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Abstract 

 

 
In this paper we generate critical values for a test for cointegration based on the joint 
significance of the levels terms in an error correction equation. We show that the 
appropriate critical values are higher than those derived from the standard F-distribution. 
We compare the power properties of this test with those of the Engle-Granger test and 
Kremers  et al’s t-test based on the t-statistic from an error correction equation. The F-test 
has higher power than the Engle-Granger test but lower power than the t-form of the error 
correction test. However, the F-form of the test has the advantage that its distribution is 
independent of the parameters of the problem being considered. Finally, we consider a 
test for cointegration between UK and US interest rates. We show that the F-test rejects 
the null of no cointegration between these variables although the Engle-Granger test fails 
to do so. 
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I. INTRODUCTION 

 

The use of the error correction model in applied econometrics goes back to Sargan 

(1964). However, its integration into modern time series econometrics began with the 

publication of two important papers in the mid 1970s. These were the analysis of the UK 

consumption function by Davidson, Hendry, Srba and Yeo – DHSY - (1978) and that of 

the UK demand for broad money by Hendry and Mizon (1978). These papers were 

important because they emphasised the potential importance of levels terms within a time 

series regression framework as a means of capturing the equilibrium interactions between 

variables. 

 

Consider the following model set out by Hendry and Mizon which relates a variable  to 

its own lagged value and the current and lagged values of another variable : 

ty

tx

 

  (1) 1 1 0 1 1t t t ty y x xβ γ γ−= + + + tv−

 

where 1 1β <  and  has zero mean, constant variance σ  and is serially independent. It 

is straightforward to see that equation (1) can be reformulated to give: 

tv 2

 

  (2) ( ) ( )0 1 1 0 1 11t t t ty x y xγ β γ γ−∆ = ∆ + − + + + tv−

 

Given this formulation, a test of the joint hypothesis that the coefficients on  and  

are zero is effectively a test of the hypothesis that the y and x processes have a common 

root equal to one i.e. it is appropriate to estimate the equation in first differences. Hendry 

and Mizon applied a model of this type to the UK demand for money function while 

1ty − 1tx −
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DHSY applied a similar model to the UK consumption function and in both cases 

rejected the common unit root assumption. 

 

At the time this approach to time series model building was criticised by Williams (1978) 

on the grounds that “A recent paper by Hendry and Mizon (1978) has suggested that it is 

possible to test whether a particular relationship should be estimated in levels or first 

differences by re-arranging the levels formulation into a first-difference formulation and 

a ‘remainder’ and then testing whether or not the coefficients in the ‘remainder’ are 

statistically significant. The fallacy in this approach is that in order for the estimation 

technique to be valid, it must be assumed that the error structure in the levels formulation 

is stationary”. In retrospect this statement is a neat summary of the cointegration problem 

which went on to become the major topic of research in time series econometrics for the 

next two decades. 

 

Since the publication of the above articles our understanding of the theoretical and 

empirical properties of cointegrating relationships has increased enormously. Testing 

procedures have been developed by Engle and Granger (1987) and  Kremers et al (1992) 

for single equation models and Johansen (1988) for multiple equation systems. The 

Engle-Granger procedure is to apply the Augmented Dickey-Fuller test to  the residuals 

from a least squares regression between the levels of the variables. Appropriate critical 

values for this test have been computed by MacKinnon (1991). Kremers et al estimate an 

error correction model and use the t-ratio for the error correction term as their test 

statistic. Unfortunately the distribution of the test statistic depends on unobservable 

parameters of the specific problem and thus it may not be possible to implement the test 

in practice. This test has been investigated further by Zivot (1996) and Ericsson and 

MacKinnon (2002). Implementation of this test is considerably easier when the 

cointegrating vector is know prior to estimation. However, in many circumstances this is 

not a reasonable starting assumption. Finally, Banerjee et al.(1998) estimate an error 

correction model test, based on the null hypothesis of non-cointegration, but with the t-
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ratio version of the test suffering in finite samples when one tries to impose potentially 

invalid common-factor restrictions. 

 

The focus of this paper is on testing for a single cointegrating vector. In section II we 

derive critical values for an alternative test based on the joint significance of the levels 

terms in an error correction model. We demonstrate that these critical values differ from 

those derived from the standard F-distribution in that they are consistently larger. In 

section III we compare the performance of our test statistic with the Engle-Granger test 

and the Kremers et al test. We show that our test has more power in rejecting a false null 

hypothesis when compared with the Engle-Granger test. We also show that our testing 

procedure has an advantage over the Kremers et al test in that it generates critical values 

which are not sensitive to the parameters of the particular error correction model we 

estimate. Section IV presents an example using monthly data for UK and US interest 

rates and Section V gives our conclusions. 

 

II. CRITICAL VALUES FOR AN F-TEST FOR COINTEGRATION 

 

We begin by assuming a general bivariate data generation process for  and , 

. This is set out in equations (3)-(5). 

ty tx

1,t = …T

1,t

t



 

  (3) 1 2 1 3 1t t t ty x y xα α α ε− −∆ = ∆ + + +
 

  (4) 2,tx ε∆ =
 

  (5) 
2

1, 1
2

2, 2

0 0
,

0 0
t

t

IN
ε σ
ε σ

     
         

∼
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Next, we consider the simplest possible case in which y and x are independent random 

walks. This means we set α = . Based on these parameters we generate 10,000 

replications using seeded pseudo random values for ε  and  generated by the EViews 

random number generator. We then estimate equation (3) by OLS and perform an F-test 

for the null hypothesis  against the alternative  for 

various sample sizes. In each case we discard the first 50 observations to avoid the danger 

of the start-up values biasing the results. The results are then tabulated and used to 

calculate empirical 10%, 5% and 1% critical values for the test statistic. The results are 

presented in Table One along with the critical values from the standard F-distribution. 

The values calculated are all considerable higher than those given by the critical values 

from the conventional F-distribution reflecting the fact that under the null hypothesis the 

series are not stationary and therefore classical statistical distribution results do not apply. 

0; 1,2,3i i =

0 2 3:α α= =

1 2ε

0H 1 2 3: 0 or 0H α α≠ ≠

 

 [Insert Table One here] 

 

The critical values given in Table One are calculated on the basis of particular parameter 

values for the DGP. We also investigated the sensitivity of our results to changes in these 

parameter values in two ways. First, we allowed the relative variances of the y and x 

processes to change. We varied 
2
1

2
2σ

1

σ  within the range 10  and 10  and found that the 

Monte Carlo critical values were completely insensitive to this ratio. Second, we 

experimented with values for α  within the range  and again found that our 

critical values were insensitive to the value chosen. All results in Table One are for a 

‘large’ sample of 500 observations. Our conclusion is that the critical values we derived 

are not sensitive to the particular experimental design we have adopted. 

8−

11 α ≤

8

1− ≤

 

Kremers et al adopt an alternative approach to testing for cointegration within an error 

correction framework. They begin by assuming that there is a ‘natural’ cointegrating 

vector for which we may wish to test. This often arises when there is a unit elasticity 
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restriction which defines a constant ratio between the variables which make up the 

cointegrating relationship. For example, the error correction term for the DHSY  

consumption function consists of the lagged difference of the logarithms of consumption 

and disposable income. Given a natural cointegrating vector of this type we can impose 

the unit elasticity and then base a cointegration test on the t-ratio for the error correction 

term. In terms of our DGP we impose the restriction α  estimate an equation of the 

form given in equation (6) and test  against the alternative . 

2 = − 3α

0

tu

0 2:H α = 1 2: 0H α <

 

  (6) ( )1 2 1 1t t t ty x y xα α − −∆ = ∆ + − +

 

Kremers et al derive the distribution of the test statistic under the null hypothesis and note 

that it depends on the ‘signal to noise’ ratio where this is defined as ( ) 2
1

1
1 σα σ= − −

2

q . 

The problem is that the critical values for their test (based on the t ratio for α ) depend 

on this ratio and therefore on the specific parameters of the problem in question. Thus the 

Kremer et al test has the unattractive feature that critical values for the test depend on the 

specific values of the parameters of the problem being examined. This marks a distinct 

advantage of the F-test approach for which this problem does not apply.  

 

Table Two gives Monte Carlo 5% critical values for the F-form and the t-form of the 

ECM test for different values of α  and the ratio 1
2

1σ

1

σ . Whereas the F-form critical 

values are independent of these parameters, there is considerable variation in the t-form 

values. One interesting feature is that (provided α < ) the critical value for the t-test 

always converges on the standard normal value as 

1

2

1σ
σ . This confirms the result 

derived by Kremers et al who show that as the signal to noise ratio increases then the 

distribution of the test statistic converges on the standard normal. Similarly the 

→∞
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distribution of the test statistic gets closer to the standard normal for small values of the 

 parameter. 1α

σ

 

 [Insert Table Two here] 

 

III. THE POWER OF ALTERNATIVE COINTEGRATION TESTS 

 

The low power of the Engle-Granger test has proved to be a major drawback in applied 

work. This provides the motivating force behind Kremers et al’s development of the 

ECM t-test. In this section we investigate the relative power properties of the three tests 

using a DGP in which the y and x processes are cointegrated. The DGP we assume takes 

the form: 

 

  (7) 10.9 0.1t t ty y x ε−= + + 1,t

,t

2

2
2

  (8) 1 2t tx x ε−= +
 

As before we assume ,  with cov . Based on this 

experimental design we carry out 10,000 replications for a variety of different sample 

sizes and compute the percentage of rejections of the false null hypothesis that y and x are 

not cointegrated. The critical values used were the MacKinnon critical values for the 

Engle-Granger test and the Monte Carlo critical values from Table One for the F-form of 

the ECM test. For the t-form of the ECM test, we made the additional assumption that 

 and used Monte Carlo methods to calculate a set of critical values for the 

particular sample design given above. These are given for reference in Table Four. 

( ) 2
1 1var ε σ= ( ) 2

2var ε σ= ( )1 2, 0ε ε =

2
1 σ=

 

The results of our experiments are reported in Table Three. These show a consistent 

ranking in terms of the power of the test. The Engle-Granger test consistently has the 
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lowest power and performs very badly in small samples. The F-form of the ECM test has 

higher power but the t-form of the ECM test has consistently higher power than the other 

two tests. As the sample size increases then the power of all three tests increases and 

eventually converges on 100%. 

 

Our results therefore indicate that the error correction approach to testing for 

cointegration is consistently more powerful than the Engle-Granger approach. Within the 

class of error correction tests, we find that the t-form of the test is more powerful than the 

F-form of the test when we know the correct set of critical values to apply. However, the 

critical values for the t-test can vary considerably depending on the particular nature of 

the problem being considered. Even if these parameters are known, then we need to 

generate appropriate critical values using Monte Carlo simulations and in practice these 

parameters may not be observable. Although the F-form of the test has lower power it 

does have the advantage that the critical values do not vary with the sample design and 

therefore this test is considerably easier to apply in practice. 

 

[Insert Tables Three and Four here] 

 

IV. EXAMPLE: UK AND US INTEREST RATES 

 

In this section we present an example which illustrates the relative performance of the 

tests we have discussed in the previous sections. Our aim is to test for the existence of a 

cointegrating vector linking UK and US nominal interest rates. The rationale for the 

existence of a cointegrating vector between these two variables derives from the 

uncovered interest parity (UIP) condition. This states that the interest rate differential 

between similar assets in different countries should equal the expected rate of change of 

the exchange rate. Now it is a well established empirical fact that, in the vast majority of 

cases, exchange rates are integrated of order one. It follows therefore that, to be 

 8 



consistent with UIP, interest rates in the two countries should be cointegrated and that the 

cointegrating slope coefficient should be unity. 

 

[Insert Figure One here] 

 

Our data is illustrated in Figure One which shows the Treasury Bill rate for the UK and 

the US over the period February 1977 to December 2002. The data are taken from the 

International Monetary Fund International Financial Statistics database. Although  the 

two series clearly exhibit some common features it is not clear whether they are 

cointegrated. Preliminary investigation of the data indicates that both the interest rate 

series and the sterling dollar exchange rate contain single unit roots. Therefore we 

proceed to the next stage of the analysis and perform cointegration tests for the two 

interest rates. 

 

As a first step, we apply the two step Engle-Granger procedure. In the first stage we 

obtain the results reported in equation (9) for a regression of the UK rate on a constant 

and the US rate: 

 

  (9) ( ) ( ), , 10.623 0.093
ˆ3.3162 0.8448

ˆ311 2.20 0.10

UK t US t ti i u

T Dσ

= + +

= =

,

W =

 

1,ˆ : 1, 311tu t = …  is the vector of OLS residuals. σ  is the standard error of the regression 

and DW is the Durbin-Watson test statistic for first order autocorrelation. The standard 

errors reported in parentheses below coefficients are the Newey-West heteroscedasticity 

and autocorrelation adjusted standard errors. Equation (9) can be interpreted sensibly in 

terms of economic theory in that the slope coefficient is within two standard errors of 

one. However, the intercept term is apparently significant which indicates the possibility 

of a positive risk premium on UK assets.  In the second stage of the analysis we apply an 

ˆ
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Augmented Dickey Fuller (ADF) test to the residuals u . Using the Schwarz criterion we 

determined the optimal number of lagged differenced terms in the auxiliary regression to 

be two and obtained a test statistic of  . From the MacKinnon response surfaces we 

obtain critical values of –3.93, -3.36 and –3.06 at the 1%, 5% and 10% significance levels 

respectively. Thus the Engle-Granger test indicates that we cannot reject the null 

hypothesis that the two interest rates are not cointegrated at the 5% level, though it is 

possible to reject at the 10% level. 

1̂

, 1t

=

3.10−

,US ti i

T D

∆

 

Next we consider the F-form of the error correction test. Estimation of an error correction 

model for the UK interest rate yields the results given in equation (10): 

 

  (10) ( ) ( ) ( ) ( ), , 1 2,0.086 0.049 0.013 0.015
ˆ0.0309 0.0998 0.0499 0.0586

ˆ311 0.52 1.34

UK t UK US t ti

Wσ

− −∆ = + − + +

= =

i u

i u

 

The F-test for the joint significance of the two interest rate levels in equation (10) yields a 

value of 8.22. This compares with a 5% critical value of about 5.84 obtained from the 

Monte Carlo simulations reported in Table One. Indeed, the critical values reported in 

Table One indicate that in this case the F-test would also reject the null at the 1% 

significance level. Therefore, in this example, our results indicate that the F-test is more 

powerful in detecting a cointegrating vector than the Engle-Granger method. 

 

Finally, we consider the t-form of the error correction test. First, we reparameterise 

equation (10) and obtain the results reported in equation (11): 

 

  (11) ( ) ( ) ( )
( )

( ), , , 1 , 1 , 1 2,0.086 0.049 0.013 0.010
ˆ0.0309 0.0998 0.0499 0.0087

ˆ311 0.52 1.34

UK t US t UK t US t US t ti i i i

T DWσ

− − −∆ = + ∆ − − + +

= = =
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Since, the coefficient on the lagged US interest rate in (11) is statistically insignificant, it 

appears that the model accepts the restriction of a cointegrating slope coefficient equal to 

unity. Therefore we impose this restriction and obtain the results reported in equation 

(12): 

 

  (12) ( ) ( ) ( )
( ), , , 10.043 0.049 0.013

ˆ0.0933 0.0970 0.0522

ˆ311 0.52 1.34

UK t US t UK t US t ti i i

T DWσ

− −∆ = + ∆ − − +

= = =

, 1 3,i u

 

The t-ratio for the error correction term in equation (12) is –3.97. We need to determine 

what are the appropriate critical values since we have seen that these are affected by the 

nuisance parameters which determine the ‘signal to noise’ ratio for this problem. The 

Monte Carlo critical values reported in Table One are for a sample size of 500. However, 

further simulations show that the 5% critical value of –2.89 for the most conservative 

case ( 42

1
10σ

−=σ , α = )  does not change when we reduce the sample size to 311 as 

in our empirical problem.. Therefore, even using the most conservative critical values, we 

can safely state that in this case the t-form of the error correction test will also reject the 

null of no cointegration. 

0.9
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V. CONCLUSIONS 

 

In this paper we have used Monte Carlo methods to investigate the empirical distribution 

of the levels terms in the error correction relationship between a set of I(1) variables. We 

generate critical values for the conventional F-test for the joint significance of the levels 

terms in such a regression and show that these are generally higher than the critical 

values from the F-distribution. Investigation of the power properties of this test indicate 

that it has higher power than the Engle-Granger test but lower power than a t-test based 

on the error correction model. However, the F-form of the test has the advantage that its 

distribution does not depend on the specific parameters of the problem being considered. 

Finally, we illustrate the value of our approach by considering the relationship between 

UK and US interest rates over the period 1977.02 to 2002.12. We show that it is not 

possible to reject the null of no cointegration between these variables at the 5% level 

using the Engle-Granger test. However, our alternative F-test rejects the null 

convincingly as does the t-form of the error correction test 
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Table One: Critical Values for F-Form of Cointegration Test 
 
k=2 
 

 Monte Carlo Critical 
Values 

 Standard F-
distribution Critical 

Values 

Sample Size 1% 5% 10%  1% 5% 10% 

50 8.86 6.07 4.95  5.08 3.19 2.42 

100 8.12 5.94 4.86  4.83 3.09 2.36 

200 7.97 5.84 4.79  4.71 3.04 2.33 

500 7.86 5.83 4.85  4.65 3.01 2.31 

 
k=3 
 

 Monte Carlo Critical 
Values 

 Standard F-
distribution Critical 

Values 

Sample Size 1% 5% 10%  1% 5% 10% 

50 7.25 5.26 4.35  4.23 2.80 2.20 

100 6.61 5.00 4.22  3.99 2.70 2.14 

200 6.39 4.89 4.19  3.88 2.65 2.11 

500 6.39 4.86 4.15  3.82 2.62 2.09 

 
k=4 
 

 Monte Carlo Critical 
Values 

 Standard F-
distribution Critical 

Values 

Sample Size 1% 5% 10%  1% 5% 10% 

50 6.65 4.76 4.01  3.76 2.57 2.07 

100 6.05 4.51 3.86  3.52 2.47 2.00 

200 5.62 4.39 3.79  3.42 2.42 1.97 

500 5.49 4.39 3.77  3.36 2.39 1.96 
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Table Two: 5% Critical Values for Alternative Error Correction Tests 

 

  F-Test  T-Test 

  1α   1α  

  0 0.5 0.9  0 0.5 0.9 
410−  5.83 5.83 5.83  -2.89 -2.89 -2.89 

1 5.83 5.83 5.83  -2.60 -2.79 -2.89 2

1

σ
σ  

410  5.83 5.83 5.83  -1.61 -1.61 -1.61 
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Table Three: Comparison of Power of the ECM test with the Engle-Granger Test 

 

Rejection Frequency 10% Level 

 

Sample Size Engle-Granger Test ECM (T-test) ECM (F-Test) 

50 11.8 51.2 28.4 

100 25.5 89.4 65.2 

200 71.5 99.9 98.3 

500 100.0 100.0 100.0 

 

Rejection Frequency 5% Level 

 

Sample Size Engle-Granger Test ECM (T-test) ECM (F-Test) 

50 6.1 35.2 16.3 

100 13.4 77.7 47.6 

200 55.6 98.2 95.1 

500 99.9 100.0 100.0 

 

Rejection Frequency 1% Level 

 

Sample Size Engle-Granger Test ECM (T-test) ECM (F-Test) 

50 1.3 11.2 4.1 

100 3.2 41.3 20.4 

200 18.7 95.8 79.7 

500 99.2 100.0 100.0 

 

The rejection frequencies reported above are calculated using the critical values from 
MacKinnon for the Engle-Granger test and the authors’ Monte Carlo estimates for the 
error correction tests. 
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Table Four: Critical Values for the t-form of the ECM test 
 

Sample Size 10% 5% 1% 

50 -2.32 -2.65 -3.37 

100 -2.28 -2.64 -3.36 

200 -2.26 -2.60 -3.26 

500 -2.25 -2.60 -3.26 

 

These critical values are based on the particular sample design given in equations (7) and  
(8) and the assumption that σ σ . 2 2

1 2=
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Figure One: UK and US Treasury Bill Rates 1977.02-2002.12 
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