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Abstract

This paper is concerned with the problem of estimating the demand for

health care with panel data. A random effects model is specified in a

semiparametric Bayesian fashion using a Dirichlet process prior. This

results in a very flexible mixture distribution with an infinite number of

components for the random effects. Therefore, the model can be seen

as a natural extension of prevailing latent class models. A full Bayesian

analysis using Markov chain Monte Carlo (MCMC) simulation methods

is discussed. The methodology is illustrated with an application using

data from Germany.
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1 Introduction

This paper is concerned with the problem of estimating the demand for health

care. It advances on previous cross sectional studies by explicitly incorporat-

ing unobserved heterogeneity using a random effects panel data model (see

Lopéz-Nicolás [1] and Riphahn et al. [2] for other studies using panel data

to infer the demand for health care). This approach allows us to control for

different behavioral attitudes or genetic diversity across individuals, which are

both very likely to influence the demand for health care. One aspect of our

analysis is to develop a semiparametric framework that avoids the arbitrary

specification of a particular distribution for the random effects.

Another purpose of this paper is to expand the range of the recently advo-

cated latent class models (e.g., Deb and Trivedi [3] or Jiménez-Mart́ın et al.

[4]) by allowing the population to be split into more than a small number of

classes. An argument in favour of latent class models is that they allow for a

heterogeneous population while avoiding the sharp distinction between “users”

and “non-users” which is assumed in two-part hurdle models (see, for example,

Pohlmeier and Ulrich [5] or Gurmu [6]). Deb and Trivedi [7] use data from the

RAND Health Insurance Experiment (RHIE) and find that latent class models

outperform two-part models in terms of in-sample and cross-validation model

selection tests.

However, latent class models only allow for a small number of classes in prac-

tice. Moreover, the problem of selecting the number of classes is not straight-

forward, especially with small sample sizes. In the literature about health care

demand, it is common to estimate models with just two classes representing

the ‘ill’ and the ‘healthy’ (e.g., Deb and Trivedi [3], [7]). This assumption may

be too restrictive in some circumstances.

Our model overcomes this fact by specifying a Dirichlet process prior (Fer-

guson [8] and Antoniak [9]) for the distribution of the random effects. The

resulting mixture distribution of the random effects has a random number of

components, and hence it is very flexible while remaining tractable.
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We apply the proposed model to analyse equity in the delivery of health care

using 5 waves from the German Socio-Economic Panel Study (GSOEP). In

particular, we focus on the analysis of horizontal equity. The delivery of health

care will be equitable in a horizontal sense if individuals with equal need, in

terms of health status, are given the same treatment irrespective of their in-

come and other socio-economic characteristics. For that purpose, we analyse

the importance of income and socio-econonomic characteristics in explaining

health care utilisation while controlling for health status.

The plan of the paper is as follows. Section 2 introduces a parametric random

effects count data model which assumes a multivariate Normal distribution

for the random effects. This model will serve as a benchmark throughout

the paper. In Section 3 we present a semi-parametric extension of the model

which allows for a wide range of distributions for the random effects. Section

4 describes the numerical procedures (Markov chain Monte Carlo techniques)

that we use to obtain the model estimates. In Section 5, we describe the data

and the results of the empirical analysis will be presented in Section 6. Section

7 draws some conclusions and provides an outlook on future research.

2 A Parametric Benchmark Model

In this section, we describe a parametric Bayesian model for panel count data,

which sets the benchmark for the semiparametric extension discussed later

(Chib and Winkelmann [10] analyse a similar model using Bayesian infer-

ence, Zeger and Karim [11] propose a Bayesian approach to generalized lin-

ear models). We assume that the observed count outcomes yit for individual

i = 1, . . . , N over time periods t = 1, . . . , Ti follow a Poisson distribution, that

is,

yit|θit ∼ Poisson(exp(θit)). (1)

The logarithm of the conditional mean θit is defined as

θit = x′

itβ + w′

itbi + εit, (2)
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where xit is a k × 1 vector of covariates, β is the corresponding parameter

vector, wit is a p × 1 vector of covariates for the corresponding vector of un-

observed random effects bi and εit is an error term. We assume that bi and εit

are independent and that each random effects vector bi follows a p-dimensional

multivariate Normal distribution with mean zero and variance-covariance ma-

trix D:

bi ∼ Np(0, D). (3)

The error term εit is drawn from a Normal distribution with mean 0 and

precision parameter τ ,

εit ∼ N(0, τ−1). (4)

The model is completed by specifying the following priors for β, D and τ :

β ∼ Nk(µ0, Σ0), (5)

D−1 ∼ Wishart(ν0, S0), (6)

τ ∼ Gamma
(α0

2
,
α0

2

)

. (7)

3 A Semiparametric Extension

It has been shown both from the classical and the Bayesian perspectives that

in many situations the assumption of a particular functional form for the ran-

dom effects is too restrictive and may lead to wrong parameter estimates (see

for example Heckman and Singer [12] who make this point for duration models

or Verbeke and Lesaffre [13] in the context of linear mixed-effects models).

For this reason, we now propose a Dirichlet process mixture (DPM) model in

the spirit of Ibrahim and Kleinman [14] that generalises the parametric bench-

mark model of the previous section. In particular, we remove the parametric

normal prior assigned to the random effects {bi} and replace it with a general

distribution G:

bi ∼ G. (8)
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The prior distribution on G is then defined to be a Dirichlet process with

concentration parameter M and base distribution G0:

G ∼ DP(M · G0). (9)

The base distribution G0 is specified as a p-dimensional multivariate Normal

distribution:

G0 = Np(0, D). (10)

We therefore add a further stage to the model that allows us to take into

account possible deviations of the true distribution of the random effects G

from the “baseline” multivariate normal distribution G0. In other words, we

approximate the true nonparametric shape of G by the base distribution G0.

The concentration parameter M reflects our prior belief about how similar G

is to G0. Large values of M lead to a G that is very likely to be close to

G0. Small values of M allow G to deviate more from G0 and put most of its

probability mass on just a few atoms.

Figure 1 illustrates this point by plotting several draws from the Dirichlet pro-

cess with two different values for M (1.25 and 10). In order to sample from

the prior of G we utilise a truncated version of the sum-representation of the

Dirichlet process proposed by Sethuraman [15]. Note that each draw repre-

sents a probability density function. Figure 1 illustrates that each probability

function is almost surely discrete (Sethuraman [15]). When M = 1.25 the

number of mass points with non-negligible probability is smaller than when

M = 10. As M increases, the probability mass will be more evenly distributed

on a bigger set of mass points, and it would resemble more closely the contin-

uous density G0.

Looking at two key features of the Dirichlet process helps to clarify the impli-

cations of this setup. First, some of the bi are identical with positive proba-

bility. Thus, each bi takes one of l < N distinct values which we denote by

κ = (κ1, . . . , κl). A so called cluster then contains all random effects which

take the same value. In order to discuss the second fact, some additional no-
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tation is necessary. Let b−i denote the random effects excluding the random

effect for individual i. Finally, let the set κ−i consist of the distinct elements

of b−i with each value κ−i
j appearing m−i

j times. Now we can show that by

integrating over G the prior distribution of bi conditional on b−i and G0 can

be expressed as:

bi|b
−i, G0 ∼

M

M + N − 1
G0 +

1

M + N − 1

l
∑

j=1

m−i
j δ(κ−i

j ), (11)

where δ(κ) represents a degenerate distribution with point mass at κ. There-

fore, a new value drawn from the base distribution is chosen for bi with proba-

bility M/(M +N −1), whereas bi takes the value of an already existing cluster

κ−i
j with probability m−i

j /(M + N − 1).

Combining this result with equations (2) and (4), we obtain the following

expression for the conditional distribution of θit marginalized over bi and G:

θit|β,D,G0, b
−i ∼

∫

fN(θit|x
′

itβ + w′

itbi, τ
−1)d[bi|b

−i, G0]. (12)

Performing the integration we end up with:

θit|β,D,G0, b
−i ∼

M

M + N − 1
fN(θit|x

′

itβ,w′

itDwit + τ−1)

+
1

M + N − 1

l
∑

j=1

m−i
j fN(θit|x

′

itβ + w′

itκ
−i
j , τ−1),

(13)

where fN represents the normal density. We see that θit follows a mixture

distribution with a random number of components, where the components

differ both with respect to their means and variances. Equation (13) illustrates

that the here proposed DPM model can be seen as a mixture model with an

infinite number of classes (see Neal [16] for a more formal presentation of this

point). Thus, it contributes to the existing literature on latent class models for

estimating the demand for health care. Also note that by using the Dirichlet

process as a prior on the distribution of the random effects, we are able to

relax the restrictive parametric assumption inherent in the benchmark model
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in a tractable manner.

4 Bayesian MCMC Sampling

Having specified the prior distribution and the likelihood function, we now

turn to the analysis of the posterior distribution, which is proportional to the

product of these two terms. In the Bayesian approach, the posterior distribu-

tion of a model contains all the relevant information and can be used to make

probability statements about the parameters.

However, due to the complexity of the proposed models, we are not able to

analyse their posterior distributions analytically. This problem can be over-

come by applying Markov chain Monte Carlo (MCMC) techniques. This means

that we draw large samples from the posterior distributions and then use these

samples to summarise the posterior distributions. We do this by employing

the Gibbs sampler where each element of the parameter vectors is updated

conditional on the actual values of the other components. After discarding

some number of initial draws, the resulting Markov chains have converged to

the posterior distributions. We refer to Chen et al. [17] or Robert and Casella

[18] for comprehensive surveys on MCMC methods.

In order to keep the Gibbs sampler computations simple, we apply the data

augmentation technique put forward by Tanner and Wong [19]. This means

that we include the random effects {bi} and the latent variables {θit} in the

parameter space. Thus, we end up with full conditional distributions which

take convenient functional forms.

The resulting Gibbs sampler for the parametric benchmark model can be sum-

marised as follows (further details on the algorithm are given in the appendix

of this paper):

0. Choose starting values for τ , {bi}, D−1,{θit}.

1. Sample β from [β|{bi}, τ, {θit}], which is a Normal distribution.
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2. Sample τ from [τ |{bi}, β, {θit}], which is a Gamma distribution.

3. Sample {θit} from [θit|bi, β, τ ], using the Metropolis-Hastings algorithm,

independently for i = 1, . . . , N and t = 1, . . . , Ti.

4. Sample {bi} from [bi|β, τ,D, {θit}], which is a Normal distribution, inde-

pendently for i = 1, . . . , N .

5. Sample D−1 from [D−1|{bi}], which is a Wishart distribution.

6. Repeat Steps 1-5 using the updated values of the conditioning variables.

Since G0 is chosen to be a conjugate prior distribution (a conjugate prior

distribution yields a posterior distribution that falls in the same class of distri-

butions), we can easily set up a Gibbs sampler for the semiparametric model

as well. Examples of MCMC methods applied to the semiparametric setting

are Escobar and West [20] or MacEachern and Müller [21]. In particular, we

have to modify steps 4 and 5 as follows (further details are also given in the

appendix):

4’a. Sample {bi} from [bi|b
−i, G0, D, β, τ, {θit}], independently for i = 1, . . . , N .

5’. Sample D−1 from [D−1|{κj}], which is a Wishart distribution.

In order to improve the mixing behaviour of the modified algorithm, we follow

a strategy proposed by Bush and MacEachern [22] and resample the cluster

values {κj} after determining how the bis are grouped. This is achieved by

including the following step:

4’b. Sample {κj} from [κj|β, τ,D, {θit}], which is a Normal distribution, in-

dependently for j = 1, . . . , l.

We would like to point out that the Bayesian approach and its application

via MCMC techniques offer several advantages. First, the Bayesian approach

allows for full and exact small sample inference both in the parametric and

the semiparametric version of the model and is not restricted to asymptotic

approximations. Second, numerical integration methods are avoided in the
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evaluation of the model. Finally, by using data augmentation we easily obtain

estimates for the random effects. This becomes important when analysing

extensions of the model in which the estimates of the random effects play

a central role on their own (see Kleinmann and Ibrahim [14] and the cited

literature therein). For example, one might think of a possible extension of

the model in the direction of causal effect modelling. In this case, MCMC

methods would allow us to calculate individual treatment effects (see Chib

and Hamilton [23]).

5 The Data

In the following, the proposed methodology is used to estimate the demand

for health care by the elderly in Germany. There are many existing studies

analysing the demand for health care, but only few of them focus on the elderly

population (Deb and Trivedi [3] is one exception). Nevertheless, this group is

of particular interest, since elderly people typically have higher medical care

needs and costs and their population share is steadily growing in many coun-

tries.

The data set used in this study stems from five waves (1997-2001) of the Ger-

man Socio-Economic Panel Study (GSOEP). The GSOEP, conducted by the

German Institute for Economic Research in Berlin, is a representative longi-

tudinal survey of German households (for more information, see SOEP Group

[24]). It contains detailed information about the health care utilisation of the

respondents and insurance schemes under which they are covered.

We restrict our analysis to retired men who are older than 65 years. After elim-

inating all observations with missing values on any of the variables of interest,

we obtain a final sample of 1854 individuals and 4761 person-year observa-

tions. Note that the observations are not equally distributed throughout the

five years, since both in 1998 and 2000 the GSOEP was expanded with new

sub-samples. The variable definitions and summary statistics are reported in

Table 1.
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The dependent variable in our study is the number of visits to a doctor in the

last three months prior to the survey (VISITS). Note that visits to a dentist are

subsumed under this definition as well. The explanatory variables consist of

socioeconomic characteristics and variables that describe the health condition

of the individual. In particular, we include a self-perceived health satisfaction

index (SATISFAC), as well as variables measuring disability (HANDICAP and

HDEGREE). In order to capture nonlinear and threshold effects of SATISFAC

we include the dummy variables LOWS and HIGHS.

In the German health care system, only individuals above a certain earnings

level (3,825 Euros gross monthly earnings in 2003), civil servants, or self-

employed individuals can opt out the public insurance scheme (PUBLICIN)

and choose a private insurance plan or remain uninsured. Individuals in the

public insurance scheme can purchase add-on insurance (ADDON) that, for

example, covers extra costs for dental prostheses or glasses.

Given this institutional setup, the decisions to choose a private insurance plan

and to purchase add-on insurance may be endogenous. However, since we

control for the health condition of the individual, the strength of this argument

is reduced (see Deb and Trivedi [3], who argue in the same line). The possibility

of endogeneity should nevertheless not be overlooked when interpreting the

results.

6 Results

We analyse these data using both the parametric benchmark model and the

semiparametric extension of it. Prior elicitation is done in the following way:

we randomly choose 250 individuals from the data set and analyse this “ train-

ing sample ” using the parametric benchmark model with uninformative priors.

In this way we mimic the usual Bayesian approach where the results of a pre-

vious study with different data are used to select prior distributions (Chib and

Hamilton [23] and Ibrahim and Kleinman [14] also follow the ’training sample’
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strategy).

To analyse the remaining data, we select a prior distribution on D−1 by set-

ting ν0 = 250 and S0 = D̂−1

ν0

, where D̂ is the training sample posterior mean.

Cowles et al. [25] argue that a flatter prior on the variance matrix of the ran-

dom effects can lead to a slow convergence of the algorithm (see also Ibrahim

and Kleinman [14]). In addition, the prior means and variances of the slope

parameters in β are the corresponding estimates obtained with the training

sample. In order to facilitate the calculation of Bayes factors (Verdinelli and

Wasserman [26] ), the non diagonal elements in Σ0 are set equal to zero. Fi-

nally, in order to represent prior ignorance, we set α0 = 0.001.

We then estimate the parametric benchmark model and the semiparametric

model with M equal to 10. Recall that a Dirichlet process prior implies that

we expect the density of the individual effects to be discrete (we showed several

draws from the prior on the distribution of the random constant in Figure 1).

Given our choice of M , S0 and ν0, the number of mass points with probability

larger than 0.01 is between 2 and 9 with probability 0.95 (we calculate this “a

priori” credible interval by Monte Carlo simulation).

We specify the models choosing VISITS as the dependent variable. All other

variables (including the year dummies) plus a constant are included in the pop-

ulation mean vectors. The random effects include a constant and the effects

of SATISFAC, HIGHS and LOWHS. The models are then estimated using the

MCMC sampling algorithms described in Section 4. We ran each for 30,000

iterations keeping the last 25,000 iterations each time. To give an indica-

tion of the performance of the algorithm for the semiparametric model, Fig-

ure 2 reports the posterior histograms and autocorrelation functions of βAGE,

τ , and DC , where DC is the variance of the intercept in the base measure

(DSATISFAC , DHIGHS and DLOWS denote the variances of the SATISFAC,

HIGHS and LOWS effects, respectively). It can be seen that the mixing be-

haviour of the sampler is satisfactory since autocorrelations decline steadily as

the number of lags increases. The algorithm for the parametric model displays
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an even better mixing behaviour.

Table 2 shows the posterior estimates for the parametric and semiparamet-

ric model. We observe that the point estimates of the semiparametric model

tend to be associated with larger standard deviations and, for some parame-

ters, they are substantially different to the parametric counterparts. This is

illustrated in Figure 2, which compares the posterior density of βSATISFAC in

both models. Note that the semiparametric point estimate receives very small

density weight in the parametric model and that there is more uncertainty in

the estimates when the parametric assumptions are relaxed.

The estimated coefficients on AGE and AGE2 imply that the number of doctor

visits increases with age until the age of 85 and decreases thereafter. There

is a large probability that the effect of NOPARTNER is negative, but posi-

tive values cannot be ruled out. Similarly, there is some uncertainty regarding

the sign of the effect of education. The evidence on the effect of disability is

twofold: the sign of the dummy variable (HANDICAP) is not clearly deter-

mined, whereas the degree of handicap (HDEGREE) has an unambiguously

positive effect. An increase of 10 percentage points would lead to 0.2 visits

more on average. The variable SATISFAC has as expected a negative effect,

whereas the signs of the threshold effects (LOWS and HIGHS) are uncertain.

Note that the variance of the time variant error term εit is small when compared

with the variance of the individual effects. Thus, individual heterogeneity ac-

counts for a large proportion of the variability in the data, which illustrates

the importance of modelling the distribution of the individual effects correctly.

There is substantial uncertainty regarding the signs of the coefficients of the

variables FOREIGN, ADDON, PUBLICIN and PENSION. Riphahn et al. [2]

argue that the result for ADDON is not surprising and can be explained by the

benefit packages of the German add-on insurance plans. In order to determine

whether the delivery of health care for the elderly is equitable, we test the

hypothesis that the variables EDUCATION, FOREIGN, ADDON, PUBLICIN
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and PENSION have all a zero effect. We calculate a Bayes factor for this

hypothesis following the method proposed by Verdinelli and Wasserman [26].

We obtain that the hypothesis of equitable delivery of health care is much

more likely than the alternative (the probability of this hypothesis versus the

alternative is 0.9993). Note, however, that the model does not account for

the possible endogeneous nature of the variable PUBLICIN. An extension in

the direction of causal modelling using the potential outcomes approach is one

direction for future research.

7 Conclusion

This paper developed a semiparametric Bayesian framework for estimating the

demand for health care with panel data. This was done by specifying a Dirich-

let process prior for the distribution of the random effects. Thus, the presented

framework allowed explicitly for individual heterogeneity while it did not im-

pose unreasonably strong constraints on distributional assumptions.

It was shown that the model can be seen as a natural extension of latent class

models, which abound in the recent literature on health care demand. This

results from the fact that the Dirichlet process prior leads to a mixing distri-

bution with an infinite number of components.

The model was used to test for the existence of horizontal equity using German

data. The estimation was carried out with MCMC methods. The results were

largely in accordance with the previous literature.

The approach presented here can be extended in many directions, including

the development of a potential outcomes model for inferring causal effects, or

a model that allows for the endogenous nature of private insurance.
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Appendix

The Algorithm for the Parametric Model

1. Sampling β from [β|{bi}, τ, {θit}]:

p(β|{bi}, τ, {θit}) ∝|Σ0|
−

1

2 exp

(

−1

2
(β − µ0)

′Σ−1

0
(β − µ0)

)

× exp

(

−τ

2

n
∑

i=1

Ti
∑

t=1

(θit − x′

itβ − w′

itbi)
2

)

,

(14)

so that

[β|{bi}, τ, {θit}] ∼ Nk(µβ, Σβ) (15)

with

Σβ =

(

Σ−1

0
+ τ

n
∑

i=1

Ti
∑

t=1

xitx
′

it

)−1

(16)

and

µβ = Σβ

(

Σ−1

0
µ0 + τ

n
∑

i=1

Ti
∑

t=1

xit(θit − w′

itbi)

)

. (17)

2. Sampling τ from [τ |{bi}, β, {θit}]:

p(τ |{bi}, β, {θit}) ∝ τ
α0

2
−1 exp

(

−α0τ

2

)

τ
n
2 exp

(

−τ

2

n
∑

i=1

Ti
∑

t=1

ε2

it

)

, (18)

so that

[τ |{bi}, β, {θit}] ∼ Gamma

(

α0 + n

2
,
α0 +

∑n

i=1

∑Ti

t=1
ε2

it

2

)

. (19)

3. Sampling {θit} from [θit|{bi}, β, τ ]:

p(θit|{bi}, β, τ) ∝ exp

(

− exp(θit) + yitθit

−
τ(θit − x′

itβ − w′

itbi)
2

2

)

.

(20)
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4. Sampling {bi} from [bi|β, τ,D, {θit}]:

p(bi|β, τ,D, {θit}) ∝ exp

(

−1

2
b′iD

−1bi

)

× exp

(

−1

2

Ti
∑

t=1

(θit − x′

itβ − w′

itbi)
2

)

,

(21)

so that

[bi|β, τ,D, {θit}] ∼ Np(µb, Σb) (22)

with

Σb =

(

τ

Ti
∑

t=1

witw
′

it + D−1

)−1

(23)

and

µb = Σbτ

Ti
∑

t=1

wit(θit − x′

itβ). (24)

5. Sampling D−1 from [D−1|{bi}]:

p(D−1|{bi}) ∝|D−1|
ν0−p−1

2 exp

(

−1

2
tr(S−1

0
D−1)

)

× |D−1|
n
2 exp

(

−1

2

n
∑

i=1

b′iD
−1bi

)

,

(25)

so that

[D−1|{bi}] ∼ Wishart



ν0 + n,

(

S−1

0
+

n
∑

i=1

bib
′

i

)

−1


 . (26)
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The Algorithm for the Semiparametric Model

4’a. Sampling {bi} from [bi|b
−i, G0, D, β, τ, {θit}]:

Sample bi|b
−i, G0, D, β, τ, {θit} from the distribution

qi0π0(bi|β, τ,D, {θit}) +
∑

j

qijδ(κ
−i
j ), (27)

where π0 denotes the density of the p-variate Normal distribution:

π0(bi|β, τ,D, {θit}) = fN(µb, Σb), (28)

where µb and Σb are defined above. The weights sum up to 1 and are

given by

qi0 ∝ M |Σb|
1

2 |D|−
1

2 exp
(τ

2
(θi − Xiβ)′Ui(θi − Xiβ)

)

(29)

and

qij ∝ m−i
j exp

(

−
τ

2
(θi − Xiβ − Wiκ

−i
j )′(θi − Xiβ − Wiκ

−i
j )
)

, (30)

where Xi ≡ (xi1, xi2, . . . , xiTi
)′, Wi ≡ (wi1, wi2, . . . , wiTi

)′,

θi ≡ (θi1, θi2, . . . , θiTi
)′ and Ui ≡ (τWiΣbW

′

i − I).

4’b. Sampling {κj} from [κj|β, τ,D, {θit}]:

p(κj|β, τ,D, {θit}) ∝ exp

(

−1

2
κ′

jD
−1κj

)

× exp

(

−1

2

∑

i∈j

Ti
∑

t=1

(θit − x′

itβ − w′

itκj)
2

)

,

(31)

so that

[κj|β, τ,D, {θit}] ∼ Np(µκ, Σκ) (32)

with

Σκ =

(

τ
∑

i∈j

Ti
∑

t=1

witw
′

it + D−1

)−1

(33)
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and

µκ = Σκτ
∑

i∈j

Ti
∑

t=1

wit(θit − x′

itβ). (34)

5’. Sampling D−1 from [D−1|{κj}]:

p(D−1|{κj}) ∝|D−1|
ν0−p−1

2 exp

(

−1

2
tr(S−1

0
D−1)

)

× |D−1|
l
2 exp

(

−1

2

l
∑

j=1

κ′

jD
−1κj

)

,

(35)

so that

[D−1|{κj}] ∼ Wishart



ν0 + l,

(

S−1

0
+

l
∑

j=1

κjκ
′

j

)−1


 . (36)
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Variable Definition Mean Std. Dev.

VISITS Number of doctor visits in last 3 months 4.120 5.534

AGE Age in years 72.371 6.041

AGE2 Age squared in years / 1000 5.274 0.913

EDUCATION Years of education 11.300 2.306

SATISFAC Self reported health satisfaction 5.667 2.323

(0-low to 10-high)

LOWS 1 if SATISFAC < 4 0.187

HIGHS 1 if SATISFAC > 6 0.400

HANDICAP 1 if individual is handicapped 0.337

HDEGREE Degree of handicap in percentage points 21.800 33.102

NOPARTNER 1 if individual has no partner 0.145

PENSION Monthly pension payments in DM / 1000 2.639 1.295

PUBLICIN 1 if individual is in public health insurance 0.920

ADDON 1 if individual purchased add-on insurance 0.055

FOREIGN 1 if individual is foreigner 0.056

YEAR97 1 if year = 1997 0.118

YEAR98 1 if year = 1998 0.138

YEAR99 1 if year = 1999 0.153

YEAR00 1 if year = 2000 0.298

YEAR01 1 if year = 2001 0.293

N = 1854
∑

Ti = 4761

Table 1: Variable definitions and summary statistics

21



Variable Quantiles

2.5% 50% 97.5% 2.5% 50% 97.5%

M = ∞ M = 10

AGE 0.151 0.576 0.990 0.163 0.571 0.991

AGE2 −6.094 −3.343 −0.530 −6.140 −3.347 −0.648

EDUCATION −0.006 0.066 0.140 −0.009 0.057 0.123

SATISFAC −0.584 −0.460 −0.338 −0.708 −0.563 −0.423

LOWS −0.354 0.108 0.571 −0.601 −0.073 0.440

HIGHS −0.845 −0.424 0.002 −0.899 −0.379 0.126

HANDICAP −0.690 −0.002 0.676 −0.709 −0.045 0.617

HDEGREE 0.010 0.019 0.029 0.011 0.020 0.030

NOPARTNER −0.945 −0.493 −0.046 −0.783 −0.342 0.085

PENSION −0.198 −0.057 0.086 −0.163 −0.034 0.092

PUBLICIN −0.526 0.054 0.651 −0.383 0.209 0.767

ADDON −0.442 0.124 0.699 −0.444 0.099 0.621

FOREIGN −0.314 0.408 1.106 −0.434 0.240 0.890

τ 4.760 5.478 6.245 4.809 5.560 6.387

DC 0.177 0.212 0.256 0.261 0.560 1.195

DSATISFAC 0.016 0.018 0.021 0.018 0.027 0.045

DLOWS 0.105 0.123 0.146 0.035 0.069 0.168

DHIGHS 0.130 0.153 0.183 0.055 0.119 0.292

Note: We report marginal effects for the coefficient vector.

Table 2: Posterior estimates for the parametric benchmark model (M = ∞)
and the MDP model with M = 10
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Figure 1: Draws from the Prior with M = 1.25 (top row) and M = 10 (bottom
row)
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Figure 2: Autocorrelation functions and posterior histograms for τ (top row),
the marginal effect of AGE2 (middle row) and DC (bottom row)
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Figure 3: Posterior distributions of βSATISFAC: Parametric benchmark model
(dashed curve) and MDP model with M = 10 (solid curve)
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