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Abstract 
We re-examine the relationship between intra-industry trade and labour reallocation, 
using individual-level data on manufacturing worker moves in the United Kingdom. The 
contribution of this analysis is twofold. First, we estimate the impact of intra-industry 
trade on worker moves between occupations as well as between industries. Second, we 
run individual-level regressions that allow us to control for worker heterogeneity. Our 
results suggest that intra-industry trade does have the stipulated attenuating effect on 
worker moves, both between occupations and between industries, but that this effect is 
relatively small compared to other determinants of labour reallocation. 

 

Keywords: intra-industry trade, worker mobility, labour-market adjustment. 
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1. INTRODUCTION 

 

Measures of intra-industry trade (IIT) continue to be popular as first-pass proxies for the 

adjustment effects of trade expansion. According to the frequently invoked “smooth 

adjustment hypothesis” (SAH), the factor-market adjustment pressure induced by 

increased trade exposure is negatively related to the share of IIT in the expanded trade 

flow. 

 

A number of empirical studies linking measures of labour-market adjustment to trade 

patterns have recently found evidence in support of the SAH. This research has focused 

on industry-level measures and determinants of adjustment. In this paper we employ 

individual-level data on manufacturing employees in the United Kingdom to construct 

“distance” measures of worker moves across industries and occupations. This allows us to 

explore whether IIT relates systematically to worker reallocations not only across sectors 

but also across occupations, and to control for individual-level characteristics that might 

be correlated with sector-level variables and thus have biased previous estimates. 

 

Our results indicate that IIT, particularly when quantified in the “marginal” sense, relates 

negatively to both the sectoral and the occupational distance of worker moves. This is 

consistent with the SAH. The result is robust to the inclusion of individual-level controls.   

We conclude, therefore, that the SAH retains empirical support and that the intra- or inter-

industry nature of trade expansion does affect, albeit by a smaller magnitude that other 

determinants, the nature of labour reallocation. 

 

The paper is organised as follows. In Section 2, we review the background literature. 

Section 3 outlines our empirical approach and describes the data. The estimation results 

are presented in Section 4. Section 5 concludes. 
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2. LITERATURE BACKGROUND 

 

2.1 The Smooth Adjustment Hypothesis 

 

In this paper, we study job moves as an indicator of labour-market adjustment costs in a 

test of the SAH. The proposition that IIT entails lower costs of factor-market adjustment 

than inter-industry trade, originally suggested by Balassa (1966) and further developed in 

the influential monographs on IIT by Grubel and Lloyd (1975) and Greenaway and 

Milner (1986), has become widely accepted by international economists. 

 

The intuitive power of the SAH is undisputed, although the precise meaning of the IIT-

adjustment hypothesis remains somewhat cloudy, and the two underlying concepts, trade-

induced adjustment costs and IIT, have been subject to differing implicit interpretations. 

We therefore briefly elucidate the three key components of the SAH: trade as an 

exogenous variable, adjustment costs, and IIT. 

 

There are two conceptions of trade as a source of adjustment. In partial-equilibrium, 

small open economy (SOE) models, adjustment is traditionally analysed in the context of 

a change in world market prices. Such price changes are exogenous to the SOE, and can 

originate from a multitude of sources, such as changes in demand, factor endowments, 

international transport technology or trade policies. Such changes can be labelled “trade-

induced”, since they would not affect the SOE in autarky. The second concept of trade as 

a source of adjustment centres on changes in trade costs, holding everything else constant 

in multi-country general-equilibrium models. Under that definition, “trade-induced” 

adjustment is sparked by a change in the level of barriers to international trade. Hence, 

domestic adjustment is trade-induced if it is caused by either a reduction in trade barriers, 

holding everything else constant; or by any relevant changes in foreign markets, holding 

trade costs constant (i.e. zero).1 These theoretical concepts are straightforward, but 

difficult to isolate empirically. Applied work therefore commonly considers as “trade 
                                                 

1 Real economies, of course, are subject to continuous changes in demand and production 
structures.Therefore, trade liberalisation occurs simultaneously with other changes, and the two types of 
trade-induced adjustment, while separable in theory, are difficult to disentangle empirically. 
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induced” any change in the domestic economy that can be traced to a change in trade 

volumes or prices vis-à-vis the rest of the world, assuming that trade patterns are an 

unbiased measure of exogenous changes in trading conditions. 

 

Adjustment costs can also be grouped into two categories. First, they can arise in perfectly 

competitive markets with flexible prices. If factors are subject to any degree of 

heterogeneity and product specificity, then trade-induced re-allocation will inevitably 

divert resources to make the transition possible. Hence, production will occur inside the 

long-run production possibility frontier for the duration of adjustment, as resources are 

used to re-train, move and match labour, and to adapt the capital stock. Temporary factor-

price disparities are needed to incite resource use on such “adjustment services”, which in 

turn may significantly reduce the net gains from trade liberalisation (although the net 

effect on welfare remains positive).2 Furthermore, if transitional wage and income 

disparities go uncompensated, trade liberalisation produces net losers with incentives to 

oppose the policy reform in the first place. The second class of adjustment costs arises in 

the presence of market imperfections. The most commonly analysed imperfection is that 

of downwardly rigid nominal wages. Under such a configuration, adjustment costs might 

outweigh the gains from trade, and hence trade liberalisation could in theory be Pareto 

inferior.3 The net effect on welfare depends on the magnitude of adjustment costs and 

trade gains as well as on the social discount rate. The challenge for applied research is 

that adjustment costs are not directly measurable. Hence, most empirical research on trade 

and adjustment relies on measures of factor reallocation that plausibly correlate with 

adjustment costs. 

 

Turning to the definition of IIT, the most frequently employed measure is the Grubel-

Lloyd (GL) index: 

 

                                                 

2 See Davidson and Matusz (2001, 2004) and Bacchetta and Jansen (2003) for recent assessments of trade-
induced adjustment costs. 
3 See Brecher and Choudhri (1994). 
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where M stands for imports in a particular industry i, X represents corresponding exports, 

and t is the reference year. The value of this index ranges between 0 and 1, inclusive, and 

increases in the proportion of IIT. It has become standard practice not to adjust the index 

for overall trade imbalance, since an unbalanced trade account can well be compatible 

with overall balance of payments equilibrium.4

 

The GL index is a static measure, in the sense that it captures IIT for one particular year. 

However, adjustment is a dynamic phenomenon. Hamilton and Kniest (1991) suggested 

that for applied research on trade-induced adjustment on should instead employ measures 

of “marginal” IIT (MIIT). They argued that the observation of a high proportion of IIT in 

one particular time period does not justify a priori any prediction of the likely pattern of 

change in trade flows. Even an observed increase in static IIT levels between two periods 

(GLt
 - GLt-1 > 0) could “hide” a very uneven change in trade flows, concomitant with 

inter- rather than intra-industry adjustment. MIIT, however, denotes parallel increases or 

decreases of imports and exports in an industry. Matched changes of sectoral trade 

volumes are expected to have a neutral effect on employment. For example, if industry i 

imports expand, domestic jobs may be threatened in that industry, but if industry i exports 

expand by a comparable amount, this may offset lost market share in the domestic market 

and yield a zero net change in the industry’s domestic employment.5 A number of MIIT 

measures have since been developed. Probably the most straightforward of these 

measures is a transposition of the Grubel-Lloyd index to first differences of sectoral trade 

flows: 

 

                                                 

4 A comprehensive survey of this and related issues with relevance to the interpretation of GL indices can 
be found in Greenaway and Milner (1986). 
5 This conjecture evidently only holds if other relevant variables are held constant. Lovely and Nelson 
(2000) have shown that, in general equilibrium, MIIT can be associated with inter-industry reallocation of 
factors if productivity is also allowed to change. 
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where ∆ stands for the difference between years t and t-T.6 This index, like the GL index, 

varies between 0 and 1, where 0 indicates marginal trade in the particular industry to be 

completely of the inter-industry type, and 1 represents marginal trade to be entirely of the 

intra-industry type. The MIIT index shares most of the statistical properties of the GL 

index.7

 

 

1.2 Empirical Research on IIT and Adjustment 

 

The SAH can be thought of as the conjunction of two empirical relationships. One is a 

relationship between IIT and some concept of the “distance” a worker moves: the higher 

the proportion of new trade that is IIT, the smaller is the difference between the 

representative worker’s job now compared to their job prior to the trade-expansion. At 

one extreme, where all trade expansion is IIT, workers may not be displaced, and if they 

are displaced they will move within their industry and potentially even within their firms 

– a relatively small distance. At the other extreme, where trade expansion is entirely inter-

industry, displaced workers in contracting industries will have to seek reemployment in a 

different (expanding) industry – a relatively large distance. 

 

The second relationship that makes up the SAH is between the distance of job moves and 

adjustment costs: it posits that the distance of job moves is positively correlated with the 

cost of adjustment. 

 

                                                 

6 See Brülhart (1994). 
7 See Brülhart (2002) and Azhar and Elliott (2004) for discussions of the properties of this and alterative 
MIIT measures. 
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This study is to assess the validity of the first relationship that makes up the SAH, i.e. the 

link between IIT and worker moves. Before we can consider such an investigation as a 

test of the SAH, we have to ascertain that the second relationship, between the distance of 

worker moves and adjustment costs, in fact holds. There is compelling empirical evidence 

to support this claim. Using a variety of methods, a number of researchers have found that 

it is costlier for workers to move across industries (or occupations) instead of switching 

job within industries (or occupations).8

 

It thus appears reasonable to consider an estimation of the relationship between IIT and 

the distance of worker moves as a test of the SAH. However, ours is not the first paper to 

estimate this relationship. Some previous studies have regressed worker moves on a 

vector of determinants that includes measures of trade exposure.9 These studies were 

mostly supportive of the SAH: (M)IIT was found to correlate positively with “low-

distance” worker moves. 

 

We take another look at this question for two principal reasons. First, previous studies 

measured the distance of job moves as the frequency of inter-industry moves relative to 

intra-industry moves. This may not be the most relevant definition of distance if the aim 

is to proxy for adjustment costs. There is indeed evidence that many workers who move 

across industries in fact remain in the exact same occupation (think of secretaries or 

accountants), and that the average adjustment cost is higher for occupation moves than for 

industry moves.10 We therefore estimate the impact of IIT not only on the “sectoral 

distance” of worker moves but also on the “occupational distance”.11

 

                                                 

8 See, e.g., Greenaway, Upward and Wright (2000) and Haynes, Upward and Wright (2002) for the UK, and 
Fallick (1993), Kletzer (1996), Neal (1995) and Shin (1997) for the United States. 
9 See Greenaway, Haynes and Milner (2002), Brülhart and Elliott (2002) and Elliott and Lindley (2003) for 
the UK; Andersson, Linda, Gustafsson, Ola and Lundberg, Lars (2000) for Sweden; and Brülhart (2000) for 
Ireland. 
10 See Haynes et al. (2002). 
11 Greenaway et al. (2002) report average shares of inter-industry, inter-occupation and inter-region worker 
moves separately for high- and low-IIT sectors. Their bivariate analysis suggests no attenuating effect of 
IIT on sectoral or occupational adjustment. However, they do not consider occupation moves in their 
multivariate analysis or in conjunction with MIIT measures. 
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Second, existing tests of the link between IIT and worker moves are almost exclusively 

based on sectorally aggregated data.12 Sector-level studies could be subject to estimation 

bias as they cannot control for individual-level characteristics that may be correlated with 

certain industry-level variables. Even in the absence of aggregation bias, using 

disaggregated data will enhance the efficiency of estimation. Drawing on a individual-

level data from the British Labour Force Survey, we therefore combine industry-level 

determinants of worker moves (including IIT and MIIT) with worker characteristics that 

are typically considered in the empirical labour literature. 

 

3. EMPIRICAL MODEL AND DATA 

 

3.1 Regression Specification 

 

We measure the distance of job moves in two dimensions, sectoral and occupational. In 

both cases, we take statistical classifications and posit that the distance of a job move 

increases the higher the level of statistical aggregation of the sectors or occupations 

between which a worker moves. For example, a worker who switches from a job in one 3-

digit industry to a job in another 3-digit industry but still within the same 2-digit industry 

is assumed to have moved a smaller distance than a worker who switches from one 2-digit 

industry to another. Since the statistical classifications that organise our data distinguish 

several aggregation levels, we can in principle distinguish several distance levels. 

However, statistical aggregation levels provide us with a rough ordering at best, and there 

is no way of measuring distances in a cardinal sense. We therefore use the standard 

between-versus-within sector distinction for the industry-level estimations. In individual-

level estimation, however, we can explicitly account for the ordinal differences among 

job moves via ordered logit estimation. 

 

We first run industry-level regressions. This is to check for consistency with previous 

research while including occupation moves as a complementary measure of labour-
                                                 

12 Greenaway et al. (2002) draw on individual-level data but estimate their model on sector-level 
aggregates. Elliott and Lindley (2003) estimate the determinants of sector moves via a multinomial logit 
model that includes IIT measures. They do not consider occupational moves. 
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market adjustment. In the absence of a well-specified theoretical base for model selection, 

we include a set of standard explanatory variables plus various measures of (M)IIT. 

Specifically, we estimate the following model: 

 

ittitititit
it

itD
it uDDEMWAGEFIRMNOTRADEIIT

TMIITSWORKERMOVE ++++++
⎭
⎬
⎫

⎩
⎨
⎧+= λββββββ 543210

_*

 (3) 

 

where 

•  denotes the (logistically transformed) share of the total 

number of sample workers in industry i in year t who move industry or occupation 

at statistical aggregation level D between year t and year t+1, 

D
itSWORKERMOVE

• MIIT_Tit denotes the MIIT index as defined in (2), calculated for the period 

between t-T and t, 

• IIT denotes the GL index as defined in (1), 

• TRADE denotes trade exposure, defined as the sum of sectoral imports and exports 

divided by sector value added, 

• FIRMNO denotes the number of firms divided by sector value added, 

• WAGE denotes the average wage, 

• DDEM denotes the change in sector apparent consumption between year t-1 and t, 

• λ is a year fixed effect, and 

• u is a stochastic error term. 

 

The dependent variable, WORKERMOVES, comes in two forms: moves between 

industries and moves between occupations. In the industry dimension, D represents the 

sectoral distance of a worker move, which ranges from moving firm within the same SIC 

3-digit industry to moving between different SIC (UK Standard Industrial Classification) 

2-digit industries.13 In the occupation dimension, D represents the occupational distance 

of a worker move, which ranges from moving between 3-digit SOC (UK Standard 

                                                 

13 For a description of the statistical classifications see Section 3.2 and the Data Appendix. 
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Occupational Classification) occupations to moving between 1-digit occupations. The 

variable is logistically transformed so as to be symmetric and unbounded.14

 

The expected coefficients on TRADE and FIRMNO are positive: both variables can be 

read as proxies for the intensity of product-market competition in a sector, and intensified 

competition is associated with higher worker turnover, across both industries and 

occupations.15 Conversely, we expect WAGE to have an attenuating influence on industry 

moves (although not necessarily on occupation moves), since workers’ resistance to 

moving to a different industry is likely to be higher if they originate in a high-wage 

industry, ceteris paribus. Finally, we expect a negative impact on industry moves 

(although not necessarily on occupation moves) of DDEM: industries with expanding 

domestic demand force fewer worker moves than industries with contracting domestic 

demand. 

 

The main focus of our interest is β1, which, for consistency with the SAH, would be 

expected to be significantly negative. Moreover, the measurement literature would 

suggest β1 to be less significant (or not at all) when the regressor takes the form of the 

static IIT index rather than a measure of MIIT. Furthermore, the structure of trade 

patterns can be expected to matter more for the labour markets of sectors that are highly 

trade oriented. Therefore, we augment model (3) with an interaction term between (M)IIT 

and TRADE. The SAH leads us to expect a negative coefficient on this interaction: the 

more exposed to trade a certain sector, the stronger the job-reallocation attenuating effect 

of (M)IIT. 

 

Our regression model implies specific dynamics. According to equation (3), one-year job 

moves react to product-market conditions in the base year, and to MIIT over a period that 

ends in the base year. Worker flows are thus modelled as reacting to product-market 

changes with a lag. Space constraints do not allow us to report large sets of regressions 

with different dynamic specifications. However, the timing structure used here has been 

                                                 

14 Specifically, if S denotes the share of movers, then WORKERMOVES = ln(S/[1-S]). 
15 See Andersson et al. (2000). 
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found to perform best in previous research, and exploratory regressions on the data used 

here confirmed these results.16 One variation on the baseline dynamics that we do report 

is to estimate model (3) in the industry-level data with all variables expressed as two-year 

averages. This might remove some randomness inherent in yearly data while retaining the 

relatively short-term time horizon over which the model provides the best fit with the 

data. 

 

For estimation on individual-level data, model (3) requires two major modifications.  

First, the dependent variable becomes discrete. In the dichotomous version, a worker 

either moves between D-digit sectors/occupations or does not. Assuming an appropriately 

distributed disturbance term, this calls for logit or probit estimation. In the polychotomous 

version, we rank classes of workers’ moves according to how distant a sector or 

occupation they have moved to, where distance in turn is defined by the statistical 

aggregation level. The natural estimator for this model is ordered logit or probit.17

 

Second, individual-level data allow us to control for worker characteristics. We retain the 

standard variables from the labour literature, representing age, gender, size of firm of 

base-year employment, marital status, home ownership, nationality, educational 

attainment and geographic region. Some obvious priors can be formulated: both industry 

and occupation moves are likely to become less probable with age (as job specific sunk 

capital accumulates), industry moves are less probable the larger the employing firm 

(since the firm itself offers greater career prospects), and, to the extent that they correlate 

with geographic moves, both industry and occupation moves are less probable for 

individuals with dependent children and/or own their own homes. 

                                                 

16 See Brülhart (2000). These results (as well as all other estimations mentioned in this paper but not shown 
explicitly) are available from the authors on request. 
17 For both the polychotomous and the dichotomous models, we report logit results. Probit estimates are 
qualitatively identical. 
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3.2 Data 

 

For the labour-market information, we use individual-level data for manufacturing 

employees from the Spring quarters of the British Quarterly Labour Force Survey 

(QLFS) for 1992 to 2000 and annual data from the Labour Force Survey (LFS) 1986 to 

1991.18 In each year, individuals are asked questions about their circumstances twelve 

months prior to the survey. Included are questions on economic activity such as 

employment status, industry of employment and occupational status.  This information 

enables us to construct our “distance” variables by industry and occupation. The data also 

contain information on individuals’ characteristics such as age, sex, martial status, region 

of residence and educational qualifications. Precise definitions and summary statistics of 

our individual-level variables are given in the Data Appendix. 

 

Crucial to our understanding of job moves being thought of in terms of the “distance” 

moved, is the use of statistical classifications as natural boundaries.  Throughout this 

paper we employ industry and occupation definitions based on the UK Standard Industrial 

Classification 1980 (SIC80) and Standard Occupational Classification 1990 (SOC90) 

respectively.19 For the manufacturing sector, our data cover 22 SIC 2-digit sectors, 

approximately 103 3-digit sectors and 181 4-digit sectors. The SOC classification 

distinguishes nine 1-digit, 77 2-digit and 359 3-digit occupations respectively. 

 

For the industry-level information, we draw on 3-digit SIC80 data from the Annual 

Business Enquiry (1995 to 2000) and Business Monitor series (1986-1994), and on trade 

data from the OECD.20 The individual-level data from the LFS are used to construct the 

                                                 

18 The QLFS is a pseudo panel that follows the same individuals for five consecutive quarters. We consider 
only workers who were employed in the manufacturing sector both at the time of data collection and a year 
prior to that time. Hence, movers into and out of manufacturing, or into and out of employment, are not 
considered. 
19 For a full listing of SIC80 and SOC90 codes at all aggregation levels see the LFS user manual at 
www.data-archive.ac.uk/doc/4998/mrdoc/pdf/classifications.pdf. The 1994 to 2000 industry data are 
concorded from SIC92 to SIC80 employing a concordance used in Greenaway et al. (2000). 
20 Trade data were concorded from 5-digit SITC Rev. 2 (Standard International Trade Classification) to 3-
digit SIC(80) using a concordance that is available from the authors upon request. Import and export 
deflators were used to deflate the trade data while the GDP deflator was used to deflate the industry level 
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industry-level dependent variables: the number of individuals moving D-digit industries 

or occupations is computed for the 3-digit industry level to provide a measure of the 

proportion of workers in an industry that have moved at different aggregation levels. 

 

 

4. RESULTS 

4.1 Sector Versus Occupation Moves 

 

One of our two main contributions is to relate trade patterns to occupation moves as well 

as to sector moves. Before estimating equation (3) for those two adjustment dimensions, 

we are interested to explore the relationship between them. The previous literature, which 

estimated the impact of (M)IIT on sectoral labour reallocations implicitly assumed that 

sector and occupation moves are significantly positively correlated. This conjecture is to 

some extent confirmed by our data: the Spearman correlation coefficient between our 

sectoral and occupational “distance” variables (INDMOVDIST and FIRMMOVDIST, see 

Appendix Table 1) for the 181,850 individuals in our sample equals 0.41, which is 

statistically significant at the 0.01% confidence level. On average, sectoral and 

occupational moves do tend to be positively related. 

 

The correlation, however, is far from perfect. This is evident in Table 1, which cross-

tabulates industry and occupation moves. We observe, on the one hand, that, of the 5.1 

percent of sample workers who changed occupation, only 2.2 percent (i.e. less than half) 

also changed firm.21 On the other hand, it is easy to see from Table 1 that, of the 5.2 

percent of sample workers who changed firm, only 2.2 percent (i.e. again less than half) 

also changed occupation. Hence, a significant number of occupational changes occur 

within firms, and equally significant number of industry changes imply no occupational 

change. We therefore estimate equation (3) for both sectoral and occupational moves, as a 

                                                                                                                                                  

data. For our individual-level regressions, the 3-digit industry and trade data are matched to the 3-digit 
industry of each worker twelve months prior to the time of the survey. See the Data Appendix for further 
details. 
21 Note that in our data, changing industry necessarily implies changing firm. 
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robustness check for prior work that was confined to the sectoral dimension of labour 

adjustment. 

 

 

4.2 Industry-Level Regressions 

Our industry-level estimations of equation (3) are presented in Tables 2 and 3. Table 2 

reports findings for industry moves. We draw the job-move boundary alternatively at the 

SIC 2-digit level (columns 1 to 9) and at the SIC 3-digit level (columns 10 to 18): for the 

construction of the dependent variable, anybody who moved 2-digit sectors (or 3-digit 

sectors, respectively) between t and t+1 is considered a mover, while anybody else is 

considered a “stayer”. 

 

Our results are reassuringly robust across specifications and in line with our priors as well 

as with the findings of previous papers. The estimated coefficient on MIIT and IIT is 

always negative, as predicted by the SAH. In all runs without interaction terms, the 

coefficients on MIIT indices are statistically significantly different from zero, while, in 

the two-year specifications, the coefficients on the IIT index are not statistically 

significant. Furthermore, the standardised (beta) coefficients on MIIT are generally larger 

than those of the coefficients on IIT. Finally, the interaction effects with sectoral trade 

orientation, reported in columns 7 to 9 and 16 to 18, are negative, large and statistically 

highly significant throughout. The SAH thus passes with flying colours. 

 

As for the control variables, the coefficients on FIRMNO, TRADE and WAGE have the 

expected signs throughout and are statistically different from zero in a majority of cases. 

The average wage turns out to be the most influential variable both in term of coefficient 

size and of statistical significance: high sectoral wages clearly deter outward worker 

mobility. Only the positive coefficients on DDEM in the 1-year runs (columns 1 to 3 and 

10 to 12) do not conform to our prior; their magnitude, however, is comparatively small. 

 

Table 3 presents regression results with the same right-hand-side specifications as those 

shown in Table 2, but with the dependent variable now measuring occupation moves. The 
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boundary between movers and stayers is drawn alternatively at the SOC 1-digit  level 

(columns 1 to 9) and at the SOC 3-digit level (columns 10 to 18). 

 

Again, we find consistently negative and predominantly statistically significant 

coefficient estimates on the (M)IIT indices, as implied by the SAH. The estimated 

coefficients on the control variables also conform with our priors. In these regressions, 

however, the MIIT measure does not systematically “outperform” the static IIT index. 

Nonetheless, the estimation suggests that (M)IIT also matters in terms of occupational 

adjustment: high (M)IIT implies a relatively smaller frequency of inter-occupation worker 

moves. Given the finding of Haynes et al. (2002) that occupational moves on average 

imply greater adjustment costs than sector moves, this could be considered weighty 

evidence in support of the SAH. 

 

Yet, our estimates in Table 3 on the interaction effects between (M)IIT and trade 

exposure sound a strong note of caution. These coefficients are estimated to be positive, 

which runs diametrically against the logic of the SAH, as it implies that the labour-market 

effect of (M)IIT becomes smaller the stronger is the trade orientation of a particular 

sector. Furthermore, the main effects on MIIT and IIT in the specifications with 

interaction terms are estimated as significantly negative in both Table 2 and Table 3. This 

implies that (M)IIT significantly reduces worker moves when trade exposure is in fact 

zero: an evidently nonsensical result. What could explain these estimates? Given the high 

degree of arbitrariness in model selection and dynamic structure, one could think of many 

specification and measurement issues that might distort our findings. We investigate one 

particular suspicion: omitted variable bias stemming from the aggregation of individual 

worker moves to the sector level. In the following, we therefore estimate the model on 

individual-level data, which allows us to control for within-industry heterogeneity. 

 

4.3 Individual-Level Regressions 

Analogous to our presentation of industry-level estimations, we report regression results 

on individual-level data in two tables. Table 4 shows estimates for the individual-level 

model of industry moves, while Table 5 presents the corresponding results for occupation 

moves. In both tables, the parameters are estimated through an ordered logit model 
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(where the regressand is a distance ranking of worker moves) and through a simple logit 

model (where the regressand is a dummy variable for movers and stayers). Given the 

additional reality-check this implies for the SAH, we now focus on the specification that 

features interaction effects. Since the regressions include industry-specific explanatory 

variables, we use industry-level clustering for the computation of the error covariance 

matrix in order to avoid aggregation-induced downward bias of estimated standard 

errors.22

 

In Table 4, presenting the results on industry moves, we find the expected negative sign 

on the interaction between MIIT and trade exposure, and the main effects are no longer 

significantly different from zero. This is consistent with the SAH. When replacing the 

MIIT variable with the static IIT index, however, the interaction effect turns positive 

(albeit not statistically significant). Qualitatively, the SAH thus “survives” only with 

respect to the MIIT measure; and, if judged by statistical significance, only in terms of the 

three-year MIIT index. Furthermore, the coefficient sizes have shrunk considerably. The 

beta coefficient on the interaction term now corresponds to around 14% of the beta 

coefficient on sector wages and to around 5% of the coefficient on age. Hence, while we 

do pick up an effect of MIIT that is consistent with the SAH and statistically significant 

(not really surprising with 136,380 observations!), this effect seems to be of rather small 

magnitude. 

 

What about the other explanatory variables? Our results are qualitatively very similar 

across specifications. Age, working in a large firm, working part time, being a home 

owner, having no formal qualifications and working in a high-wage industry all 

significantly reduce the probability of moving industry in any given year, while being 

married and highly educated increase it. The effect of age is linear, and neither gender nor 

nationality have a statistically significant influence on the probability of moving between 

industries. 

 

                                                 

22 See Moulton (1990). 
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Finally, Table 5 shows the corresponding estimates for occupation moves. Here too, we 

obtain consistently negative parameter estimates on the interaction terms with MIIT. Two 

of the four estimated interaction coefficients are statistically significant. The main effects, 

in turn, are not significantly different from zero – as expected. The IIT measure again 

performs less well, yielding statistically insignificant interaction coefficients in both 

specifications. Comparing the results of Table 5 to those of Table 3, we may conclude 

that controlling for worker-level heterogeneity in fact supports the SAH, as the estimation 

results are now more in line with the related priors. The magnitude of the estimated 

(M)IIT interaction effects, while being rather unstable across specifications, is about the 

same or larger than that of the main effect of trade exposure, and larger than the beta 

coefficients on all other industry-level explanatory variables. MIIT therefore does appear 

to have a statistically and economically significantly attenuating effect on inter-

occupational worker moves, other things equal. However, the MIIT effect is again 

considerably smaller than the effects of the main individual-level characteristics. 

 

In terms of the control variables, two differences stand out in a comparison of the 

estimates in Table 5 with those of Table 4. Working in a large firm, while lowering the 

probability of moving sector, raise the probability of moving occupation. The 

interpretation with is simple: workers in large firms move between jobs within those 

firms. The second notable difference is that sectoral wages, while highly significant in 

explaining inter-industry worker moves, turn insignificant in explaining inter-occupation 

moves. This is entirely plausible, since what matters for occupation moves are 

occupation-specific wages (which we do not observe), rather than industry-specific, 

wages. 

 

 

5. CONCLUSIONS 

 

One criticism of previous research into the relationship between factor market adjustment 

and IIT has been the absence of a micro-econometric analysis of the labour market. Given 

that labour-market adjustment is central to the premise that IIT is less disruptive than 

inter-industry trade, it is argued that industry-level regressions may suffer from omitted 
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variable bias stemming from the aggregation of individual worker moves to the sector 

level. To improve the efficiency of estimation and in order to control for within-industry 

heterogeneity we augment standard industry-level regressions with individual-level 

estimations. Data on individual workers in addition allowed us to estimate the impact of 

IIT not only on the “sectoral distance” of worker moves but also on the “occupational 

distance”. 

 

The results of our industry-level regressions with sectoral moves as the dependent 

variable are consistent with the SAH and therefore confirm the results of prior research 

that has employed a range of different adjustment indicators. The results are less strong 

when the, arguably more relevant, occupational mobility variable is used to measure 

adjustment. When estimating the model on individual-level data, and thus controlling for 

worker characteristics, our findings are again consistent with the SAH: MIIT significantly 

reduces both the sectoral and the occupational “distance” of worker moves, and this effect 

is stronger the greater is the trade orientation of a particular industry. However, the 

magnitude of the impact of trade on a worker moves is small compared to that of other 

determinants.  

 

We ought to note that our measures of worker reallocation, whilst being broader than 

those used in comparable studies, still have their limitations. We are unable, for instance, 

to distinguish between voluntary and involuntary moves; and we could not account for 

moves into or out of unemployment. These are undoubtedly important dimensions of 

adjustment which it could be illuminating to explore explicitly in this context. Our 

definition of the “distance” of job moves would also deserve some additional scrutiny, as 

statistical classifications might not systematically map into the costs implied by worker 

moves across sectoral or occupational boundaries. 

 

The estimated magnitudes of trade effects on worker moves in our data set are relatively 

small compared to the effects of some other explanatory variables. The UK, however, is a 

large country: its average import-to-expenditure ratio over the last decade has been the 
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6th smallest among the 30 countries of the OECD.23 Given that we find robust evidence 

in support of the SAH even for such a relatively closed economy, we conjecture that 

analysis of (M)IIT patterns should continue to be considered a worthwhile first-pass 

exercise to evaluate the adjustment implications of trade expansion. 

                                                 

23 According to OECD statistics, the average share of imports in total final expenditure for the UK over the 
1994-2003 period was 21.5 percent. Only Japan, the United States, Australia, France and Italy had lower 
import penetration rates.  
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Table 1: Cross-Tabulation of Year-on-Year Worker Moves 

 

Occupation moves: 

Industry moves: 

None 3-digit SOC 2-digit SOC 1-digit SOC Total 

None 167,155 

91.92 

343 

0.19 

1,242 

0.68 

3,653 

2.01 

172,393 

94.8 

Firm 2,769 

1.52 

63 

0.03 

134 

0.07 

476 

0.26 

3,442 

1.89 

4-digit SIC 259 

0.14 

15 

0.01 

22 

0.01 

68 

0.04 

364 

0.20 

3-digit SIC 438 

0.24 

36 

0.02 

77 

0.04 

205 

0.11 

756 

0.42 

2-digit SIC 1,943 

1.07 

176 

0.10 

891 

0.49 

1,882 

1.03 

4,892 

2.69 

Total 172,564 

94.9 

633 

0.35 

2,366 

1.30 

6,284 

3.46 

181,847 

100 

 

Notes: 

• Numbers of workers above, percentages below. 
• Columns correspond to values of OCCMOVDIST. Rows correspond to values of INDMOVDIST. 

(See Appendix Table 1.) 
• Number of SIC(80) manufacturing industries in underlying classification: 2-digit: 22; 3-digit: 103; 

4-digit: 181. 
• Number of SOC occupations in underlying classification: 1-digit: 9; 2-digit: 77; 3-digit: 359.  
 



Table 2: Inter-Industry Job Moves (Industry-Level Estimations) 

Dependent variable = share of 2-digit industry movers (IND2MOVE) Dependent variable = share of 3-digit industry movers (IND3MOVE) 

1-year intervals 2-year intervals 1-year intervals 2-year intervals 

 

(1)                  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

MIIT_1 
-0.067 

0.05 

            
-0.080 

0.03 

-0.072 

0.05 

-0.071 

0.04 

-0.072 

0.05 

-0.063 

0.09 

MIIT_3 
                 -0.117

0.00 

-0.110

0.00 

-0.070

0.08 

-0.113

0.00 

-0.104

0.01 

-0.065

0.10 

 

IIT 
                  -0.099

0.01 

-0.059

0.15 

-0.059

0.15 

-0.105

0.00 

-0.062

0.12 

-0.063

0.11 

(M)IIT * 
TRADE 

            -0.209 -0.302 

0.00 0.00 

-0.228 

0.00 

-0.239 -0.305 

0.00 0.00 

-0.263 

0.00 

TRADE 
0.070 

0.27 

0.073 

0.24 

0.076 

0.25 

0.079 

0.15 

0.084 

0.12 

0.082 

0.14 

0.264 

0.00 

0.364 

0.00 

0.287 

0.00 

0.073 

0.27 

0.076 

0.25 

0.079 

0.25 

0.084 

0.16 

0.089 

0.13 

0.088 

0.15 

0.296 

0.00 

0.371 

0.00 

0.325 

0.00 

FIRMNO 
0.141 

0.10 

0.136 

0.11 

0.140 

0.10 

0.167 

0.08 

0.162 

0.09 

0.167 

0.08 

0.168 

0.08 

0.158 

0.09 

0.168 

0.08 

0.128 

0.27 

0.123 

0.13 

0.126 

0.12 

0.151 

0.10 

0.146 

0.10 

0.150 

0.10 

0.152 

0.10 

0.143 

0.11 

0.152 

0.10 

WAGE 
-0.205 

0.00 

-0.194 

0.00 

-0.182 

0.00 

-0.242 

0.00 

-0.240 

0.00 

-0.230 

0.00 

-0.253 

0.00 

-0.249 

0.00 

-0.241 

0.00 

-0.232 

0.00 

-0.222 

0.00 

-0.207 

0.00 

-0.283 

0.00 

-0.281 

0.00 

-0.269 

0.00 

-0.296 

0.00 

-0.291 

0.00 

-0.282 

0.00 

DDEM 
0.026 

0.08 

0.034 

0.05 

0.027 

0.05 

-0.022 

0.56 

-0.023 

0.56 

-0.030 

0.42 

-0.023 

0.55 

-0.024 

0.56 

-0.032 

0.41 

0.032 

0.04 

0.040 

0.02 

0.033 

0.02 

-0.021 

0.57 

-0.022 

0.57 

-0.029 

0.44 

-0.023 

0.55 

-0.023 

0.56 

-0.031 

0.42 

No. obs.                   873 873 873 686 686 686 685 683 685 873 873 873 686 686 686 685 683 685

Adj. R2 0.121                  0.129 0.127 0.184 0.189 0.182 0.191 0.198 0.189 0.139 0.146 0.145 0.208 0.212 0.207 0.218 0.222 0.218

 

Notes: Standardised (beta) coefficients. P values of heteroskedasticity-consistent significance tests in italics. See text for variable definitions. FIRMNO, TRADE and WAGE lagged 

one year in all regressions. All regressions include year dummies and a constant term (not reported). 
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Table 3: Inter-Occupation Job Moves (Industry-Level Estimations) 

Dependent variable = share of 1-digit occupation movers (OCC1MOVE) Dependent variable = share of 3-digit occupation movers (OCC3MOVE) 

1-year intervals 2-year intervals 1-year intervals 2-year intervals 

 

(1)                  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

MIIT_1 
-0.049 

0.15 

            
-0.037 

0.31 

-0.084 

0.09 

-0.044 

0.19 

-0.031 

0.40 

-0.064 

0.18 

MIIT_3 
                 -0.139

0.00 

-0.076

0.04 

-0.131

0.01 

-0.073

0.03 

-0.019

0.60 

-0.056

0.22 

 

IIT 
                  -0.119

0.00 

-0.064

0.08 

-0.109

0.01 

-0.071

0.06 

-0.031

0.49 

-0.063

0.21 

(M)IIT * 
TRADE 

            0.118 0.116 

0.14 0.08 

0.275 

0.01 

0.088 0.081 

0.28 0.28 

0.212 

0.07 

TRADE 
0.070 

0.04 

0.072 

0.04 

0.084 

0.02 

0.043 

0.23 

0.044 

0.23 

0.050 

0.16 

-0.048 

0.53 

-0.047 

0.48 

-0.196 

0.07 

0.160 

0.00 

0.161 

0.00 

0.168 

0.00 

0.133 

0.00 

0.133 

0.00 

0.136 

0.00 

0.063 

0.44 

0.072 

0.32 

-0.057 

0.63 

FIRMNO 

0.157 

0.00 

0.152 

0.00 

0.148 

0.00 

0.125 

0.00 

0.124 

0.00 

0.123 

0.00 

0.117 

0.00 

0.123 

0.00 

0.105 

0.01 

0.049 

0.41 

0.046 

0.43 

0.046 

0.42 

0.046 

0.40 

0.046 

0.41 

0.046 

0.41 

0.042 

0.43 

0.046 

0.41 

0.039 

0.46 

WAGE 
0.059 

0.23 

0.070 

0.15 

0.084 

0.08 

0.079 

0.12 

0.084 

0.09 

0.097 

0.06 

0.082 

0.10 

0.087 

0.08 

0.113 

0.03 

0.043 

0.35 

0.047 

0.30 

0.056 

0.21 

0.052 

0.26 

0.052 

0.27 

0.059 

0.21 

0.056 

0.22 

0.057 

0.22 

0.071 

0.14 

DDEM 
-0.022 

0.32 

-0.012 

0.60 

-0.021 

0.29 

-0.048 

0.10 

-0.048 

0.10 

-0.052 

0.07 

-0.049 

0.12 

-0.050 

0.10 

-0.051 

0.09 

-0.035 

0.16 

-0.031 

0.19 

-0.035 

0.16 

-0.041 

0.16 

-0.040 

0.16 

-0.042 

0.13 

-0.042 

0.17 

-0.041 

0.15 

-0.042 

0.15 

No. obs.                   906 906 906 730 730 730 727 724 727 986 986 986 825 825 825 822 817 822

Adj. R2 0.081                  0.096 0.092 0.135 0.138 0.137 0.136 0.142 0.143 0.083 0.086 0.087 0.119 0.118 0.119 0.121 0.122 0.123

Notes: Standardised (beta) coefficients. P values of heteroskedasticity-consistent significance tests in italics. See text for variable definitions. FIRMNO, TRADE and WAGE lagged one year in all regressions. All regressions 
include year dummies and a constant term (not reported). 



Table 4: Inter-Industry Job Moves (Individual-Level Estimations) 

Notes: 136,380 observations. Standardised (beta) coefficients for industry-level and continuous individual-level variables; raw 
coefficients divided by regression standard error for binary individual-level variables. P values of significance tests based on industry-
level clustered standard errors in italics. See text for variable definitions. Industry-level variables, BIGFIRM and PARTTIME lagged one 
period. All regressions include year dummies and region dummies (North, Yorkshire, North West, East Midlands, West Midlands, East 
Anglia, South West, South East, Wales, Scotland, Northern Ireland). 

Dep. var. = “distance” of industry move 
(INDMOVDIST) 

Ordered logit 

Dep. var. = dummy for firm move 
(FIRMMOVDUM) 

Logit 

 

(1) (2) (3) (4) (5) (6) 
Individual-level variables (continuous): 

AGE -0.554 
0.00 

-0.555 
0.00 

-0.557 
0.00 

-0.518 
0.00 

-0.519 
0.00 

-0.521 
0.00 

AGE SQUARED -0.141 
0.25 

-0.141 
0.25 

-0.138 
0.26 

-0.175 
0.15 

-0.174 
0.15 

-0.173 
0.16 

Individual-level variables (binary): 
FEMALE -0.097 

0.21 
-0.095 
0.22 

-0.093 
0.22 

-0.102 
0.19 

-0.100 
0.20 

-0.098 
0.21 

BIGFIRM -0.580 
0.00 

-0.580 
0.00 

-0.579 
0.00 

-0.600 
0.00 

-0.600 
0.00 

-0.599 
0.00 

PARTTIME -0.569 
0.00 

-0.569 
0.00 

-0.570 
0.00 

-0.572 
0.00 

-0.573 
0.00 

-0.574 
0.00 

MARRIED 0.168 
0.00 

0.168 
0.00 

0.168 
0.00 

0.168 
0.00 

0.168 
0.00 

0.168 
0.00 

HOMEOWNER -0.295 
0.00 

-0.294 
0.00 

-0.295 
0.00 

-0.291 
0.00 

-0.291 
0.00 

-0.291 
0.00 

FOREIGNBORN 0.052 
0.51 

0.052 
0.50 

0.053 
0.50 

0.061 
0.44 

0.062 
0.44 

0.063 
0.43 

HIGHEREDUC 0.252 
0.00 

0.254 
0.00 

0.253 
0.00 

0.263 
0.00 

0.265 
0.00 

0.265 
0.00 

NOQUALIF -0.256 
0.00 

-0.257 
0.00 

-0.255 
0.00 

-0.262 
0.00 

-0.262 
0.00 

-0.261 
0.00 

Industry-level variables: 
FIRMNO 0.026 

0.11 
0.027 
0.10 

0.027 
0.10 

0.025 
0.13 

0.026 
0.12 

0.027 
0.13 

WAGE -0.193 
0.00 

-0.191 
0.00 

-0.196 
0.00 

-0.195 
0.00 

-0.193 
0.00 

-0.198 
0.00 

DDEM 0.018 
0.12 

0.019 
0.11 

0.019 
0.13 

0.019 
0.11 

0.019 
0.10 

0.019 
0.12 

TRADE 0.041 
0.25 

0.026 
0.02 

-0.089 
0.67 

0.043 
0.26 

0.029 
0.02 

-0.119 
0.58 

MIIT_1 0.027 
0.30   0.029 

0.27   

MIIT_3  0.010 
0.71   0.011 

0.66  

IIT   0.019 
0.55   0.016 

0.61 
(M)IIT*TRADE -0.037 

0.23 
-0.026 
0.00 

0.093 
0.65 

-0.038 
0.23 

-0.028 
0.00 

0.124 
0.55 

Pseudo R2 0.0319 0.0319 0.0319 0.0402 0.402 0.0402 
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Table 5: Inter-Occupation Job Moves (Individual-Level Estimations) 
 

Dep. var. = “distance” of occupation move 
(OCCMOVDIST) 

Ordered logit 

Dep. var. = dummy for 3-digit occupation move 
(OCC3MOVDUM) 

Logit 

 

(1) (2) (3) (4) (5) (6) 
Individual-level variables (continuous): 
AGE -0.221 

0.09 
-0.222 
0.09 

-0.223 
0.09 

-0.226 
0.08 

-0.226 
0.08 

-0.228 
0.08 

AGE SQUARED -0.474 
0.00 

-0.473 
0.00 

-0.471 
0.00 

-0.470 
0.00 

-0.469 
0.00 

-0.467 
0.00 

Individual-level variables (binary): 

FEMALE 0.028 
0.60 

0.031 
0.56 

0.030 
0.57 

0.035 
0.51 

0.038 
0.47 

0.037 
0.48 

BIGFIRM 0.161 
0.01 

0.163 
0.01 

0.161 
0.01 

0.166 
0.01 

0.167 
0.01 

0.165 
0.00 

PARTTIME -0.298 
0.00 

-0.300 
0.00 

-0.299 
0.00 

-0.305 
0.00 

-0.307 
0.00 

-0.306 
0.00 

MARRIED 0.122 
0.01 

0.122 
0.01 

0.122 
0.01 

0.123 
0.01 

0.123 
0.01 

0.123 
0.01 

HOMEOWNER -0.242 
0.00 

-0.242 
0.00 

-0.243 
0.00 

-0.248 
0.00 

-0.247 
0.00 

-0.248 
0.00 

FOREIGNBORN -0.215 
0.10 

-0.213 
0.10 

-0.214 
0.10 

-0.213 
0.10 

-0.211 
0.10 

-0.212 
0.10 

HIGHEREDUC 0.340 
0.00 

0.344 
0.00 

0.341 
0.00 

0.341 
0.00 

0.345 
0.00 

0.342 
0.00 

NOQUALIF -0.290 
0.00 

-0.290 
0.00 

-0.289 
0.00 

-0.286 
0.00 

-0.286 
0.00 

-0.284 
0.00 

Industry-level variables: 
FIRMNO -0.008 

0.60 
-0.007 
0.71 

-0.006 
0.73 

-0.009 
0.57 

-0.007 
0.70 

-0.006 
0.72 

WAGE -0.005 
0.88 

-0.001 
0.98 

-0.009 
0.77 

-0.003 
0.93 

-0.001 
0.97 

-0.007 
0.81 

DDEM -0.004 
0.44 

-0.002 
0.64 

-0.005 
0.40 

-0.004 
0.44 

-0.003 
0.64 

-0.005 
0.40 

TRADE 0.122 
0.00 

0.038 
0.00 

0.123 
0.45 

0.121 
0.00 

0.037 
0.00 

0.129 
0.43 

MIIT_1 0.022 
0.40 

  0.022 
0.39 

  

MIIT_3  -0.029 
0.26 

  -0.027 
0.28 

 

IIT   0.026 
0.24 

  0.027 
0.22 

(M)IIT*TRADE -0.132 
0.00 

-0.033 
0.13 

-0.112 
0.48 

-0.132 
0.00 

-0.031 
0.15 

-0.119 
0.46 

Pseudo R2 0.0278 0.0277 0.0277 0.0335 0.0335 0.0335 

Notes: 136,383 observations. Standardised (beta) coefficients for industry-level and continuous individual-level variables; raw 
coefficients divided by regression standard error for binary individual-level variables. P values of significance tests based on industry-
level clustered standard errors in italics. See text for variable definitions. Industry-level variables, BIGFIRM and PARTTIME lagged one 
period. All regressions include year dummies and region dummies (North, Yorkshire, North West, East Midlands, West Midlands, East 
Anglia, South West, South East, Wales, Scotland, Northern Irelan7d). 
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DATA APPENDIX 

APPENDIX TABLE 1: DESCRIPTION OF VARIABLES 
 

Industry-level variables: 
IND2MOVE Share of workers in base year moving to a different 2-digit SIC industry, relative to total 

number of base-year workers of relevant 3-digit SIC industry 
IND3MOVE Share of workers in base year moving to a different 3-digit SIC industry, relative to total 

number of base-year workers of relevant 3-digit SIC industry 
OCC1MOVE Share of workers in base year moving to a different 1-digit SOC occupation, relative to 

total number of base-year workers of relevant 3-digit SIC industry 
OCC3MOVE Share of workers in base year moving to a different 3-digit SOC occupation, relative to 

total number of base-year workers of relevant 3-digit SIC industry 

FIRMNO 
Number of firms in an industry where an enterprise/business is defined as the smallest 
combination of legal units, which have a certain degree of autonomy within an 
enterprise group. 

WAGE This is the addition of Wages and Salaries for Operatives and Wages and Salaries for 
Administrative, Technical and Clerical Employees.   

DDEM Change in apparent consumption.  Calculated as change in Gross Value Added at Factor 
cost, plus Imports, minus Exports. 

TRADE Trade openness, measured as sectoral imports plus exports divided by value added 
MIIT_1 One-year MIIT index, calculated at SIC 3-digit level 
MIIT_3 Three-year MIIT index, calculated at SIC 3-digit level 
IIT Grubel and Lloyd (GL) index, calculated at SIC 3-digit level 

idual-level variables: 
INDMOVDIST “Distance” of industry move:  = 0 if no move since base year, = 1 if moved firm, = 2 if 

moved 4-digit SIC, = 3 if moved 3-digit SIC, = 4 if moved 2-digit SIC 
FIRMMOVDUM “Distance” of occupation move:  = 0 if no move since base year, = 1 if moved 3-digit 

SOC, = 2 if moved 2-digit SOC, = 3 if moved 1-digit SOC 
OCCMOVDIST Dummy:  = 1 if moved firm since base year 
OCC3MOVDUM Dummy:  = 1 if moved 3-digit SOC occupation since base year 
AGE Years since birth 
FEMALE Dummy:  = 1 if  female 
BIGFIRM Dummy:  = 1 if working in a firm with 25 employees or more 
PARTTIME Dummy:  = 1 if working part time (self defined) 
MARRIED Dummy:  = 1 if married 
HOMEOWNER Dummy:  = 1 if housing owner-occupier 
FOREIGNBORN Dummy:  = 1 if born outside the UK 
HIGHEREDUC Dummy:  = 1 if highest qualification is a third-level degree  
NOQUALIF Dummy:  = 1 if no formal educational qualifications 

 
Notes: Import (export) values are converted into constant prices using the UK import (export) price deflator. 
Wages and value added are converted into constant prices using the UK GDP deflator. For classifications of 
industries (SIC), occupations (SOC) and educational qualifications, see LFS user manual (www.data-
archive.ac.uk/doc/4998/mrdoc/pdf/classifications.pdf). For number of categories in SIC and SOC classifications, 
see notes to Table 1. 

http://www.data-archive.ac.uk/doc/4998/mrdoc/pdf/classifications.pdf
http://www.data-archive.ac.uk/doc/4998/mrdoc/pdf/classifications.pdf


 

Appendix Table 2: Summary Statistics 

 
 No. obs. Mean Std. dev. Min. Max. 
Industry-level variables: 
Share of 2-digit industry movers 
(IND2MOVE) 

1,472 0.029 0.034 0 0.5

Share of 3-digit industry movers 
(IND3MOVE) 

1,472 0.034 0.036 0 0.5

Share of 1-digit occupation 
movers (OCC1MOVE) 

1,472 0.033 0.029 0 0.25

Share of 3-digit occupation 
movers (OCC3MOVE) 

1,472 0.051 0.039 0 0.4

1,327 1.029 3.563 0 67.52
TRADE 1,324 5,003 17,013 0.12 475,652
WAGE 1,329 15.06 5.753 0 53.86
DDEM 1,274 -36.81 756.4 -20,343 10,413
MIIT_1 * 100 1,840 43.74 35.12 0 99.99

1,656 47.01 34.75 0 99.97
IIT * 100 1,932 71.91 22.64 0 99.99
Individual-level variables: 
“distance” of industry move 
(INDMOVEDIST) 

181,850 0.133 0.591 0 3

“distance” of occupation move 
(OCCMOVEDIST) 

181,850 0.051 0.220 0 1

181,850 39.09 11.98 17 64
FEMALE 181,850 0.274 0.446 0 1
BIGFIRM 181,850 0.780 0.414 0 1
PARTTIME 181,821 0.063 0.242 0 1
MARRIED 181,850 0.560 0.496 0 1
HOMEOWNER 181,850 0.828 0.377 0 1
FOREIGNBORN 181,850 0.061 0.239 0 1
HIGHEREDUC 181,850 0.086 0.280 0 1
NOQUALIF 181,850 0.350 0.477 0 1
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