
Table  10 Probit: the effect of programme participation on the probability of staying in poverty 
Explanatory variable: Dummy variable for treatment group = 1    

FINCOMUN CAME PROMUJER Pooled sample Independent variable: 
Dummy variable = 1 
if IAE1 ≤ poverty line a/ 

(25) 
with  

iI
(25) 

with  
iC

.25) 
with  

iI
(25) 

with  
iC

(25) 
with  

iI
(25) 

with  
iC

(25) 
With  

iI
(25) 

with  
iC

-0.379 -0.051     -0.350 -0.419 Coef (0.82) (1.12)     (0.98) (1.08) 
-0.074 -0.009     -0.036 -0.003 

World Bank poverty 
line ≤ US $2 a day ∂Φ

∂X
 (0.82) (1.12)     (0.98) (1.08) 

-0.217 -0.029    0.178 -0.229 -0.027 Coef (0.49) (0.66)    (5.83)*** (0.72) (0.79) 
-0.046 -0.006    0.003 -0.031 -0.003 

Incidence of extreme 
poverty PL1 ≤ 784.5 
pesos per month 

∂Φ

∂X
 (0.49) (0.66)    (5.83)*** (0.72) (0.79) 

-0.925 -0.100 -0.180 -0.019 -0.137 -0.013 -0.327 -0.390 Coef (2.49)** (2.58)*** (0.47) (0.47) (0.36) (0.29) (1.53) (1.67)* 
-0.353 -0.038 - 0.071 -0.007 -0.051 -0.005 -0.127 -0.015 

Incidence of poverty 
PL2 ≤ 1507.5 pesos 
per month 

∂Φ

∂X
 (2.49)** (2.58)*** (0.47) (0.47) (0.36) (0.29) (1.53) (1.67)* 

-0.989 -0.108 -0.301 -0.030 -0.206 -0.029 -0.467 -0.055 Coef (2.61)*** (2.73)*** (0.72) (0.70) (0.55) (0.64) (2.15)** (2.31)** 
-0.375 -0.043 -0.099 -0.010 -0.080 -0.011 -0.178 -0.021 

Incidence of 
moderate poverty 
PL3 ≤ 1881 pesos  
per month 

∂Φ

∂X
 (2.61)*** (2.73)*** (0.72) (0.70) (0.55) (0.64) (2.15)** (2.31)** 

Robust z statistics in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1%  
a/ Income per adult equivalent 1 (IAE1) follows Rothbarth (1943)  
Note: Equation (25) could not be estimated neither using the World Bank’s poverty line nor the Poverty 
line 1, due to the fact that we did not observe treatment households at CAME, and control groups at 
Promujer whose income was below the thresholds of extreme deprivation. The immediate consequence of 
that was to face a typical case of perfect predict probability. 
 
 
As we were expecting, the slope coefficient of  reported negative signs when 

POORPL2 and POORPL3 were included as dependent variables, but they only 

showed statistically significant levels when we estimated the Probit equation 

for programme participants at Fincomun. Other things held constant, the effect 

of a relative change of x% in the level of borrowing by poor members at 

Fincomun was a decline in the probability of staying below that poverty line of 

about –0.038x%, and the magnitude of this impact was marginally greater (-

0.043x%) when POORPL2 was replaced for POORPL3 in the estimation. 

iC

 

Although the parameter δ  reported negative signs when the extreme poor was 
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included in the estimation (e.g. POORPL1 and POOR2US), it was not 

significantly different from zero. In other words, we could not find statistical 

evidence to confirm a poverty impact from Fincomun at the lowest point of 

deprivation, where the extreme poor were grouped. This might confirm our 

hypothesis with regard to the idea that some lenders are more effective at 

having poverty impacts but just at the upper limits of deprivation, where they 

can take those who are closest to the poverty line out of poverty. 

 

Interestingly, Promujer reported positive signs and statistically significant levels 

in the slope coefficient of  when POORPL1 was computed as dependent 

variable. This suggests that, other things held constant, a relative change in the 

loan size of an extreme poor woman borrowing from Promujer will increase the 

probability of staying poor. The fact that the slope coefficient of  reported 

negative but insignificant levels when POORPL2 and POORPL3 were included 

in the estimation, suggests that Promujer might be effective in reaching the 

extreme poor but by doing so, the organisation is reporting impacts just on the 

poverty gap and not on the overall incidence, which may also explain the 

considerably smaller poverty gap reported by the organisation compared to 

that of Fincomun (see table 9). Surprisingly, although the slope coefficient of  

showed negative signs, we could not find any statistical significance to confirm 

poverty impacts from CAME at the estimated thresholds of deprivation.  

iC

iC

iC

 

5. Concluding remarks 
 

Our findings revealed that microfinance organisations reach the poor at 

different levels of deprivation; however, although reaching the poor has its own 

merits, it does not necessarily lead to poverty reduction: only one organisation 

(Fincomun) reported statistically significant, although very small poverty 

impacts at the upper limits of the poverty line where the moderate poor is 

located, suggesting a strong relationship between the level initial welfare and 

the magnitude of the poverty impact. Furthermore, those organisations that rely 
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the financial operation on group lending technology (CAME and Promujer) 

appeared to be more effective in reducing the poverty gap but by doing so, they 

report insignificant impacts on the overall incidence. 

 

The empirical evidence also points to a linkage between the insignificance of the 

poverty impacts and lending technology. The link can be tracked to some 

devices that microfinance organisations have traditionally employed to deal 

with the screening, monitoring and enforcement problems. In particular, we 

refer to the costs that periodical repayment schedules, which demand weekly 

compulsory meetings, generate to programme participants. As discussed earlier 

in section 2.2, we found an elastic responsiveness in the demand for credit as a 

result of a percentage increase in the opportunity cost of borrowing. In fact, 

borrowers at CAME reported the largest elasticity between the three 

organisations. This reflects the direct effect that weekly compulsory meetings 

have on income, in particular when households economically more dynamic, 

and closer to the poverty line, are forced to forego earnings for being required 

to attend sessions that often last for several hours. 

 

To illustrate this, we estimated the opportunity cost of borrowing per credit 

cycle. After computing this cost on monthly basis, the data reveals that it 

represented about 21% of the poverty gap that poor households borrowing 

from CAME had to cover to cross the poverty line 2, relative to the 10% of the 

poverty gap that borrowers at Fincomun had to cover. These results have 

important policy implications. Rigid screening and monitoring devices such as 

periodical repayment schedules can increase the utility cost of borrowing to 

such a level that the efforts of poverty reduction can be undermined. In this 

sense, institutional efforts aimed to reduce these costs can have significant 

effects. However, more research is needed to examine in more detail the linkage 

between lending technology and poverty impacts. 
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Table  11: Summary of findings 
 FINCOMUN CAME PROMUJER Pooled sample
Sample size 55 46 47 148 
Percentage of female borrowers 49 74 100 73 

Lending technology Individual lending Village banking Solidarity groups in 
co-operative groups  

Periodicity of loan collection  Weekly and fortnightly Weekly Weekly and fortnightly  
Compulsory meetings NO YES YES  
Upper limits to progressive lending NO YES YES  
Income-generating activities (as % of income sources) 79.49 73.12 65.22 73.18 
Years in business (average) 5.78 4.24 5.34 5.16 
Opportunity cost of borrowing per credit cycle  
(in pesos of 2004) 886    

    

    

1008 540 824

Elasticity of demand for credit per additional unit of 
opportunity cost 1.61 1.72 1.51 1.66

Average income per adult equivalent per month 
(in pesos of 2004) 2286 1860 1901 2031

Proportion of borrowers below poverty line (%) 40 45.65 36.17 40.51 
Average income of poor borrowers (in pesos of 2004) 946 1108 1211 1024 
Income of poor borrowers as % of the poverty line  62.76 73.46 80.33 67.88 
Did the organisation report a significant income impact with 

iI as explanatory variable?      

     
     

    
   

     

    

    

Heckit YES NO YES YES
OLS YES NO NO YES

and with  as explanatory variable? iC
2S-Tobit NO NO NO YES
OLS YES NO NO YES

Did the organisation report significant marginal effects of a 
change in the amount of capital borrowed on the probability 
of staying in poverty?  

YES NO NO YES

Did the organisation report significant marginal effects of 
programme participation on the probability of staying in 
poverty? 

YES NO NO NO

Source: Sample survey 





Table 12. List of variables 
Independent variables Definition Obs Mean S.D. Min Max 

Contained in iX        

AVEDU Years of education  148 7.047 3.777 0 17 
HOWNER If household owns residence = 1 148 0.682 0.467 0 1 
HESTATE If house is still in construction = 1 148 0.791 0.408 0 1 
TIMEBUS Years in business 148 5.162 5.746 0 30 
WWORKER Number of household members 

with a waged job 
148 0.547 0.703 0 3 

DEPENDRATIO Dependency ratio (number of 
children, students and old 
members / household size) 

148 0.498 0.222 0.125 1 

AGE Age of borrower 148 42.189 10.846 19 74 
WOMAN If borrower is woman = 1 148 0.730 0.446 0 1 
MARITAL If borrower is in a relationship = 1 148 0.757 0.430 0 1 

Contained in  iL       
ROSCAS If borrower participates in rotating 

savings and credit association = 1 
148 0.453 0.499 0 1 

FORMALCREDIT If borrower have received loans 
from institutional lenders = 1 

148 0.054 0.227 0 1 

MONEYLENDER If borrower have received loans 
from moneylenders 

148 0.095 0.294 0 1 

Instrumental variables  
 

      

DISTANCE Distance from branch to place of 
residence or business (in minutes) 

148 32.365 21.716 10 100 

MEMBERSHIP Years of membership 148 1.704 1.944 0 8 
LGOPPORTCOSTPC Logarithm of the opportunity cost 

of borrowing per credit cycle 
148 3.880 3.204 0 8.006 

LGCOSTBORROWPC Logarithm of the cost of borrowing 
per credit cycle 

148 3.973 3.267 0 8.006 

Dependent variables       

LGMAXCREDIT Logarithm of the maximum 
amount of credit borrowed in the 
last credit cycle  

148 5.475 4.466 0 10.621 

LGINCOMEPC Logarithm of income per capita 148 7.296 0.594 5.438 8.868 
LGINCOMEPAE1 Logarithm of income per adult 

equivalent 1 
148 7.452 0.571 5.733 9.055 

LGINCOMEPAE2 Logarithm of income per adult 
equivalent 2 

148 7.724 0.545 6.114 9.315 

LGINCOMEPAE3 Logarithm of income per adult 
equivalent 3 

148 7.895 0.543 6.324 9.512 

POORPL1 If household’s income is below 
poverty line 1 = 1 

148 0.068 0.252 0 1 

POORPL2 If household’s income is below 
poverty line 2 = 1 

148 0.405 0.493 0 1 

POORPL3 If household’s income is below 
poverty line 3 = 1 

148 0.581 0.495 0 1 

POOR2US If household’s income is below US 
$2 a day = 1 

148 0.047 0.213 0 1 
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