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1. Introduction

Characteristically, in economics, the analysis of firm activity is based on a production 

function that defines a deterministic relationship between factor inputs and firm 

output. The analysis of the firm as an organisation takes a somewhat different 

approach. For instance, behavioural economics (for example Simon, 1955; March and 

Simon, 1958; Cyert and March, 1963), transaction cost theory (Williamson, 1975, 

1985) and capabilities approaches (for example Foss and Loasby, 1998; Foss, 2005) 

emphasise that economic agents have inevitably incomplete information and 

knowledge and are at most boundedly or limitedly rational. The implication here is 

that while general principles governing intra-firm interaction can be specified, 

detailed organisational processes inside the firm are, for practical academic purposes, 

effectively unobservable. Hence, the usual analytical tools designed to analyse firm 

behaviour, based on production functions and optimising principles with full 

information, are in practice an oversimplification of firm activity (Loasby, 1999).  

 

This problem is not unique to economics. For example, the functioning of the human 

brain can be understood in general terms as inputs of sensory data generating bio-

chemical reactions. These reactions activate various interconnected neurons that in 

turn lead to (in principle) measurable ‘output’. But, as with the firm, the way in which 

this general model of the brain is understood and applied in specific circumstances is 

too complex to be specifiable in terms of a simple functional relationship. For this 

reason neural scientists have developed neural network analysis to model the 

interactions inside the brain that are otherwise too complex to be modelled (see, for 

example, Bishop, 1995). This technique can therefore be usefully applied to the 
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analogous idea of the firm and (potentially) model its functioning assuming complex 

internal interactions. It is not, of course, original to claim that firm organisation is the 

brain of the firm; previous work based on this principle is Beer (1972). But this paper 

is an attempt in this tradition using a neural network framework. Outside of 

economics, for example in business and finance, neural network analysis is not 

uncommon (see, for example, Altman et al, 1994; Wilson et al, 1995; Chiang et al, 

1996; Wong et al, 1995; Jasic and Wood, 2005). Non-firm applications of neural 

network analysis within economics are becoming increasingly important, for example: 

Binner et al (2005) on inflation; Papadas and Hutchinson in input-output analysis; 

Johnes (2000) on macroeconomic modelling; Franses and Homelen (1998) and 

Plasmans et al (1998) on exchange rate modelling. But previous published work in 

economics that has applied a neural network framework to the firm (for example, 

Delgado et al, 2004) has not developed the analysis using actual data as is done in this 

paper. 

 

The rest of the discussion is set out as follows. In the next section the key principles 

of neural network modelling, and how this might be applied to the firm, are set out. In 

addition basic estimations are reported using a sample of 248 firms in UK SIC34. For 

comparative purposes the estimation results are compared to Cobb-Douglas and trans-

log equivalents. It is shown that neural network frameworks not only provide better 

estimates but also have superior predictive ability. Following this, in section three, the 

various estimates are analysed in terms of returns to scale characteristics. It is shown 

that the most the most complex neural network developed here has an intuitive 

economic interpretation. In section four a predictive evolutionary model of the firm is 

developed using the estimated neural network. It is shown that this model has superior 
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predictive capabilities than earlier reported models. In the final substantive section 

five, simulation results are reported using the neural network based model set out in 

section four. Finally brief conclusions are drawn. 

 

2. Neural network modelling of the firm

A basic neural network (see Bishop, 1995) suggests a two-stage input-output 

framework rather than a single stage traditional production function. Between inputs 

and outputs an unobservable hidden layer (H) exists: 

Traditional production function: X → Q 

Neural network:   X → H → Q. 

For current purposes, this unobservable hidden layer is assumed to define 

organisational functioning. With two inputs (x1 and x2), the functioning of this 

network can be set out as follows: 

 

 Q 

hm h1 

The various factor inputs, along with an input bias (x0), do not have a direct impact on 

output, but are instead inputs into m hidden units. These hidden units, along with a 

hidden unit bias (h0), determine firm output. This standard formulation is a feed 

forward network as no feedback effects are modelled.  

 

 
  x0                       x1                    x2 

h0 
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To model a feed forward network it is assumed that the various hidden units have a 

separable impact on output. In addition the significance of the various links in the 

network is defined by a system of weights. In general terms with n inputs, m hidden 

units, and a single output, we can specify a feed forward neural network as follows 

(Delgado et al, 2004): 

  ⎥⎦
⎤

⎢⎣
⎡ β∑ ⎟

⎠
⎞⎜

⎝
⎛ ∑ α+χ+β=

= =
j

m

1j

n

1i
ijij0 xGFQ

β0 = the output bias 

γj = hidden unit biases (j = 1, …, m) 

αij = weights from input unit i to hidden unit j 

βj = weights from hidden unit j to output. 

 

If we assume functional form F is linear in logs, i.e. the analogue of a Cobb-Douglas 

formulation, we can define in the two input case 

 q = β0 + β1g1 + β2g2

where: q = ln(Q); gj = . ⎟
⎠
⎞⎜

⎝
⎛ ∑ α+χ

=

n

1i
ijij xG

In this case we can interpret β1/(β1+β2) as the ‘share’ of g1 in q, and equivalently for 

g2. The relevance of this will become clear from later discussion. 

 

There are two common activation functions that define G (see Bishop, 1995):  

1. A threshold relationship in which hidden unit j becomes activated following 

input signals of sufficient intensity. 

2. A continuous logistic relationship.  
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In terms of economic modelling of the firm it is not intuitively obvious why a 

threshold function should be the appropriate form for the relationship between factor 

inputs and hidden unit activity.1 Instead a standard logistic relationship is used here: 

 ∑
−+

β+β=
=

m

1j j
j0 )zexp(1

1q    [1] 

where, in the two input case, zj = γj + α1jln(x1) + α2jln(x2). Logged inputs are used here 

to maintain comparability with a Cobb-Douglas relationship. The logistic relationship 

has the desirable property that it is locally (approximately) linear over its middle 

range and hence collapses back to an approximate Cobb-Douglas relationship. But 

over extreme zj it is obviously non-linear. 

 

Formulation [1] can, in principle, be estimated using non-linear regression methods. 

In addition to qualifications made below on the use of non-linear least squares 

estimation, we must recognise that any non-linear estimation is potentially sensitive to 

the algorithm starting point (Curry and Morgan, 1997) because of possible 

convergence to local solutions (Athanassopoulos and Curram, 1996). For illustrative 

purposes the estimation is carried out on a sample of 248 UK firms from SIC34 i.e. 

the automobiles sector. This sample is the complete set of firms available from the 

FAME database for which SIC34 is the main activity of the firms and covers the full 

range from small to very large firms. A 2 digit level of aggregation is used to 

internalise much firm diversification. Data for 1995 and 2000 is used, covering the 

following: labour (number of employees), capital (net assets) and firm sales. Capital 

and sales for 2000 are rebased to 1995 levels using the GDP deflator. 

                                                 
1  A ‘psychological’ model of the firm might use a threshold signal. In this case each hidden unit 

might describe a different firm ‘mental map’ with switching between such maps depending on 
exogenous shocks of sufficient intensity. The necessary shock is defined by the threshold signal. In 
a managerial context these ‘mental maps’ might define dominant firm culture. While such 
modelling is potentially interesting it is left for future work. 
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To indicate the reliability of a neural network framework the following method is 

adopted: 

1. Use 1995 data to estimate Cobb-Douglas, trans-log and neural network 

production functions.  

2. Use the regression output in (1) and 2000 values of L and K to predict firm 

sales for that year. 

3. Calculate the root mean squared deviation and Theil’s inequality coefficient of 

actual from predicted sales. These measures are taken as indicators of 

predictive accuracy. 

With step (1) we can view a generalised neural network as an arbitrarily complete 

specification of a data set (see White 1989). It follows that we can view Cobb-

Douglas and trans-log functions as, respectively, first and second order 

approximations of this underlying fully specified relationship. We might therefore 

expect an actual, empirically derived, neural network to be a more accurate modelling 

device. This greater accuracy is, indeed, found below. But a possible criticism of a 

neural network framework is that this greater modelling accuracy may be based on 

tracking stochastic deviations from underlying systematic economic relationships 

rather than simply the economic relationships themselves. It therefore may follow that 

greater modelling accuracy need not imply greater predictive ability if the latter is 

based on systematic rather than stochastic factors. For this reason steps (2) and (3) are 

important in indicating the reliability of a neural network framework. We find that a 

neural network framework has greater predictive ability. Detailed comments about 

how reliability is assessed are made below. 
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The main complexity for regression modelling is that standard OLS is a potentially 

inappropriate tool for production function estimation because an efficiency bound can, 

in general, be assumed to exist. For this reason two sets of regression results are 

reported below: non-linear OLS estimates and those derived using a stochastic frontier 

model. For the latter the total error term is divided into two elements: a random part 

(v) and the degree of technical inefficiency (u). The random element has the usual 

characteristics of being independently N(0, σv
2) distributed over the observations. The 

inefficiency element is assumed independently half-normal N+(0, σu
2) distributed. In 

addition, to control for non-constant variance in the inefficiency element, because of 

heteroskedastistic firm scale effects, σu
2 is modelled as a linear function of ln(K)-

ln(L).  

 

Stochastic frontier models are straightforward to estimate for linear specifications; for 

instance the STATA package estimates them as standard. But for non-linear 

formulations, such as a sigmoid based neural network, estimation is not possible using 

available estimation packages. To undertake neural network frontier estimation the 

procedure adopted here involves removing the efficiency effects from the dependent 

variable of the neural network, following which non-linear least squares can be used 

to estimate the model as if all firms were operating at optimal efficiency. The 

efficiency effects used in the frontier neural network are those estimated in the trans-

log frontier regression. The logic here is that the trans-log formulation represents a 2nd 

order approximation of the underlying production process rather than the 1st order 

approximation of a Cobb-Douglas function. This 2nd order approximation produces 

greater modelling accuracy as indicated below. The resulting regression models are as 

follows.  

-7- 



 

OLS Cobb-Douglas: 
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Frontier Cobb-Douglas: 
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OLS trans log: 
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OLS neural network: 
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Frontier neural network: 
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The appropriate number of hidden units in the neural network is estimated using 

standard test statistics. In practice, the maximum number of units that can be 

effectively estimated is two; this has an intuitive economic interpretation presented 

below. Separate results are presented for networks with one and two hidden units. For 

trans-log formulations the regressions are reported after removal of insignificant 

parameters. Results are reported in tables 1-4. 

 

Table 1a: 1995 OLS Cobb-Douglas regression

-8- 



 
estimated 
coefficient

t statistic 

aCD
0  3.926 16.60 

aCD
1  0.797 9.99 

aCD
2  0.200 4.23 

R2 0.855 
S.E. of regression 0.674 
Log likelihood -252.65 

 

Table 1b: 1995 Frontier Cobb-Douglas regression

 
estimated 
coefficient

z statistic 

bCD
0  4.091 18.84 

bCD
1  0.681 8.63 

bCD
2  0.297 4.77 

Wald chi2(2) 1427.77  
σv 0.617  

2
vlnσ         cons -0.965 -6.76 
2
ulnσ         cons -3.324 -3.01 

             ln(K)-ln(L) 0.523 2.21 
Log likelihood -251.85  
 

Table 2a: 1995 OLS Trans-log regression

 
estimated  
coefficient 

t statistic

aTL
0  5.843 18.04 

aTL
1

 
0.385 3.49 

aTL
3

 
0.041 3.64 

aTL
4

 
0.009 3.78 

R2 0.870 
S.E. of regression 0.640 
Log likelihood -239.25 

 
 
 

 

 

Table 2b: 1995 Frontier Trans-Log regression
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estimated 
coefficient

z statistic 

bTL
0  6.084 15.67 

bTL
1  0.420 3.49 

bTL
3  0.036 3.09 

bTL
4  0.010 3.64 

Wald chi2(2) 1635.82  
σv   

2
vlnσ         cons -2.403 -6.25 

             ln(K)-ln(L)    0.430 4.12 
2
ulnσ         cons -1.789 -2.39 

Log likelihood -228.80  
 
 
Table 3a: 1995 OLS Neural Network: one hidden unit 
 

 
estimated 
coefficient

t statistic 

aNN
0  6.215 6.09 

aNN
11  11.417 4.67 

aNN
21  -3.367 -4.282 

aNN
31  0.378 3.82 

aNN
41  0.061 2.63 

R2 0.875 
S.E. of regression 0.628 
Log likelihood -234.15 

 

Table 3b: 1995 Frontier Neural Network: one hidden unit 
 

 
estimated 
coefficient

t statistic 

bNN
0  6.544 7.17 

bNN
11  11.717 5.04 

bNN
21  -3.348 -4.84 

bNN
31  0.366 4.21 

bNN
41  0.062 2.91 

R2 0.906 
S.E. of regression 0.531 
Log likelihood -192.42 

 
 
 
 
Table 4a: 1995 OLS Neural Network: two hidden units 
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estimated 
coefficient

t statistic 

aNN
0  6.945 18.39 

aNN
11  4.111 2.25 

aNN
21  -11.362 -2.37 

aNN
31  0.577 2.01 

aNN
41  0.557 1.55 

aNN
12  4.588 2.59 

aNN
22  -4.474 -3.99 

aNN
32  0.840 2.64 

aNN
42  0.035 0.55 

R2 0.880 
S.E. of regression 0.621 

Log likelihood -229.27 
 

Table 4b: 1995 Frontier Neural Network: two hidden units 

 
estimated 
coefficient

t statistic 

bNN
0  7.244 19.95 

bNN
11  3.963 2.11 

bNN
21  -11.351 -2.44 

bNN
31  0.551 2.08 

bNN
41  0.560 1.59 

bNN
12  4.935 2.63 

bNN
22  -4.240 -4.57 

bNN
32  0.755 2.85 

bNN
42  0.044 0.89 

R2 0.911 
S.E. of regression 0.524 

Log likelihood -186.98 
 
 
 
 
 

 

 

 

Table 5: Predictive accuracy of 2000 sales forecasts 
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 OLS 
CD 

OLS 
TL 

OLS 
NN1 

OLS 
NN2 

Frontier 
CD 

Frontier 
TL 

Frontier 
NN1 

Frontier 
NN2 

RMS 0.645 0.616 0.613 0.606 0.628 0.584 0.580 0.571 
Theil’s 
U 

0.0315 0.0301 0.0299 0.0296 0.0307 0.0285 0.0283 0.0278 

       
UM 0.00101 0.00076 0.00103 0.00115 0.00070 0.00110 0.00114 0.00107
US 0.00091 0.00030 0.00004 0.00006 0.00064 0.00026 0.00002 0.00005
UC 0.02968 0.02912 0.02895 0.02845 0.02946 0.02723 0.02722 0.02681

Note:  UM, US and UC need not sum to U because of rounding errors. 

 

Table 5 reports the root mean squared error (RMS) and Theil’s inequality coefficient 

(U) of 2000 sales forecasts using the eight different models reported above. A clear 

ranking of forecasting accuracy is indicated, with the neural network models being 

more accurate predictors that trans-log and Cobb-Douglas formulations. In addition, 

the frontier models predict better than the OLS equivalents. For this reason the rest of 

the discussion will be based on use of the frontier models. The table also presents the 

standard decomposition of Theil’s U into proportions representing the bias (UM), the 

variance (US) and the covariance (UC). It is apparent that the neural network models 

are particularly effective in tracking the variance of the forecasts. 

 

3. Interpretation of results: returns to scale 

This section of the paper presents a first interpretation of the results in terms of a 

standard returns to scale analysis. For a production function Q = F(L, K) we can 

define returns to scale in the standard manner by the ratio y/x, where 

 yQ = F(xL, xK), 

with y/x greater (less) than one indicating increasing (diminishing) returns to scale. 

 

The Cobb-Douglas regression results indicate scale effects that are not significantly 

different from constant returns. With a trans-log function returns to scale are 
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obviously endogenous to L, K and x. For frontier parameter estimates as given above, 

returns to scale characteristics are set out in figure 1. With small x, increasing returns 

to scale become more important with smaller firm size, a result that has an intuitive 

appeal. Firms of all size appear to converge on approximate constant returns i.e. the 

Cobb-Douglas solution. 

 
Figure 1 

Trans Log Returns to Scale
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For a neural network returns to scale are also endogenous to L, K and x. With a single 

hidden unit, and parameter estimates as given above for the frontier model, returns to 

scale characteristics are set out in figure 2. As with the trans-log function there is 

convergence on approximate constant returns. But with small size, i.e. 0.5 mean ln(L), 

ln(K), there are greater increasing returns than with a trans-log function, an effect that 

results from the non-linearity in the sigmoid relationship. 

Figure 2 
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Neural Network (1) Returns to Scale
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A neural network with two hidden units allows a potentially more revealing analysis 

of firm characteristics and behaviour. As mentioned above, because the impacts of the 

two hidden units are separable, and as we have assumed a linear relationship in logs 

between hidden units and output, we can define the following relative shares for the 

hidden units: 

 s1 = b /( + ),  sNN
11 bNN

11 bNN
12 2 = /( + ). bNN

12 bNN
11 bNN

12

With the parameter estimates reported above 

 s1 = 0.45,  s2 = 0.55. 

This implies that we can interpret hidden unit one as occurring, on average for all 

firms, 45 per cent of the time and hidden unit two, on average, 55 per cent of the time. 

 

-14- 



Figure 3 

Neural Network Returns to Scale 
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Using this logic we can define separate returns to scale characteristics for the two 

hidden units. Results for mean ln(L), ln(K) are set out in figure 3. Mapping the returns 

to scale characteristics exhibited here into implied unit costs, it can be suggested that, 

for an average firm, hidden unit 2 displays constant unit costs, except for very small x, 

whereas hidden unit 1, for an average firm, exhibits falling unit costs up to x=1 

followed by slightly increasing unit costs. Interpreting the returns to scale 

characteristics in this manner suggests that hidden unit 2 defines long-run costs 

whereas hidden unit 1 defines the short-run cost structure.2 The overall cost structure 

is consistent with that used in standard undergraduate economics teaching. Long-run 

average costs initially fall followed by constant returns. Short-run unit costs rise 

increasingly steeply at outputs lower than expectations and less steeply at outputs 

                                                 
2  This conclusion is reinforced by the fact that the simulated outputs (not shown here) used to derive 

the returns to scale ratio y/x are consistently greater with hidden unit 2 compared to the equivalent 
hidden unit 1 position; a finding we would expect if HU1 and HU2 define, respectively, short-run 
and long-run functioning. A minor conceptual point is, therefore, that describing the ratio x/y for 
hidden unit 1 as defining returns to scale is incorrect as it appears to describe short-run 
characteristics. 
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greater than expectations. The results suggested here imply that, for 1995, SIC34 

firms are away from their long-run average cost curve, on average, 45 per cent of the 

time, whereas output expectations are correct 55 per cent of the time. 

 

4. Predicting firm sales using a two hidden unit network 

Interpreting the two hidden unit neural network in the manner just presented reveals 

an important potential issue when attempting to predict firm sales based on observed 

input use. Even with unchanged technology, and implied cost structure, prediction is 

only accurate to the extent that the estimated proportion of time average output 

expectations are correct is unchanged. This perspective suggests a potentially useful 

development in the way in which firm output predictions are generated. If the short-

run, long-run interpretation of the two hidden unit case presented here is correct, a 

two hidden unit neural network suggests a possible modelling of changes in s1 and s2, 

and hence in principle greater predictive accuracy.  

 

The modelling of changes in s1 and s2 is based on the simple principle that a firm 

operating away from its long-run cost curve in one operating period will plan, in the 

next period, to reduce the implied disequilibrium. This modelling requires individual 

firm estimates of the hidden unit shares rather than the average estimates reported 

above. Using 1995 parameter estimates, these firm specific shares are generated in the 

following way: 

1. Define firm specific values for s1 and s2 as, respectively, sk1 and sk2 = 1-sk1 

(k=1, …, 248). 

2. For imputed values of sk1 (0, 0.1, …, 0.9, 1) and hence implied values of sk2 (1, 

0.9, … 0.1, 0) define firm specific estimates of  and : bNN
11 bNN

12
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  = sbNN
11k k1(3.963/0.45)  

and  = sbNN
12k k2(4.935/0.55).  

3. Using  and  compute predicted 1995 firm sales for each value of sbNN
11k bNN

12k k1 

and sk2 and the root mean squared deviation of actual from predicted 1995 

sales. 

4. The firm specific values of sk1 and sk2 are taken as the values that minimise the 

root mean squared deviation for each firm.  

A crude check of the accuracy of the procedure set out in (1)-(4) is to compare the 

mean of the resulting firm specific estimates of sk1 with the earlier reported estimated 

value of s1. Both estimates are 0.45. 

 

Having derived estimates of sk1 and sk2 using (1)-(4), changes in these firm specific 

parameters over the interval 1995-2000 are modelled as responding to (a) planned 

movements towards long-run efficiency potential defined by hidden unit two and (b) 

reactions to external pressures. The planned change is modelled as a standard partial 

adjustment mechanism: 

 ∆sp
k2 = d(s*k2 – sk2),  

where: ∆sp
k2 = the planned change in the second hidden unit share for the k’th firm i.e. 

the planned change towards long-run potential; s*k2 = the desired sk2 for the k’th firm; 

d = the standard partial adjustment parameter, assumed the same for all firms. 

 

Reactions to external pressures for each firm are modelled using the ratio of firm 

growth in output over the interval 1995-2000 to average growth in output for all firms 

i.e. gk/gav. This ratio is used to define a simple firm specific multiplier (mk) that is 

used to model external pressures for each firm: 
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 mk = e1 + [gk/gav]^e2 

with the parameters e1 and e2 assumed the same for all firms. 

 

The updated value of the share parameter for the second hidden unit (denoted su
k2) is 

modelled by combining planned changes and external pressures as follows: 

 su
k2 = mk(sk2 + ∆sp

k2),      

      = mk[ds*k2 + (1-d)sk2]   

The logic here is there is a planned change in the share parameter, defined by the term 

in square brackets, the external pressures then impact on this planned change.  

Simulations are undertaken to determine the values of s*k2, d, e1 and e2 for this 

adjustment process. In each case predicted 2000 firm sales use 2000 factor input 

levels but two hidden unit frontier parameter estimates based on 1995 regression 

results for all parameters except b  and . The adjustment process parameter 

values are chosen to minimise the root mean squared deviation of actual from 

predicted 2000 firm output. Results are reported in table 6. 

NN
11 bNN

12

 

Table 6: Simulated adjustment parameter results 

 s*i2 d e1 e2 root 
mean 
sq dev 

adjustment model 0.98 0.56 -0.30 0.05 0.509 
planned adjustment 0.51 0.69   0.530 
external pressures   -0.08 0.01 0.637 
unchanged shares     0.674 
 

The first row of results in table 6 shows parameter estimates and RMS for the full 

adjustment model. In addition, and for comparative purposes, three other sets of 

results are shown: (a) the impact of planned changes alone; (b) the impact of external 
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pressures alone; and (c) imputed firm specific but unchanged 1995 hidden unit shares. 

It will be recalled that earlier results (reported in table 5) indicated a root mean 

squared deviation for 2000 sales forecasts, with common and unchanged hidden unit 

shares, of 0.571 for the two hidden unit frontier neural network model. The simulation 

results reported here indicate that with firm specific but unchanged unit shares, 

predictive accuracy deteriorates in terms of root mean squared deviation. A model 

with external pressures alone also offers no predictive superiority over the earlier two 

hidden unit model. With planned adjustment alone there is an improvement in 

predictive accuracy: the root mean squared deviation is 0.530 compared to 0.571 

earlier. But with planned changes alone the parameter estimates indicate that firms 

have an objective of achieving only 51 per cent hidden unit two activity. Intuitively 

this would seem to be overly small. Combining external pressures and planned 

adjustment in unit shares further improves predictive capability, indicated by a 

reduction in root mean squared deviation from the earlier 0.571 to 0.509. In addition, 

the simulated parameter values are more plausible, indicating that firms have an 

objective of operating at 98 per cent hidden unit two activity. But over the five year 

interval 1995-2000 only 56 per cent of adjustment to desired objectives was achieved. 

An implication of the improvement in predictive accuracy using this adjustment 

model is to support the earlier conclusion that hidden units one and two describe 

respectively short-run and long-run activity.  

 

5. Simulating firm and industry evolution 

The modelling presented in previous sections can be used to analyse the implied 

evolutionary characteristics of SIC34 firms. The parameter estimates for the frontier 

two hidden unit neural network, along with adjustment in hidden unit shares predicted 
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by the adjustment model developed in the previous section, can be used to predict 

firm sales, with values for one period endogenising the adjustment process for the 

next period. Periods 0 and 1 for the simulations use actual 1995 and 2000 data. Hence, 

each iteration can be viewed as representing a five year period.  

 

For simulations reported below, firm specific input use grows (or declines) assuming 

no input supply constraints exist. Two sets of simulations are undertaken that assume 

(1) constant, firm specific, capital:labour ratios, and (2) capital:labour ratios adjusting 

in each period if this increases profitability. The capital:labour ratio adjustment 

process in (2) allows up to a doubling or halving in each period, with choice being 

based on the largest profit derivable. These two sets of simulations can be viewed as 

being based on two different firm types. In (1) firms are assumed to operate with rigid 

and unchanged routines, fundamental capabilities, or standard operating procedures 

(depending on the particular view of the firm). In (2) firms are assumed to be long-run 

optimisers. 

 

The main technical issue with simulating firm evolution is defining and endogenising 

firm viability. When a firm ceases to be viable exit takes place. This possibility of 

firm exit occurs when firm losses cannot be rectified by reduction in input use. Hence 

firm viability requires an ability to avoid losses at some input use and output level. To 

operationalise this view of viability a zero profit condition for each firm must be used. 

Such a condition is derived assuming an unknown distribution of firm profitability 

across the actual (not simulated) population of firms, but that a subset of the actual 

firms are operating at zero profit. These marginal, zero profit, firms are assumed to 

define a lower bound for the population. Hence a zero profit condition can be derived 
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by estimating this lower bound. To derive this bound we can recognise that for any 

one firm using labour (L) and capital (K) inputs 

 π = R – pLL - pkK

i.e.  R/L = π/L + pL + pK(K/L), 

where: π = firm profit; R = firm revenue; pL and pK = input prices. 

It follows that for a zero profit, marginal firm 

 R/L = pL + pK(K/L) 

and for a positive profit, non-marginal firm 

 R/L > pL + pK(K/L). 

It is assumed that pL and pK are the same for all marginal firms and that labour and 

capital prices are no lower for non-marginal than marginal firms. Using these 

assumptions a scatter diagram of (R/L) against (K/L) can be used to derive the lower 

bound, marginal firms.  

 

To derive the lower bound the following procedure is used: 

1. Locate the observation with minimum average labour product: (R/L)1 and the 

associated (K/L)1 

2. From the point [(R/L)1, (K/L)1] determine the slope of the rays to all other 

points [(R/L)k, (K/L)k] (k = 2, 3, …., 258).  

3. Rank the absolute values of the slopes derived in (2) in ascending order. The 

B-firm lower bound is then defined by the first B observations in this ranked 

series. 

4. Formulate the regression equation for the B observations 

R/L = f0 + f1(K/L). 
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The regression equation in (4) defines the B-firm lower bound estimates of pL and pK 

as respectively f0 and f1. Three different values for B were initially used: 10, 20, 30. 

Simulation results for B=20 and B=30 resulted in the majority of firms becoming non-

viable in all simulations. This unlikely result is taken to indicate that B=20 and B=30 

defines a bound that is too wide. For this reason, a 10 firm lower bound is used 

below.3 For simulation purposes, the lower bound estimates of pL and pK are used to 

impute firm profitability. For any firm, in any period, in which the calculated 

profitability is negative factor inputs that generate zero profit are calculated, assuming 

a constant or variable K/L (as relevant). If this resulting K/L is negative the firm is 

deemed non-viable and hence exit occurs.  

 

Figure 4: Basic simulation, constant K/L 
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3  An alternative method to identify the lower bound can involve using steps (1)-(3) in the text, but 

then using the B-firm lower bound to define a B-firm dummy variable that is 1 for the B marginal 
firms. Using this dummy variable a regression with two ‘regimes’ can be defined involving 
marginal and non-marginal firms. These two methods give effectively the same result for the 
bound. But the method defined in (1)-(4) is preferred because omitted variable bias will be, 
potentially, present to the extent that factor prices are not the same for non-marginal firms and that 
non-marginal firms have different positive profits. 
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The basic simulation with constant K/L is shown in figure 4. The dotted line (NeqH) 

shows the numbers equivalent Herfindahl index. This index is measured on the right 

hand scale whereas the other three series in figure 4 are measured on the left hand 

scale. The starting point for the numbers equivalent index, the actual value for the 

year 2000, is just under 20. This actual figure for the number of equivalently sized 

firms compares with 248 actually existing firms in 2000. Apart from two temporary 

falls, NeqH increases until a steady-state is achieved with 47 equivalently sized firms, 

i.e. the ‘natural’ evolution of the sector is for it to become less concentrated. This 

lower concentration occurs even though there are fewer actual firms because of the 

exit of those that are non-viable. This characteristic is based on the simulated growth 

of smaller compared to larger firms. In addition, it is perhaps relevant to point out that 

steady-state concentration levels are only achieved after (approximately) 80 periods. 

Given the five year periodicity of the data, 80 periods implies 400 years. This 

indicates that in real time concentration levels will effectively not equilibriate.  

 

The G(av) curve in figure 4 reports the average growth in turnover for all firms, 

excluding those that have exited. It can seen that this reaches a steady-state with G(av) 

= 1. This steady state is effectively achieved after approximately 20 periods. The 

implied 100 years indicates that in real time average profits are not in equilibrium. 

The initial increase in G(av) is caused by the early exit of non-viable, loss making 

firms. This early non-viability is indicated by the negative minimum return on sales, 

i.e. ROS(min) shown as a bolded line. This minimum return on sales is seen to 

stabilise at a level that is effectively zero. If the entry of new firms is based on the 

profitability of marginal existing firms, it follows that the long-run zero level for 

ROS(min) is consistent with no new firm entry. The average return on sales is shown 
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as ROS(av). It can seen that this equilibriates to 0.5 after approximately 15 periods, 

equivalent to a real time 75 years.  

 

Figure 5: Basic simulation, variable K/L 
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Figure 5 shows the equivalent simulation to that reported in figure 4 but with firms 

able to vary K/L. With respect to the numbers equivalent Herfindahl index it can be 

seen that in the early simulated periods the sector is more concentrated than in figure 

4. This would appear to suggest that the adjustment in K/L offers a relative advantage 

to larger rather than smaller firms. But the equilibrium level of NeqH in figure 5 is 

effectively the same as in figure 4, indicating that the early advantage to larger firms 

is temporary. In addition equilibrium concentration is achieved in the same time scale 

with constant and varying K/L. Allowing firms to be long-rum optimisers has the 

perhaps logical result in figure 5, that in the early disequilibrium periods average 

growth is higher than in figure 4. But average and minimum return on sales appear to 

be minimally affected by varying K/L.    
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To test the stability of these results two additional sets of simulations are undertaken. 

The first allows the log of firm sales in each simulated period to be increased by 1.05 

i.e. an exogenous, and continuing sales expansion is introduced. The second change 

imposes an equivalent sales decline of 0.95 for each firm in each simulated period. 

Figures 6 and 7 show the effect of the exogenous expansion in sales for simulations 

based on constant and varying K/L. 

 

Figure 6: Sales expansion by a factor of 1.05, constant K/L 

-2

-1

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

20

30

40

50

60

70

80

90

100

110

120

G(av)
ROS(av)
ROS(min)
NeqH

 

 

-25- 



Figure 7: Sales expansion by a factor of 1.05, variable K/L 
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Comparing figures 6 and 4 (note the different number of iterations reported in these 

two cases) perhaps the most dramatic change is the greater level of deconcentration 

that is introduced when an exogenous sales expansion is imposed. The equilibrium 

level of NeqH in figure 6 is above 116 equivalently sized firms. Because of the non-

linearities embodied in the neural network framework the sales expansion is to the 

relative disadvantage of larger firms. In addition, equilibrium concentration is 

achieved after approximately 55 periods in figure 6, compared to the earlier 

approximately 80 periods. But 55 periods is equivalent to 275 years, hence the 

substantive economic conclusion is unchanged. It is also apparent in the comparison 

of figures 6 and 4 that average growth and average return on sales are, logically, 

greater with the sales expansion in the early disequilibrium periods. But the minimum 

return on sales in figure 6 still stabilises at (effectively) zero. The reason for this is 

that the sales expansion reduces firm exit with the result that the marginal firm is still 

earning only normal profit. Using earlier arguments, this suggests that a sales 

expansion will not lead to the entry of new firms.  
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Comparing figures 6 and 7, one differences is that the initial disequilibrium growth is 

(logically) greater in figure 7. But in both cases equilibrium average growth is 

achieved only after the equivalent of greater than 125 years. In addition, the initial 

average return on sales is lower in figure 7 than in figure 6. This average return on 

sales effect is produced by relatively inefficient, and hence low profit, firms having 

greater opportunities to generate efficiency gains by changing capital:labour ratios. 

An implication here is that a population of optimising firms need not have higher 

average profitability than a population of non-optimising firms. For the latter 

population greater firm exit will occur.  

 

Figure 8: Sales contraction by a factor of 0.95, constant K/L. 
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Figure 9: Sales contraction by a factor of 0.95, variable K/L 
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It is apparent from figures 8 and 9 that a sales contraction has a significant 

concentrating effect. In both figures the number of equivalently sized firms falls from 

less than 20 in 2000 (i.e. period 1) to an equilibrium level of (effectively) 2 firms i.e. 

the ‘natural’ evolution produced by contraction is to become more monopolised. 

Furthermore equilibrium concentration is achieved after 8 periods. This is faster than 

earlier results but is still equivalent to 40 years. In addition to this point, another 

apparent difference, when figures 8 and 9 are compared to earlier simulations, 

concerns predicted return on sales. Both the average and minimum ROS is greater 

with a sales contraction. The reason for this is that the sales contraction produces 

more disequilibrium firm exit because of non-viability with the result that the 

marginal firm has greater equilibrium profits. In turn this characteristic of the 

marginal firm increases the average equilibrium profitability of the sector as a whole. 

It follows that if new firm entry is determined by the characteristics of the marginal 

firm, sales contraction may eventually promote entry because of the shake-out of 

relatively inefficient firms. Comparison of figures 8 and 9 indicates that the only real 
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difference between populations of sub-optimising compared to long-run optimising 

firms is that the speed of adjustment in the average growth rate appears faster in figure 

9 compared to figure 8. The implication here is that optimisation has a dynamic but 

not an equilibrium effect. 

 

6. Conclusion 

This paper has shown that neural networks can be an effective tool for the analysis of 

the firm. Both one and two hidden unit networks provide better frameworks than 

those traditionally used in economics in terms of both estimation and prediction. In 

addition a two hidden unit network appears to have an intuitive economic 

interpretation in terms of short-run and long-run decisions. This characteristic allows 

a further modelling development based on adjustment to efficient, hidden unit two, 

behaviour. This more evolutionary model was investigated here using simulation 

techniques. It was shown that the neural network framework is consistent with 

different evolutionary paths depending on exogenous market growth or decline. In 

addition the model is shown to predict that steady states, while being theoretically 

achievable, only occur after arguably excessive iterations. In effect, given reasonable 

economic interpretations of real time, the neural network model is shown to be 

consistent with a disequilibrium perspective.  

 

These insights indicate a comparative advantage to the use of neural networks in the 

analysis of the firm. But the ‘simple’ analysis referred to in the title perhaps needs 

some comment. In this context the following points would seem to be pertinent 

conclusions. First, the introduction to the paper made reference to approaches to the 

firm that emphasise the importance of organisation. The hidden units in a neural 
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network were assumed to describe these organisational factors. But the data used here 

was restricted to two productive inputs. In principle it is possible to separate costs into 

costs of production and other non-production costs. This can be mapped into an 

analysis in which both production-based and organisational factors of production can 

exist; see Dietrich (2003) for a non-neural network framework based on these 

principles.  Secondly, the simulation results indicate that even with variable K/L, and 

in equilibrium, firms’ profitability does not converge. The underlying profitability 

dispersion is based on ‘x’ inefficiencies, i.e. labour and capital productivities, defined 

by the inefficiency vector u. More sophisticated modelling might allow for best 

practice productivities to diffuse through the population of firms. This would appear 

to require more than the simple feed forward neural network used here. Finally, while 

some of the above discussion has an intuitive economic logic it might be the case that 

different sectors display different characteristics. These comments, and the discussion 

in the paper, indicate a rich vein of research potential. 
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