The Lifecycle of Affirmative Action Policies and Its Effect on Effort and Sabotage Behavior

Subhasish M. Chowdhury, Anastasia Danilov, and Martin G. Kocher

Sheffield Economic Research Paper Series

SERPS no. 2023012

ISSN 1749-8368

16 May 2023
The Lifecycle of Affirmative Action Policies and Its Effect on Effort and Sabotage Behavior*

Subhasish M. Chowdhury a, Anastasia Danilov b, and Martin G. Kocher c

a Department of Economics, University of Sheffield, Sheffield S1 4DT, UK. Email: subhasish.chowdhury@sheffield.ac.uk

b School of Management and Economics, Humboldt-University of Berlin, 10178 Berlin, Germany. Email: anastasia.danilov@hu-berlin.de

c Department of Economics, University of Vienna, 1090 Vienna, Austria; Department of Economics, University of Gothenburg, Gothenburg, Sweden; and CESifo Munich. Email: martin.kocher@univie.ac.at

This version: May 16, 2023

Abstract

A main goal of affirmative action (AA) policies is to enable disadvantaged groups to compete with their privileged counterparts. Existing theoretical and empirical research documents that incorporating AA can result in both more egalitarian outcomes and higher exerted efforts. However, the direct behavioral effects of the introduction and removal of such policies are still under-researched. It is also unclear how specific AA policy instruments, for instance, head-start for a disadvantaged group or handicap for the privileged group, affect behavior. We examine these questions in a laboratory experiment in which individuals participate in a real-effort tournament and can sabotage each other. We find that AA does not necessarily result in higher effort. High performers that already experienced an existing AA-free tournament reduce their effort levels after the introduction of the AA policy. There is less sabotage under AA when the tournament started directly with the AA regime. The removal of AA policies, however, significantly intensifies sabotage. Finally, there are no overall systematic differences between handicap and head-start in terms of effort provision or sabotaging behavior.

JEL Classification: C72; C91; D63; D72

Keywords: Affirmative action; Sabotage; Experiment; Tournament; Handicap; Head-start

* Corresponding author: Anastasia Danilov. We thank Florian Englmaier, Ben Greiner, Wieland Müller, Marie Claire Villeval, the seminar and workshop participants at Seoul National University, the IIM Calcutta, the Vienna Center for Experimental Economics, the Micro and Macro Foundation of Conflicts Conference at Bath, the ESA World Congress at Berlin, the Workshop in Honor of Vernon Smith at Dijon, the SFB Annual Meeting in Schwanenwerder, the Reading Experimental and Behavioral Economics Workshop, and the IAAEU “Workshop on Organizations, Incentives and Performance Pay for their very helpful comments. Ethical approval for the study was obtained at the University of Bath (EIRA1-5352). We gratefully acknowledge the financial support by the German Research Foundation through CRC ‘Rationality and Competition’ (TRR 190 Project number 280092119) and research unit ‘Design and Behavior’ (FOR 1371). Any remaining errors are our own.
1. Introduction

Tournaments and contests are used widely in various organizational, political, and social domains. People participate in several contests such as hiring decisions, promotions, college admissions, grant applications, sport tournaments, and procurement auctions (Balafoutas et al., 2019; Konrad, 2009). In these situations, the winners of a contest are selected based on their relative performance, which is determined by a combination of costly efforts exerted by the contestants, their ability levels and, potentially, a luck or random component. The standard theoretical predictions suggest that relative rewards such as in tournaments often offer high-powered incentives and lead to high overall effort levels being provided. In line with these predictions, the designers of such (promotional, sports, or funding) tournaments are often interested in achieving higher overall effort provision.

In many tournaments, however, the contestants exhibit very different ability levels. This implies that one (or a group) of the contestants has a-priori higher chances of receiving the tournament prize than others (in the following also termed ‘favorites’ and ‘underdogs’). Examples include higher ranked players in sport competitions, researchers with better records of publications in grant applications, privileged students in college applications, more qualified job seekers in the job market, etc. (Fu, 2006; Franke, 2012). Such heterogeneous competitions fail to provide an even-level playing field for the left-behind groups and may result in undesirable outcomes, such as low effort, reduced contest participation, exacerbating income inequality, and lack of diversity, to name a few (Chowdhury et al., 2023). A designer that is either concerned about maximizing effort or aiming for diversity in the tournaments (e.g., in sports or in the workplace) often employs various instruments to level the playing field, known as ‘competitive balance’ (Fort and Maxcy, 2003) in sports. When introduced due to observable characteristics that cannot be changed by the individual such as gender, racial, ethnical, or socio-economic background, such policies are referred to as affirmative action (Holzer and Neumark, 2000).

There are a variety of affirmative action (AA) instruments in practice. The three most common instruments are (i) handicap, in which favorites are weakened a priori; (ii) head-start, in which underdogs are strengthened a priori; and (iii) quota, in which some winning prizes are reserved for the underdogs.
Politically, the idea of AA has always been controversial. Advocates of AA claim that it, among others, reverses historical injustice, counterbalances the difference in abilities, helps to achieve a more egalitarian outcome, as well as induces higher effort levels (Schotter and Weigelt, 1992). Reflecting this, US President Lyndon B. Johnson famously argued in 1965 that “*You do not take a person who for years has been hobbled by chains and liberate him, bring him up to the starting point of a race and then say you’re free to compete with all the others*”. Opposition to AA raises the issue that it is a type of (reverse) discrimination for those that are not supported, it might lead to inefficiencies, and it can reduce total effort provided.

Furthermore, in many tournaments in which relative performance determines the final outcome players cannot only exert effort to improve their own performance, but they can also exert effort to reduce the performance of the rivals (Konrad, 2000; Chowdhury and Gürtler, 2015). Such acts of *sabotage* include spreading rumors, withholding information, damaging outputs, etc. Sabotage is undesirable for most contest designers, but it is especially harmful in the settings of workplace and organizations. Any competitive balance policy that can affect effort provision can potentially also affect sabotage behavior. Hence, when it is possible for contestants to sabotage their competitors, the gross effect of AA as a combination of productive effort and destructive effort becomes relevant.

Figure 1. The Lifecycle of an Affirmative Action Policy

Notably, a possible ‘lifecycle’ of AA, with AA policies being introduced or removed along the way, may induce additional behavioral responses that have not been studied well in controlled experiments so far (see Chowdhury et al., 2023). A possible lifecycle starts with a tournament without an AA policy in place. Then, the designer might introduce an AA policy, and the contestants could change their behavior to adjust to it. After some time, the designer might want to remove the AA policy, and contestants again might adjust to the new regime. Such
dynamic effects depicted conceptually in Figure 1 have not been investigated in a rigorous economic experiment, yet.

The longer horizontal arrow illustrates a potential timeline, and the lifecycle of AA can be divided analytically into four phases, following an overlapping generation logic. Initially, there is no AA policy in phase A. Then, the AA policy is introduced, and the time the AA regime is in place can be broken down analytically into two phases: B and C. In phase B, contestants were ‘born’ in phase A and will now have to adjust to the new regime with AA. However, after some time, other contestants are ‘born into’ the AA regime in phase C who did not previously experience a regime without AA. Phase D depicts the situation after the removal of the AA policy. Note that contestants in phase D that were ‘born’ in an earlier phase with AA will potentially have to adjust to the change in policy.

To investigate the immediate effects of the introduction of AA policies in terms of effort provision and sabotaging one must compare behavior in phase A and phase B. Comparing behavior in phase C and phase D will show the effects of the removal of such a policy. Moreover, both phases A and D are regimes without AA. However, contestants in phase A do not have any prior experience of an AA policy, whereas their counterparts in phase D do. Similarly, both phases B and C are regimes with AA. However, contestants in phase C do not have any prior experience of a tournament regime without AA, whereas people in phase B do.

It is extremely hard to rigorously identify behavioral responses in such dynamics in the field, outside the experimental laboratory (Schotter and Weigelt, 1992). Therefore, we investigate effort exertion and sabotaging behavior in real-effort laboratory tournaments in which contestants of heterogeneous abilities compete for monetary rewards repeatedly. Subjects have a tangible option to sabotage each other. We study the effects of the introduction and removal of two specific ability-based AA instruments: head-start (underdogs are strengthened a priori), and handicap (favorites are weakened a priori). We hypothesize based on a theoretical model laid out in Section 3 that the introduction of any type of AA policy should result in higher effort levels, but also in more sabotage. Furthermore, we hypothesize that the removal of the AA instrument will bring back the status quo ante in terms of effort provided and sabotaging – independent of the policy or the decision-maker type.

Our empirical results indicate that neither favorites nor underdogs increase their effort significantly after the introduction of any AA policy. Furthermore, the increase in sabotage
under the AA policy turns out to be less pronounced than expected; for head-start, sabotaging behavior even is reduced. On the other hand, the removal of AA policies results in higher efforts of favorites and more sabotage from both types. We then identify the conditions under which AA policies work as an effective instrument to propel egalitarian outcomes and increase effort exerted by underdogs. This occurs when contestants are ‘born into’ an AA regime, i.e., they do not have any previous experience of a competitive environment without AA. Notably, we do not observe any significant differences in the effects of head-start and handicap on effort provision and sabotage. Therefore, we conclude that (i) the contestants’ previous experiences with the competitive environment plays an important role in shaping their reactions towards AA policies; and (ii) AA does not induce more sabotaging when it is introduced, but interestingly, we find some evidence that sabotaging is more prevalent after AA policies have been removed.

This study contributes to the literature on AA in two relevant aspects. It is the first experiment to test and compare the effects of different types of AA instruments within a coherent experimental framework. It is also the first experiment to systematically investigate the policy dynamics (introduction and removal) of AA policies – providing insights to scholars in contest research and policy makers alike. Moreover, the current study delivers new insights in the context of the literature on sabotage behavior in a real effort setting by interacting such behavior with (AA) policy instruments.

The rest of the paper is structured as follows. Section 2 discusses the existing literature. In Section 3, we provide the theoretical background and hypotheses. The experimental design is described in Section 4, and the structure of the data and the identification strategy are presented in Section 5. Sections 6 and 7 report our results on effort and on sabotage. Finally, Section 8 concludes.

2. Literature Review

As discussed, the research scope of the current study, broadly speaking, covers three related areas of the literature: contests, AA, and sabotage. Contests are games in which players expend costly resources (effort) to win a prize. Some prominent examples – as provided in the introduction – are promotional tournaments, grant applications, sports tournaments, etc. An excellent overview of the contest literature can be found in the book by Konrad (2009) or in a
recent survey by Corchón and Serena (2018). Many of the contests (e.g., job interviews, promotions, or sport competitions) are created by a contest designer with specific objectives. It is noted in the literature (Konrad, 2009; Chowdhury et al., 2023) that in organizational contests – the contests that we are focusing on in our study – the designer is often interested in maximizing the total effort exerted. Various studies (e.g., Che and Gale, 2003; Moldovanu and Sela, 2001, 2006; Fu and Lu, 2009; Chowdhury and Kim, 2017, among many others) analyze how various contest rules, cost structure of effort, level of randomness in the effort-outcome relationship, etc. contribute to such a goal. For the interested reader, Chowdhury et al. (2023) provide a comprehensive survey of heterogeneity and AA in contests. We contribute to this area of literature experimentally by showing how various AA policy instruments and a sabotage option can affect overall effort and performance.

Out of the various policy measures in contests, we focus on the instruments of AA that are usually introduced to level the playing field when the contestants exhibit heterogeneous ability levels ex ante, either due to innate differences or due to historical injustice. The impact of these instruments has been broadly analyzed in several disciplines. In the following, we concentrate on the AA literature in the context of contest theory. Early theoretical studies point out the positive effects of AA. Fryer and Loury (2005) find that profile-specific AA can increase effort and reduce inequality. Fu (2006) shows that such policies may improve academic test scores when admitting new students. Similar results are obtained when employing various contest structures, number of players, and information settings in the models (Franke, 2012; Franke et al., 2013; Lee, 2013; Calsamiglia et al., 2013). Another set of studies (Fain, 2009; Kirkegaard, 2012; Krishna and Tarasov, 2016; Dahm and Esteve-González, 2018) lay down a variety of mechanisms for which an AA policy can enhance effort by considering issues such as inequality and contest participation. Testing such theories, Schotter and Weigelt (1992) show experimentally that these policies benefit the disadvantaged group and increase the effort levels of all contestants. Balafoutas and Sutter (2012) provide experimental evidence that employing AA to level the playing field for female contestants improves female participation, but exerted effort levels remain the same. Czibor and Martinez (2019) find a positive effect of AA on women’s willingness to compete. We contribute to this literature by introducing a new experimental paradigm that compares two AA policies in the laboratory and by investigating the introduction and removal of such policies in the laboratory for the first time.
Finally, we also contribute to the literature on sabotage as a deliberate act of damaging an opponent’s effort or output to improve one’s own relative performance. The idea was first introduced in the contest literature by Lazear (1989). The theoretical literature was developed later by many scholars (Konrad, 2000; Chen, 2003; Kräkel, 2005; Amegashie and Runkel, 2007; Münster, 2007; Gürtler, 2008; Soubeyran, 2009; Gürtler and Münster, 2010, 2013, among others). There is also a growing number of experimental research from the laboratory on sabotage behavior in the context of contests (Harbring et al., 2007; Harbring and Irlenbusch, 2005, 2008, 2011; Carpenter et al., 2010; Danilov et al., 2019; Dato and Nieken, 2019). In addition, several field studies (del Corral et al., 2010; Deutscher et al., 2013; Garicano and Palacios-Huerta, 2014) identify sabotage behavior in contests. Closer to our specific interest, Brown and Chowdhury (2017) show with horse-racing data that handicapping increases sabotage behavior among jockeys. Steinmayr et al. (2018) document more egalitarian outcomes in balanced swimming relays with appropriately chosen handicap and head-start. Leibbrandt et al. (2018) find experimentally that introducing gender quotas may increase distorted peer reviewing against women, mostly done by women. Fallucchi and Quercia (2018) provide evidence that introducing an AA policy increases retaliation against the designer. Petters and Schröder (2020) report that quotas intensify sabotage that targets the advantaged types by the disadvantaged types. The surveys by Chowdhury and Gürtler (2015) and Piest and Schreck (2020) give comprehensive reviews on the effects of sabotage in contests.

As already mentioned, the literature so far, however, is silent on the interaction of different types of AA policies with sabotage. Testing their potential effects empirically is important because there might be behavioral effects that are not accounted for in theoretical models using standard assumptions. For instance, whereas a head-start a priori may not trigger negative emotions due to its positive frame among those who are not supported, a handicap may do so. Moreover, the existing literature on the effects of the lifecycle of AA policies is very rare: whether an introduction or removal of such policies has effects on subsequent effort levels and sabotage behavior through behavioral spillovers of the previous experience, is a relevant aspect for a contest designer. Our study focuses on these two aspects.

3. Theoretical Benchmark and Hypotheses

We consider a two-player tournament with sabotage (Lazear and Rosen, 1982; Lazear, 1989) in which player $i \in \{1,2\}$ can exert costly effort $e_i \in \mathbb{R}_+$ to enhance own performance, or costly
sabotage $s_j \in \mathbb{R}_+$ to impede the effort of the opponent j (where $i \neq j$). Following the standard structure in the literature (e.g., Gill and Stone, 2010; Brown and Chowdhury, 2017) we denote the ‘output’ of player i as:

$$y_i = \bar{a}_i + a_i + e_i - \alpha s_i + \varepsilon_i$$

where $\bar{a}_i \in \mathbb{R}_+$ is the ex-ante efficiency or ability level, $a_i \in \mathbb{R}$ is the AA policy introduced by the contest designer towards player i, $\alpha \in (0,1)$ is a parameter, s_i is the sabotage inflicted on player i by player j, and $\varepsilon_i \in \mathbb{R}$ is a noise term with known distribution.

The players simultaneously and independently exert efforts and commit sabotage, and the player with the highest output wins a prize of common value $v > 0$. In the case of a tie, the prize is given to either player with the same likelihood. Hence, the Contest Success Function is:

$$p_i = \begin{cases} 1 & \text{if } y_i > y_j \\ 1/2 & \text{if } y_i = y_j \\ 0 & \text{if } y_i < y_j \end{cases}$$

Then, the probability that player i wins is:

$$p_i = \text{Prob}(y_i > y_j) = \text{Prob}\left((\bar{a}_i + a_i + e_i - \alpha s_i + \varepsilon_i) > (\bar{a}_j + a_j + e_j - \alpha s_j + \varepsilon_j)\right)$$

$$= \text{Prob}\left((\bar{a}_i + a_i + e_i - \alpha s_i) - (\bar{a}_j + a_j + e_j - \alpha s_j) > (e_j - e_i)\right)$$

$$= G(\Delta a_i + (e_i - e_j) - \alpha(s_i - s_j))$$

where $\Delta a_i = (\bar{a}_i + a_i - \bar{a}_j - a_j)$, and $G(.)$ is the CDF of $(e_j - e_i)$ with unimodal PDF $g(.)$.

Players face the common cost function $c_i = c(e_i, s_j)$ with the standard properties: $c(0,0) = 0$, $\frac{\partial c}{\partial e_i} > 0$, $\frac{\partial c}{\partial s_j} > 0$, $\frac{\partial^2 c}{\partial e_i^2} \geq 0$, $\frac{\partial^2 c}{\partial s_j^2} \geq 0$, $\frac{\partial^2 c}{\partial e_i \partial s_j} \geq 0$.

Hence, the payoff function of player i, $\pi_i = p_i v - c_i$, can be rewritten as:

$$\pi_i(e_i, s_j) = G(\Delta a_i + (e_i - e_j) - \alpha(s_i - s_j))v - c_i(e_i, s_j) \quad (1)$$

Solving for the first order conditions (FOCs) of (1) we get:
\[g(\Delta a_i + (e_i - e_j) - \alpha(s_i - s_j))v = \frac{\partial c}{\partial e_i} \]
\[g(\Delta a_i + (e_i - e_j) - \alpha(s_i - s_j))v = \frac{\partial c}{\partial s_j} \]

Comparing the FOCs of the two players, we observe that \(\frac{\partial c}{\partial e_1} = \frac{\partial c}{\partial e_2} \) and \(\frac{\partial c}{\partial s_2} = \frac{\partial c}{\partial s_1} \). This implies that there is a symmetric equilibrium for which \(e_1^* = e_2^* \) and \(s_1^* = s_2^* \).

Note that for \(e_1^* = e_2^* = e^* \) and \(s_1^* = s_2^* = s^* \), the FOCs reduce to \(g(\Delta a_i)v = \frac{\partial c(e^*, s^*)}{\partial e_i} \) and \(g(\Delta a_i)v = \frac{\partial c(e^*, s^*)}{\partial s_j} \). Without loss of generality, define \((\bar{a}_1 - \bar{a}_2) > 0 \) as the ex-ante ability difference, i.e., Player 1 is the ‘favorite’ and has a higher ex-ante likelihood of winning the tournament, whereas Player 2 is the ‘underdog’.

An AA policy is introduced in a way such that the designer either adds or subtracts to the effort of the players: i.e., \(a_1 < 0 \) or \(a_2 > 0 \). In effect, \(\frac{\partial |\Delta a|}{\partial |a_1|} < 0 \) and \(\frac{\partial |\Delta a|}{\partial a_2} < 0 \), i.e., both \(a_1 \) (handicap for the favorite) and \(a_2 \) (head-start to the underdog) reduces the a-priori asymmetry in ability. Given the unimodal shape of the PDF, an AA policy will effectively increase \(g(\Delta a_i)v \). To balance the FOC, the marginal costs must increase; and from the convexity of the cost functions, this means both equilibrium effort \((e^*) \) as well as equilibrium sabotage \((s^*) \) should increase.

The simple model based on standard preference assumptions provides us with a set of theoretical predictions that we introduce below. We start with the overall effects of the AA policies as delineated above:

Hypothesis 1. The introduction of an AA policy (either head-start or handicap) will increase (i) effort and (ii) sabotage for both the favorite and the underdog.

The model can also be used to make predictions for the removal of AA policies: ceteris paribus, when an existing AA policy is removed, then both effort and sabotage return to their ‘original’ levels, i.e., effort and sabotage will both decrease. Obviously, in the standard model, there are no spillovers. Furthermore, this theoretical result is invariant in the player’s identity. This provides us with our second hypothesis:
Hypothesis 2. The removal of an existing AA policy (either head-start or handicap) will decrease (i) effort and (ii) sabotage for both the favorite and the underdog.

Further, note that this theoretical effect is independent of the nature of the policy as well. That is, if \(\frac{\partial |\Delta a_1|}{\partial |a_1|} = \frac{\partial |\Delta a_2|}{\partial a_2} \), then \(\frac{\partial e^*}{\partial |a_1|} = \frac{\partial e^*}{\partial a_2} \) as well as \(\frac{\partial s^*}{\partial |a_1|} = \frac{\partial s^*}{\partial a_2} \). This gives our next hypothesis:

Hypothesis 3. If the reduction in heterogeneity is the same for handicap and head-start, then the effect on effort and sabotage will be the same for the two policies.

We test the three hypotheses in a laboratory experiment. Before we do so, it is important to mention explicitly that there can be behavioral effects not captured by standard preference or standard rationality assumptions. First, inertia in action due to habit formation may occur. As a result, even after an AA policy is removed, effort and sabotage levels may stay at higher levels than predicted by standard theory. This type of behavioral inertia is observed in other contexts such as pricing behavior (e.g., Chowdhury and Crede, 2020). Obviously, a policymaker that is required to remove the policy would hope for habit formation only in effort, and not in sabotage. Second, there can be non-invariance of player reactions in the sense that favorites may react differently than underdogs when a policy is implemented or removed. Whereas the AA policies help the underdogs in the contest, it worsens the relative position of the favorite in the contest. Hence, it may result in either a discouragement effect in terms of effort or trigger spiteful behavior in terms of sabotage rather among the favorites than the underdogs (Fallucchi and Quercia, 2018; Girard, 2018). Finally, whereas head-start provides support to the underdog, handicap impedes the possibilities of the favorite. Hence, there may be non-invariance of AA policy choices due to contestants’ different perceptions of handicap and head-start policies, following specific interpretations of procedural fairness concerns (Martin et al., 2020). For example, contestants might increase effort less and increase sabotage more under a handicap policy than under a head-start policy, because they perceive handicap as less fair than head-start. Over the periods, the underdogs will adjust their effort provision, reacting to the favorite’s behavior. Hence, overall head-start could produce more effort and less sabotage than handicap.
4. Experimental Design and Procedures

We conducted a laboratory experiment at the University of Cologne in which a total of 192 subjects took part. The subjects were students of various study disciplines, recruited through the ORSEE lab management software (Greiner, 2015). The average age of the subjects was 24.4 years and about half (47.4%) were females. As detailed below, we employed four between-subjects treatments with two sessions for each. In each session, there were 24 subjects. The experiment was computerized and coded with the help of the z-tree software (Fischbacher, 2007). At the beginning of the experiment, all subjects received general written instructions informing them that the experiment consists of four parts and that there are several identical rounds in Part 1, 2, and 3. Subjects learned that their final earnings would be the sum of the results from one randomly chosen round from each of these three parts, plus earnings from Part 4, and a €4.00 show-up fee. On average, sessions took about an hour and forty-five minutes, and the average earning was €18.40.

The specific instructions regarding the content of an experimental part were provided at the beginning of each part. 1 Part 1 included an individual working phase with eight rounds of two minutes each. The underlying task was to answer as many math questions as possible, with a monetary incentive for each correct answer. According to literature, we call this the ‘piece rate’ mechanism. In both Parts 2 and 3, subjects were matched into pairs and competed for a winner-takes-all tournament prize for working on a different set of math questions (of a similar nature as to those in Part 1). Each of these two parts consisted of eight two-minute rounds, described in more detail below. Part 4 involved a one-shot gamble measuring subjects’ risk attitudes, as developed by Eckel and Grossman (2008). Concluding Part 4, we ran a survey to collect data on demographic characteristics of subjects. At the end of the experiment, one round was randomly chosen for payment from each of the first three parts. Together with the earnings from Part 4, subjects were privately paid in cash at the very end of the experiment. Further details about the real-effort task, individual working phases, tournament procedures and the possibility to sabotage are delineated below.

1 After subjects had read instructions, they had a chance to (privately) ask questions. After all questions had been clarified, subjects were required to complete a comprehension quiz. Only after that could they proceed with the experiment. Complete instructions and questionnaires can be found in Online Appendix III.
4.1. The Real-Effort Task

The real-effort task used in our experiment was inspired by Dohmen and Falk (2011). Subjects had to perform simple arithmetic computations such as additions, subtractions, multiplications, or divisions of two one- or two-digit numbers and enter their answers on the computer screen. A pencil and some papers were provided, but no calculators or other tools (smartphones) were allowed. Each round lasted for two minutes and had a total pool of 50 unique questions (different in each round). Subjects did not know the total number of available questions. The maximum number of correctly solved questions was 43, suggesting that the question pool of 50 was large enough even for the most productive subject.

All subjects worked on the same math questions. Even though the questions were different in every round, we aimed to keep the difficulty of the questions similar between rounds. The question pool in each round included five very easy computations (level one, e.g., 6*6=?, 14-5=?), and 15 computations each from level two (e.g., 57-12=?, 5*21=?), level three (e.g., 3*41=?, 72/6=?)) as well as level four (e.g., 7*61=?, 11*24=?). The order of questions was randomized in a way such that the sequence of difficulty levels was the same in each round. Subjects had no information about the question pool composition.

Instant feedback about the correctness of their answers was given to subjects, and they could always see their scores on the screen. As soon as subjects entered an answer and clicked ‘OK’, a new question appeared. In case the answer was correct, the score increased by one point. Correctly solved questions were not asked again. If the answer was wrong, the score remained unchanged, and the question could be asked again later in the same round. In this manner, we attempted to provide subjects an opportunity to work at their own pace and continue computations even if they were not able to solve a particular calculation.

2 We are aware of the possibility that subjects could avoid more difficult questions by submitting random answers. Nevertheless, we believe that the chance of an intentional selection of question is not essential for our results, because: (i) the number of easy questions was quite low (five), and it was necessary to answer more difficult questions to achieve a sufficiently high score; (ii) the unanswered questions were placed ‘back into the loop’ and asked again; (iii) subjects did not know how difficult subsequent questions would be; and (iv) since all subjects in all treatments went through the same questions in the same order, everyone had an equal opportunity to ‘pick’ an easy question if they intended to do so. For these reasons, we believe to have sufficient control over the possible intentional skipping of difficult questions.
4.2. Measure of Individual Ability

Part 1 was identical in all treatments. It consisted of eight rounds of two minutes each, where subjects worked individually on the real-effort task described above. At the end of the experiment, one of the rounds was randomly selected, and subjects received 5 ECU (€0.15) for each correctly answered question in this round.

Based on the data in Part 1, we computed mean individual scores (i.e., the number of correctly solved questions) and used them as individual proxies of subjects’ abilities. Due to a steep learning curve at the beginning of the experiment, the average number of correct answers goes up by 27.3% in the second half of Part 1 as compared to its first half ($p < 0.01$, two-sided Wilcoxon signed-rank test; see also Table A1 in Appendix I). Thus, our computation of ability score is based only on the second half of Part 1, i.e., rounds five to eight. The relative ranking of ability scores was used to classify subjects into either Category I (favorite or ‘high-ability’, 37.5% of 24 subjects per session), Category II (‘mid-ability’, 25%), or Category III (underdog or ‘low-ability’, 37.5%). Figure 2 illustrates the distribution of ability scores for these categories. The mean ability score of high-ability types amounts to 13.28 correct answers per minute and is 39.2% higher than the ability scores of mid-ability types (9.54), and more than twice as high as of low-ability types (6.62). The differences are highly significant ($p < 0.001$

Notes: Box-and-whiskers plots of ability scores measured as the average number of correct answers per minute in rounds five to eight of Part 1.
for pairwise comparisons; two-sided Fisher-Pitman permutation tests for two independent samples, using Monte-Carlo simulation with 200,000 runs – henceforth FP2S test).³

4.3. Tournament with or without Affirmative Action Policies

In Parts 2 and 3, subjects compete in a tournament according to the following protocol: at the beginning of Part 2, subjects learned that they were divided into three ability categories (I, II, and III), based on their relative performances in Part 1, according to the procedure described above. However, they did not know the number of subjects in each category or any performance thresholds for the classification. Then, subjects were matched into pairs and received information about their own category and the category of their partner. All subjects of the high ability type (Category I) were randomly paired with one of the subjects of the low ability type (Category III). The subjects of the mid-ability type were randomly paired with each other. This categorization and the pair composition remained unchanged for all rounds of both parts. In this paper, we will focus solely on heterogeneous pairs that consisted of one high-ability and one low-ability type contestant. Before the first round of Part 3, subjects were informed that they will interact with the same partner as in Part 2. Hence, our contests used a partner matching protocol (à la Baik et al., 2022) for studying repeated interaction situations that occur frequently in contests outside the laboratory, such as in the work-place settings.

Parts 2 and 3 featured the same real-effort task as in Part 1, but the monetary payoffs were determined by relative performance within pairs: the subject with the higher score won a prize of 285 ECU (€8.55), whereas the other received a payment of 35 ECU (€1.05). In case of a draw, the winner was determined randomly. As in Part 1, subjects played eight identical rounds.

The AA policies varied between treatments: we implemented either head-start (HS) or handicap (HC) to close gaps in ability scores between the high and low-ability types. Head-start brought the low ability players (Category III) 12 extra points in each round. Conversely,

³ A detailed look in the distribution of ability scores by gender reveals that there is a significant gender difference in the composition of types. Precisely, there are fewer women among the high ability Category I than men (15.4% of all female subjects are in Category I vs. 57.4% of all male subjects are in Type I). Similarly, the average ability score of women (8.25 correctly solved questions) is significantly lower than the one of men (11.26, p < 0.001, FP2S test).
handicap reduced the score of the high ability players (Category I) by 12 points in each round.\(^4\) Obviously, the two policies differ only in terms of framing.

In two out of four treatments, the AA policy was introduced only in Part 2, and not in Part 3. In the other two treatments, it was introduced only in Part 3, and not in Part 2. Henceforth, we refer to the treatments with the AA policies in Part 2 as ‘HS-NoAA’ and ‘HC-NoAA’ (head-start and handicap, followed by an interaction in Part 3 without an AA policy), and to the treatments with AA policies in Part 3 as ‘NoAA-HS’ and ‘NoAA-HC’. Subjects had full information about the respective AA policy when it was implemented, but they did not learn about the other AA policy and about a potential later removal of the policy. Everything else was identical between the treatments and the two parts: contestants’ categories, the pair composition, the underlying task and the monetary incentives for winning or losing the contest.

Figure 3. Experimental Setup

<table>
<thead>
<tr>
<th>HS-NoAA and HC-NoAA:</th>
<th>NoAA-HS and NoAA-HC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA introduced</td>
<td>no AA</td>
</tr>
<tr>
<td>HS-NoAA and HC-NoAA:</td>
<td>AA removed</td>
</tr>
<tr>
<td>NoAA-HS and NoAA-HC:</td>
<td>AA introduced</td>
</tr>
</tbody>
</table>

Notes: Each part consisted of eight identical rounds. Instructions were distributed before the first round of each part.

Our motivation for this setup is the following. Based on the difference in achievements, demographic characteristics (such as gender, race, caste, origin, etc.) are often used to determine the target group for an AA policy. For example, in the United Kingdom, the Athena Swan policy is targeted towards support of females in academia. In India the ‘reservation’ policy is targeted towards supporting the people of lower castes, tribal origin, and ‘other backward castes’ (OBCs). Similarly, in Australia, policies are directed towards indigenous people (Aboriginal and Torres Strait Islander Australians). A common feature of these policies is to, first, identify the disadvantaged group, and then to introduce AA policies to increase their chances. Of course, the reasons for why a specific group is disadvantaged and why AA seems

\(^4\) As observed in Part 1 and in the pre-test of the experiment, low-ability types scored on average 13 points less per round than high-ability types. An AA of 12 points allowed the low ability subjects to lift up their (ex-ante) chances to win a tournament from 3% (as in parts without AA) to 22%-32% when AA policies applied.
justified are usually embedded in a historical background, and it is impossible to bring such backgrounds into experimental laboratory. However, we capture the incentives and the essence of it in our setup: first, we categorize subjects that are ‘left behind’ in the mathematical task, and we then support them with the AA policy (for more examples, see Chowdhury et al., 2023).

At the end of each round, subjects were informed about their score and the score of their opponent, they were reminded about the AA policy (if applicable), and they learned about the resulting bonus (reward) allocation. Subjects also saw the results from the past rounds of the respective parts in the form of a history table. Figure 3 gives an overview of experimental parts and treatments.

4.4. Sabotage

One of the main goals of our experiment was to assess how sabotage behavior differs between treatments and ability types. Following Berger et al. (2013), we implemented sabotage in a way such that every contestant could negatively influence the score of their opponent. During a tournament round everyone could click the ‘block’ button and blackout the screen of the opponent for nine seconds, preventing the opponent from performing the task. The consequence for the saboteur him- or herself (i.e., the cost of sabotaging) was a three-second-long blackout. Subjects could use the ‘block’ button as often as they desired, but at least 12 seconds had to pass in-between two consecutive clicks by the same person (i.e., nine seconds of sabotage-time and an additional three seconds of a cooling-off period). All this was common knowledge among subjects.

To reduce the possibility that subjects click on the ‘block’ button, because it represented the only alternative to performing the real-effort task – perhaps out of boredom – we provided an additional activity option: a ‘break’ button. After clicking on this button, subjects could ‘take a break’ and read cartoons that appeared for nine seconds (see Online Appendix III for an example). There was no limit on the number of breaks and no costs for taking them. However, subjects did not use this option much, as the average number of breaks amounts to 0.41 (i.e., less than 4 seconds) per subject per round.

4.5. Risk Preferences and Demographic Characteristics

In Part 4 we elicited subjects’ risk preferences. The task was a close resemblance of the single choice list risk-elicitation task from Eckel and Grossman (2008): each subject was presented
six lotteries, with two equally likely prizes for each. The expected payoffs from the lotteries increased with their increasing variances. Subjects had to choose one lottery that they would like to play. Then the computer ‘tossed a coin’ and determined the lottery’s outcome according to the chosen option. At the end of Part 4, subjects learned about the realization of the lottery and the randomly selected rounds in Parts 1 to 3 that were payoff relevant. We also elicited self-reported risk attitudes following Dohmen et al. (2011) and demographic characteristics. Finally, subjects received their earnings privately and in cash.

5. Data and Identification Strategy

In the empirical analysis, we proceed as follows. First, we compare subjects’ behavior between treatments in Part 2 across the dimensions of different AA policies. To do so, we pool the data from NoAA-HS and NoAA-HC, as all subjects faced the same conditions (no AA). Second, we proceed with a within-subject analysis of response strategies towards the introduction of AA policies by comparing Part 2 with Part 3 in the NoAA-HS and NoAA-HC treatments, separately for the two AA policies. Third, we investigate the reactions to the removal of AA policies by comparing Part 2 with Part 3 in the HS-NoAA and HC-NoAA treatments, again separately for the two AA policies. We describe results for effort provision in Section 6 and for sabotaging in Section 7.

As a measure of effort, we use the number of correctly solved problems per available working minute. Since the initially available working time of two minutes per round could be reduced by being sabotaged, we subtract received sabotage time (in seconds). Specifically, we define effort as:

\[\text{effort}_{it} = \frac{\text{number of correctly solved problems}_{it}}{120 - \text{received sabotage seconds}_{it}} \times 60 \]

where \(i \) is the individual subject’s identifier and \(t \) is the round’s number.

We do not deduct the time lost for imposing sabotage on the opponent. This is because the application of sabotage is one’s own conscious decision.

5 We look at the number of correctly solved problems. For an alternative effort measure, we could resort to the total number of submitted answers instead of the number of correct answers. In any case, these two measures are highly correlated (Spearman’s \(\rho = 0.92 \) and \(p < 0.01 \) for both types, see Figure A1 in Appendix I), and empirical results are largely the same.
Our measure for sabotage is the number of sabotage seconds per minute of round t that subject i imposed on her opponent. For easier interpretation, we normalize the measure by seconds of available working time, i.e., we deduct the received sabotage seconds from the two minutes:

$$sabotage_{it} = \frac{\text{imposed sabotage seconds}_{it}}{120 - \text{received sabotage seconds}_{it}} * 60$$

In addition, we focus on three measures: (i) the share of subjects that never use sabotage; (ii) sabotage occurrence as the number of rounds in which a subject committed at least one act of sabotage (i.e., number of rounds with $sabotage_{it} > 0$); (iii) sabotage intensity as sabotage committed by saboteurs (i.e., $sabotage_{it} | sabotage_{it} > 0$).

6. Results: Affirmative Action and Effort Provision

6.1. Types of Affirmative Action and Effort Provision

Figure 4 shows cumulative distribution functions of average individual effort levels. The results of pairwise comparisons of effort under different regimes tested with FP2S tests are not significant for high-ability types (all $p > 0.45$). However, the effort of low-ability types is significantly higher under the AA regimes than without AA ($p = 0.09$ for HS vs. NoAA, and $p = 0.02$ for HC vs. NoAA, FP2S test). The difference between head-start and handicap is not significant (all $p > 0.55$, FP2S test). Focusing only on the first round of Part 2 does not change these results.

We estimate a random-effects panel regression model of individual effort on a constant, the AA dummies, an ability type dummy, and control variables such as experimental round, gender, and age. As reported in Table 1, the results are largely in line with the non-parametric test results: Model (1) suggests that being ‘born into’ an AA policy has, on average, no effect on effort levels; coefficients of the dummy variables Head-start and Handicap are not significantly different from zero. Adding interaction terms of AA policies with the dummy Low-ability as explanatory variables in model (2), enables us to disentangle the impact of the AA policy on players of different types. In model (2), the coefficients Head-start and Handicap

6 Panel (A) of Table 1 reports descriptive statistics of average individual efforts in Part 2 under the three regimes.
7 When reporting non-parametric statistics, we generally focus on individual averages over eight rounds. This enables us to ensure statistical independence of our observations. All reported tests are two-sided.
measure the impact of the initially present AA policies on the effort of high-ability types and are not significantly different from zero. However, the statistically significant and positive coefficient of the interaction term \textit{Handicap} \times \textit{Low-ability} indicates that handicap increases the effort levels of low-ability subjects by 0.51 standard deviations ($p = 0.02$, two-sided Wald test), as compared to a regime without AA. This result is also true for head-start if we control for lagged effort in model (3) ($p = 0.09$, Wald test). Neither non-parametric tests nor the post regression estimates provide statistical support for any differences in the impact of head-start and handicap on effort provision (all $p \geq 0.62$, Wald tests).

\textbf{FIGURE 4. EMPIRICAL CDFs OF EFFORT IN PART 2}

\textbf{Notes:} Cumulative distribution functions of average efforts over eight rounds. One independent observation per subject in the left and the middle panels. One independent observation per pair in the right panel.

\textbf{Result 1.} In Part 2, when AA policies are implemented right at the beginning: (a) the AA policies do not significantly affect overall effort levels; (b) effort provision of high-ability types is not significantly different in regimes with or without AA; (c) low-ability types exert more effort when an AA policy is in place than when not; and (d) effort levels exerted under head-start and handicap are not significantly different from each other.

Results 1(a) and 1(b) contradict Hypothesis 1, regarding increased effort under AA policies. Result 1(c) does not refute Hypothesis 1, but only for low-ability types. Result 1(d) is in line with Hypothesis 3, predicting the same effort reaction towards handicap and head-start.
TABLE 1. IMPACT OF AA POLICIES ON EFFORT IN PART 2

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head-start</td>
<td>0.080</td>
<td>-0.721</td>
<td>-0.398</td>
</tr>
<tr>
<td></td>
<td>(0.840)</td>
<td>(1.272)</td>
<td>(0.353)</td>
</tr>
<tr>
<td>Handicap</td>
<td>0.551</td>
<td>-0.392</td>
<td>-0.236</td>
</tr>
<tr>
<td></td>
<td>(0.775)</td>
<td>(1.060)</td>
<td>(0.325)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>-4.608***</td>
<td>-5.514***</td>
<td>-1.212***</td>
</tr>
<tr>
<td></td>
<td>(0.491)</td>
<td>(0.485)</td>
<td>(0.262)</td>
</tr>
<tr>
<td>Head-start × Low-ability</td>
<td>1.608</td>
<td>0.793**</td>
<td>0.717</td>
</tr>
<tr>
<td></td>
<td>(1.065)</td>
<td>(0.801)</td>
<td>(0.381)</td>
</tr>
<tr>
<td>Handicap × Low-ability</td>
<td>1.893**</td>
<td>0.652**</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.801)</td>
<td>(0.306)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Effort in t-1</td>
<td></td>
<td></td>
<td>0.810***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.037)</td>
</tr>
<tr>
<td>Constant</td>
<td>10.863***</td>
<td>11.354***</td>
<td>2.363***</td>
</tr>
<tr>
<td></td>
<td>(1.489)</td>
<td>(1.546)</td>
<td>(0.596)</td>
</tr>
<tr>
<td># Observations</td>
<td>1,152</td>
<td>1,152</td>
<td>1,008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Overall R²</td>
<td>0.340</td>
<td>0.349</td>
<td>0.724</td>
</tr>
</tbody>
</table>

Post-regression Wald-tests

<table>
<thead>
<tr>
<th></th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handicap = Head-start</td>
<td>0.625</td>
</tr>
<tr>
<td>Head-start + Head-start × Low-ability = 0</td>
<td>0.134</td>
</tr>
<tr>
<td>Handicap + Handicap × Low-ability = 0</td>
<td>0.017</td>
</tr>
<tr>
<td>Head-start × Low-ability = Handicap × Low-ability</td>
<td>0.818</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with effort\(_t\) as the dependent variable. The analysis includes the data from Part 2 of all four treatments. Head-start and Handicap are subject- and time-invariant dummies for the AA policies. The reference group is the regime without AA. Low-ability is an indicator variable for the low-ability type (with the high-ability type as the reference group). Head-start × Low-ability and Handicap × Low-ability are interaction terms. Effort in \(e_{t-1}\) corresponds to the effort in the previous period. Not reported control variables are age, rounds and a dummy for female subjects. Controlling for lagged effort of the rival, being the tournament winner in the preceding round, or risk attitudes does not change the results. Robust standard errors (clustered on the pair level) are reported in parentheses. *** \(p < 0.01\), ** \(p < 0.05\), * \(p < 0.1\).

6.2. Introduction of Affirmative Action Policies and Effort Provision

Figure 5 provides an overview of changes in individual average effort levels from Part 2 to Part 3 after the introduction of the AA policies.\(^8\) The average effort levels of high-ability types are significantly lower in Part 3 than in Part 2 (in both treatments \(p < 0.01\), two-sided Fisher-Pitman permutation test for paired replicates; or FPP test, henceforth). In the NoAA-HS treatment, the average individual effort of low-ability types is weakly significantly higher in Part 3 than in Part 2 (\(p = 0.06\), FPP test). However, there is no significant change in effort of low-ability types in the NoAA-HC treatment (\(p = 0.58\), FPP test). In both treatments, the effort reduction of high-ability types largely outweighs the small positive change in effort levels of low-ability types. Thus, overall effort is significantly lower in Part 3 than in Part 2 (\(p = 0.05\)

\(^8\) The overall pattern is very similar when we focus only on the very first rounds of Parts 2 and 3.
for NoAA-HS and \(p = 0.01 \) for NoAA-HC, FPP tests). Again, head-start and handicap do not differ in their effects on changes in effort levels (all \(p > 0.20 \), FP2S tests).

FIGURE 5. EFFORT CHANGE OF THE INTRODUCTION OF AFFIRMATIVE ACTION POLICIES

![Figure 5](image)

Notes: Data points are individual average efforts in two parts. Standard error bars.

TABLE 2. EFFORT AND THE INTRODUCTION OF AFFIRMATIVE ACTION

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction head-start</td>
<td>-1.200**</td>
<td>-3.187***</td>
<td>-0.897***</td>
</tr>
<tr>
<td></td>
<td>(0.521)</td>
<td>(0.923)</td>
<td>(0.324)</td>
</tr>
<tr>
<td>Introduction handicap</td>
<td>-2.185***</td>
<td>-4.701***</td>
<td>-1.260***</td>
</tr>
<tr>
<td></td>
<td>(0.737)</td>
<td>(1.162)</td>
<td>(0.411)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>-3.860***</td>
<td>-6.076***</td>
<td>-1.435***</td>
</tr>
<tr>
<td></td>
<td>(0.592)</td>
<td>(0.600)</td>
<td>(0.277)</td>
</tr>
<tr>
<td>Introduction head-start × Low-ability</td>
<td>3.999***</td>
<td>1.108***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.978)</td>
<td>(0.360)</td>
<td></td>
</tr>
<tr>
<td>Introduction handicap × Low-ability</td>
<td>5.007***</td>
<td>1.679***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.959)</td>
<td>(0.392)</td>
<td></td>
</tr>
<tr>
<td>Effort in (t-1)</td>
<td></td>
<td></td>
<td>0.798***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.035)</td>
</tr>
<tr>
<td>Constant</td>
<td>8.096***</td>
<td>9.259***</td>
<td>2.577***</td>
</tr>
<tr>
<td></td>
<td>(1.957)</td>
<td>(1.925)</td>
<td>(0.630)</td>
</tr>
<tr>
<td># Observations</td>
<td>1,152</td>
<td>1,152</td>
<td>1,008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Overall (R^2)</td>
<td>0.183</td>
<td>0.230</td>
<td>0.692</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with efforts as the dependent variable. The data are from Parts 2 and 3 of the NoAA-HS and NoAA-HC treatments. *Introduction head-start* and *Introduction handicap* are dummy variables that equal one in Part 3 under the respective AA policy and zero otherwise. The reference group is Part 2 when no AA policies applied. Low-ability is an indicator variable for the low-ability type (with the high-ability type as the reference group). *Introduction head-start × Low-ability* and *Introduction handicap × Low-ability* are interaction terms. Effort in \(t-1 \) corresponds to the effort in the previous period. Not reported control variables are age, rounds and a dummy for female subjects. Controlling for lagged effort of the rival, being the tournament winner in the preceding round, and risk attitudes does not change the results. Robust standard errors (clustered on the pairs’ level) are reported in parentheses. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \).
Table 2 presents random effects regression estimations of introduced AA policies on effort. In general, the regression analysis supports the non-parametric test results. Namely, in model (1), the coefficients of the dummy variables Introduction head-start ($p < 0.05$) and Introduction handicap ($p < 0.01$) indicate an overall negative effect of the introduction of the AA policy on effort levels. In models (2) and (3) we add the interaction terms between the ability type and the AA policy. The positive and at the 1% level significant coefficients show the differential effects of the AA policy on high- and low-ability types. The introduction of AA policies has a significantly negative effect on the effort levels of the high-ability types, but a significantly smaller effect on low-ability types, with no evidence for a significant negative effect of AA policies on the effort levels for low-ability types (see post-regression test estimations). Again, neither the non-parametric results nor the post-regression test of equality of the coefficients provide any evidence for different effort effects of the handicap and head-start.

Result 2. (a) *The overall effect of the introduction of AA policies on effort levels is negative.* (b) *Effort provision of high-ability types goes down after the introduction of the AA policies in Part 3.* (c) *Effort of low-ability types does not decline, after the AA policies are introduced.* (d) *The effects of the introduction of head-start and handicap policies on effort provision are not significantly different from each other.*

Results 2(a), 2(b) and 2(c) do not support Hypothesis 1 that predicts higher effort after the introduction of AA policies. Overall, our results strongly indicate that high-ability contestants will not increase their effort levels under AA policies if they experience competition earlier without AA. Result 2(d) provides support for Hypothesis 3 as we observe no differences in the effect of the two policies. So far, we do not find much support for positive effects of the introduction of AA policies on effort in our setup.9

Is it possible that the lower effort of high-ability types in Part 3 under AA than in Part 2 is due to a general fatigue or dynamic effects unrelated to AA? At least three observations suggest that this is unlikely. Firstly, there is no decrease in effort under the AA-free regime in Part 3. Indeed, effort of both types is not statistically different in Parts 2 and 3 of NoAA (all $p \geq 0.36$, FP2S tests). Table A2 in the Appendix support the non-parametric results. Secondly, we do not

9 In Online Appendix II, we present results for the direct comparison of subjects’ behavior under the AA regimes in Part 2 and in Part 3, abstracting from uncontrolled potential effects from the history of the interaction. We find similar patterns as described in Result 1 and Result 2.
observe any indication of fatigue or similar effort-decreasing effects for low-ability types. Thirdly, as presented in the next chapter, high-ability types increase their effort provision after the removal of the AA policies, suggesting that there is no sign for general fatigue effects.

6.3. Removal of Affirmative Action and Effort Provision

Figure 6 illustrates the difference in average individual effort levels between Part 3 and Part 2, for treatments HS-NoAA and HC-NoAA in which AA policies are removed.\(^\text{10}\) It reveals that high-ability types increase their effort provision after the removal of the AA policy, but the increase is only statistically significant for head-start (\(p = 0.02\), FPP test), and not for handicap (\(p = 0.25\), FPP test). Low-ability types slightly decrease effort in Part 3 when an AA policy is removed, although this decline is not statistically significant (both \(p \geq 0.16\), FPP tests). The overall (across both types) change in effort provision is not significantly different from zero (\(p \geq 0.16\), FPP tests). In other words, there is no reduction of total effort, as predicted by theory. Again, the difference in reaction between handicap and head-start is not statistically significant (\(p \geq 0.41\), FP2S tests).

![Figure 6. Effort Change of the Removal of Affirmative Action Policies](image)

Notes: Data points are individual average efforts in two parts. Standard error bars.

Table 3 reports results from the econometric analysis.\(^\text{11}\) In model (1), the coefficients of the dummy variables *Removal head-start* and *Removal handicap* measuring the average effect of the removal of AA policies on effort provision, are not significantly different from zero. Model (2) includes the interaction terms of *Low-ability* and the dummy variables for the

\(^{10}\) Out-of-laboratory examples of such removals include the 1996 ban on the California State University system from recruiting and offering scholarships to students based on race, and the Equality Act 2010 in the UK that prohibits most of workplace AA (except, for instance, in the context of disability).

\(^{11}\) See Table A3 in the Appendix for estimations of an alternative specification that lumps AA policies together.
removal of AA policies. While the coefficient of the Removal head-start dummy becomes positive at the 5%-significance level, the coefficient of its interaction term with an ability dummy is negative and significant ($p < 0.01$). Furthermore, the interaction dummy Removal handicap \times Low-ability is negative and marginally significant ($p = 0.05$). The parametric results support the general picture from the non-parametric tests: while the removal of head-start has a positive effect on the effort of high-ability types, its effect on the effort of low-ability types is significantly smaller, and the overall effect is not significantly different from zero. We do not observe any significant difference in the reaction to the removal of head-start and handicap policies.

Table 3. Effort and the Removal of Affirmative Action Policies

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-NoAA treatment</td>
<td>-0.417</td>
<td>-0.418</td>
<td>-0.078</td>
</tr>
<tr>
<td></td>
<td>(0.977)</td>
<td>(0.978)</td>
<td>(0.288)</td>
</tr>
<tr>
<td>Removal head-start</td>
<td>0.556</td>
<td>1.755**</td>
<td>0.512**</td>
</tr>
<tr>
<td></td>
<td>(0.377)</td>
<td>(0.711)</td>
<td>(0.256)</td>
</tr>
<tr>
<td>Removal handicap</td>
<td>0.002</td>
<td>0.881</td>
<td>0.369</td>
</tr>
<tr>
<td></td>
<td>(0.553)</td>
<td>(0.727)</td>
<td>(0.264)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>-4.709***</td>
<td>-3.662***</td>
<td>-0.404</td>
</tr>
<tr>
<td></td>
<td>(0.631)</td>
<td>(0.651)</td>
<td>(0.284)</td>
</tr>
<tr>
<td>Removal head-start \times Low-ability</td>
<td></td>
<td></td>
<td>-2.398***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.903)</td>
</tr>
<tr>
<td>Removal handicap \times Low-ability</td>
<td>-1.758*</td>
<td>-0.608*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.905)</td>
<td>(0.321)</td>
<td></td>
</tr>
<tr>
<td>Effort in $t-1$</td>
<td></td>
<td></td>
<td>0.814***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.044)</td>
</tr>
<tr>
<td>Constant</td>
<td>11.860***</td>
<td>11.292***</td>
<td>2.255***</td>
</tr>
<tr>
<td></td>
<td>(2.348)</td>
<td>(2.356)</td>
<td>(0.807)</td>
</tr>
<tr>
<td># Observations</td>
<td>1,152</td>
<td>1,152</td>
<td>1,008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Overall R^2</td>
<td>0.326</td>
<td>0.338</td>
<td>0.733</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with effort as the dependent variable. The data are from Parts 2 and 3 of the HS-NoAA and HC-NoAA treatments. HS-NoAA treatment is a treatment dummy that equals one in the treatment HS-NoAA and zero otherwise. The reference group is HC-NoAA treatment. Removal head-start and Removal handicap are dummy variables that equal one in Part 3 of the respective treatment when AA policy was removed and zero otherwise. The reference group is Part 2 when the respective AA policies applied. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Removal head-start \times Low-ability and Removal handicap \times Low-ability are interaction of the dummy variables. Effort in $t-1$ corresponds to the effort in the previous period. Not reported control variables are age, rounds and a dummy for female subjects. Controlling for lagged effort of the rival, being the tournament winner in the preceding round, and risk attitudes does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Result 3. (a) The overall effect of the removal of AA policies on effort is not negative. (b) Effort levels of high-ability types increase after the removal of AA policies in Part 3. (c) Compared
to the efforts of high-ability types, effort levels of low-ability types decrease after the removal of the AA policies. (d) The adjustment of effort levels is similar for head-start and handicap.

Results 3(a), 3(b), and 3(c) contradict Hypothesis 2, predicting decreasing effort after the removal of an AA policy. Result 3(d) is in line Hypothesis 3. It seems that, when an AA policy is removed, the removal brings about a discouragement effect for low-ability types and an encouragement effect for high-ability types. This can dramatically reduce the winning chances of low-ability types.

7. Results: Affirmative Action and Sabotage Behavior

7.1. Types of Affirmative Action and Sabotage Behavior

Figure 7 displays the cumulative distribution functions of average sabotage, sabotage occurrence and sabotage intensity in Part 2. Panel (A) illustrates empirical CDFs of individual average number of sabotage seconds exerted per minute over all rounds. On average, subjects sabotage for 19.6 seconds per minute when there is no AA policy in place, 11.4 under the head-start policy, and 6.4 under the handicap policy. The difference in sabotage seconds between handicap and no AA is statistically significant ($p = 0.01$ for comparison of pairs, $p = 0.01$ for high-ability types and $p = 0.03$ for low-ability types, FP2S tests). Furthermore, average sabotage committed by high-ability types in Part 2 is significantly lower under head-start than without AA ($p = 0.03$, FP2S test) but not for low-ability types ($p = 0.26$, FP2S test). Table A5 provides results of the panel regression estimations for overall sabotage levels. As can be seen, the coefficient for the treatment dummy head-start is negative and weekly significant, and the treatment dummy for handicap is negative and highly significant, suggesting that average sabotage is lower under both AA policies than without an AA policy. The non-parametric tests of average sabotage provide no evidence for a significant difference between head-start and handicap (all $p \geq 0.23$, FP2S tests).

Panel (B) shows the empirical distributions of sabotage occurrence (i.e., the number of rounds when $sabotage_i > 0$ that ranges from 0 to 8). Under handicap, sabotage occurred in significantly fewer rounds than under head-start ($p = 0.05$) or without AA ($p = 0.07$, FP2S test of pair averages). When assessing average sabotage occurrence by type, both types sabotage in

12 In Panel (A) of Table A4 in Appendix I, we present descriptive statistics for sabotage behavior under the three regimes.
weakly significantly fewer rounds under handicap than under head-start ($p = 0.07$ for both low-ability types and high-ability types, FP2S tests). However, the difference between handicap and the regime without AA is significant only for high-ability types ($p = 0.03$). In a similar vein, the share of subjects that never sabotage in Part 2 is highest under handicap (42%) and lowest under head-start (20%) (see also Table A4 in the Appendix for more details).

Figure 7. Empirical CDFs of Sabotage in Part 2

Notes: Cumulative distribution functions of individual sabotaging behavior (average over eight rounds) in Part 2. One independent observation per subject (or pair).

Panel (C) reports the distributions of sabotage intensity (when $sabotage_{it} > 0$). On average, ‘actively’ sabotaging contestants of both types sabotage less intensively under AA policies than
without AA (all \(p \leq 0.02 \), FP2S tests). There is no significant difference between handicap and head-start (all \(p \geq 0.58 \), FP2S tests).\(^{13}\)

We conduct our econometric analyses of sabotage, using a panel hurdle model (for technical details see Engel and Moffatt, 2014). This approach allows us to analyze sabotage occurrence and intensity simultaneously. Based on the logic of the hurdle model, we assume that a subject’s decision to sabotage in round \(t \) and the level of sabotage follow two separate stochastic processes. In the first specification, we estimate the probability of (any) potential sabotaging behavior as a function of the AA policy, round dummies, subjects’ type and demographic control variables such as gender and age by using a panel probit regression with random effects and standard errors clustered by subjects’ pairs. Next, we estimate a tobit model on the restricted sample of those who sabotaged. The dependent variable in the tobit regressions is equal to \(\text{sabotage}_{it} \) but the sample is restricted to data points meeting the \(\text{sabotage}_{it} > 0 \) condition. It is interval-truncated between 1 and 60 (seconds), with the same basic set of control variables as for the panel probit regression. In models (2) and (3), we add interaction variables of the style \([\text{AA Policy}] \times \text{Low-ability type}\). In model (3), we include the amount of received sabotage in the previous round as an independent variable.\(^{14}\)

The estimation results of probit regressions in Table 4 confirm that the head-start policy, on average, does not have any effect on the probability of sabotage occurrence as compared to the regime without AA. Handicap, however, decreases the probability of sabotage occurrence, on average, by 0.21 (see first specification of model (1), \(p < 0.05 \)). The significant results of the post-regression tests for the difference between the coefficients of Head-start and Handicap suggest that the probability of sabotage occurrence is significantly lower under handicap than under head-start (\(p < 0.05 \)). The interaction dummy \(\text{Handicap} \times \text{Low-ability} \) in columns three and five is positive and weakly significant (\(p < 0.1 \)), suggesting that the decrease in the probability of sabotage occurrence is more pronounced among high-ability types. Indeed, the probability of the low-ability types to apply sabotage in one round is not different under handicap than under the other two regimes (the linear combination of the coefficients Handicap and Handicap \(\times \) Low-ability is negative, but it is not significantly different from zero,

\(^{13}\) The overall patterns of these indicators are very similar when we focus on the very first round in Part 2.

\(^{14}\) The standard GLS estimations were run to check robustness and are reported in Table A6 in Appendix I.
This supports the non-parametric results: high-ability types use sabotage in fewer rounds under handicap than under other regimes.

Table 4. Impact of Affirmative Action on Sabotage in Part 2

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1) Sabotage occurrence (Panel probit)</th>
<th>(2) Sabotage occurrence (Panel probit)</th>
<th>(3) Sabotage occurrence (Panel probit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sabotage intensity (Panel tobit)</td>
<td>Sabotage intensity (Panel tobit)</td>
<td>Sabotage intensity (Panel tobit)</td>
</tr>
<tr>
<td>Head-start</td>
<td>0.035 (0.095)</td>
<td>-0.018 (0.099)</td>
<td>-0.013 (0.095)</td>
</tr>
<tr>
<td>Handicap</td>
<td>-0.208** (0.097)</td>
<td>-0.254*** (0.095)</td>
<td>-0.224** (0.088)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>0.085* (0.049)</td>
<td>0.031 (0.060)</td>
<td>-0.000 (0.065)</td>
</tr>
<tr>
<td>Head-start x Low-ability</td>
<td>0.108 (0.084)</td>
<td>0.094* (0.055)</td>
<td>0.142* (0.073)</td>
</tr>
<tr>
<td>Handicap x Low-ability</td>
<td>0.094* (0.084)</td>
<td>0.094* (0.055)</td>
<td>0.069** (0.066)</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>31.440*** (9.598)</td>
<td>30.896*** (9.905)</td>
<td>30.997*** (8.248)</td>
</tr>
<tr>
<td># Observations</td>
<td>1152</td>
<td>1152</td>
<td>1008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Wald Chi²</td>
<td>30.501</td>
<td>43.333</td>
<td>73.130</td>
</tr>
<tr>
<td>Post-regression Wald-tests p-values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS = HC</td>
<td>0.013 (0.06)</td>
<td>0.008</td>
<td>0.036</td>
</tr>
<tr>
<td>HS + HS x Low-ability = 0</td>
<td>0.040 (0.001)</td>
<td>0.149</td>
<td>0.443</td>
</tr>
<tr>
<td>HC + HC x Low-ability = 0</td>
<td>0.866 (0.02)</td>
<td>0.866</td>
<td>0.866</td>
</tr>
<tr>
<td>HS x Low-ability = HC x Low-ability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The data comprise of one observation per individual per round (Part 2, all treatments). Estimation coefficients in columns one, three and five report panel probit regressions with random effects clustered on the pairs’ level. The dependent variable Sabotage occurrence_{it} is a dummy variable that takes the value 1 in case of sabotage by subject i in round t. These coefficients show marginal effects. Estimation coefficients reported in columns two, four and six report panel tobit regressions. The dependent variable here is Sabotage intensity_{it}, conditioned on sabotage_{it} > 0. The data points sabotage_{it} = 0 are not included in the tobit estimations. Therefore, the dependent variable is truncated between 1 and 60. Head-start and Handicap are subject- and time-invariant dummies for the AA policy. The reference group is the regime with no AA. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Head-start x Low-ability and Handicap x Low-ability are interaction dummies. Sabotage received in t – 1 corresponds to the sabotage received in the previous round. Not reported control variables are age, round dummies and a female dummy. Controlling for risk attitude and being the tournament winner in the preceding round does not substantially change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The tobit models show that subjects of both types sabotage less intensively under head-start and handicap as compared to when no AA policy applies (the effect size ranges between 14.5 to 21.6 (seconds of sabotage per available working minute), all p < 0.01). With an average sabotage intensity of 36.5 seconds under no AA, the effect size is quite substantial in magnitude (for more details see Panel (A) in Table A4 in Appendix I). There is no significant difference
in this pattern between head-start and handicap, nor between high-ability and low-ability types, as can be seen from the post-regression test results and interaction variables.15

Result 4. In Part 2, when AA policies apply right from the beginning: (a) the number of rounds with sabotage is significantly lower under handicap than under head-start or without an AA regime; (b) sabotage intensity of both types is significantly lower with AA policies than without; and (c) there is no significant difference between handicap and head-start with regard to sabotage intensity, but there is one for sabotage occurrence (lower under handicap than under head-start).

Results 4(a) and (b) clearly reject Hypothesis 1 predicting higher sabotage under the AA policies. Result 4(c) partially rejects Hypothesis 3, given that sabotage is occurring less frequently under handicap than under head-start. Since our theory does not explicitly capture behavioral motivations such as fairness preferences, social norms, reference points, emotions, etc. that may affect sabotage decisions in a particular context, the observed differences warrant further research.

7.2. Introduction of Affirmative Action and Sabotage Behavior

Panel (A) of Figure 8 illustrates the changes in average sabotage levels (over all rounds and all subject), when AA policies are introduced in treatments NoAA-HS and NoAA-HC. Panel (B) indicates the changes in sabotage occurrence. When handicap is introduced in Part 3, low-ability types tend to sabotage more as compared to the regime without AA in Part 2: the average duration of sabotage event increases by 11.2 seconds per minute ($p = 0.01$) and the number of rounds with sabotage increases by 2.1 ($p = 0.02$, FPP tests). Surprisingly, we do not observe any significantly positive effects of AA policies on high-ability types’ sabotage behavior. On the contrary, they sabotage, on average, less under head-start than under the regime without AA ($p = 0.04$) and in fewer rounds ($p = 0.08$, FPP tests). The change in average sabotage is (weakly) significantly different between the NoAA-HS and NoAA-HC treatments ($p = 0.08$ for high-ability types, $p = 0.06$ for low ability types, and $p = 0.04$ for pairs, FP2S tests), but the change in sabotage occurrence is not significantly different between the two treatments ($p \geq 0.18$, FP2S test).

15 The results of the random-effects GLS panel regressions reveal a similar pattern with regard to the overall sabotage levels and are reported in Table A5 in Appendix I.
Figure 8. Change in Sabotage after the Introduction of Affirmative Action Policies

Notes: The sample includes Parts 2 and 3 of the NoAA-HS and NoAA-HC treatments. Bars shown are mean individual values of differences in sabotage between Part 3 and Part 2. The units in Panel (A) are seconds per work minute, and in Panel (B) rounds. The error bars are standard errors. The results are very similar when focusing only at the first rounds of the two parts. Table 5 reports the results of regression estimations.16 Again, we rely on a hurdle model. However, the AA dummies *Introduction head-start* and *Introduction handicap* take the value of one if the respective AA policies apply (i.e., in Part 3), and zero otherwise, with Part 2 serving as the reference group. The probit estimation in model (1) indicates that, on average, the probability of sabotage occurrence is not affected by the introduction of AA policies. However, a more nuanced effect emerges when interaction coefficients between low-ability type and the introduced AA policy are introduced in models (2) and (3). The positive and statistically significant interaction coefficients suggest that low-ability types are by 25.6 to 28.8 percentage points more likely to engage in sabotage activity after AA introduction than high-ability types under similar conditions ($p < 0.01$). Furthermore, the interaction coefficients are even larger when controlling for the amount of sabotage received in the previous period: as shown in model (3), low-ability types are by 37.5 percentage points more likely to sabotage after the introduction of head-start and by 43.7 percentage points after the introduction of handicap, relative to high-ability types ($p < 0.01$). Conversely, sabotage occurrence among high-ability types does not increase after the introduction of AA relative to rounds without AA. In fact, the negative and statistically significant estimates for head-start indicate that high-ability types are less likely to sabotage after its introduction by 16.2 to 24.6 percentage points, as compared to the regime without AA ($p < 0.1$ and $p < 0.01$, see models (2) and (3)). Additionally, the introduction of handicap decreases the likelihood of sabotage among high-ability types by 14 percentage points when controlling for received sabotage in the previous period.

16 The results of random-effects GLS panel regressions reveal a similar pattern with regard to the overall sabotage levels and are reported in Table A6 in Appendix I.
period \((p < 0.1)\). Note that the linear combination of the coefficients for \textit{Introduction handicap} and \textit{Introduction handicap} \(\times\) \textit{Low-ability} is positive and statistically significant \((p < 0.05)\), suggesting that, the introduction of the handicap induces higher sabotage occurrence among low-ability types as compared to the parts without AA.

Sabotage intensity (i.e., conditional on \(\text{sabotage}_{it} > 0\)) falls, on average, by 5.3 seconds per available working minute, when head-start is introduced \((p < 0.01, \text{see column two of model (1)})\). This is a substantial change of 14.4\% of the initial sabotage levels without AA (see Table A4 in Appendix I for mean values). In the tobit estimation of model (2), the coefficient for \textit{Head-start} is not significant. However, the interaction term \textit{Head-start} \(\times\) \textit{Low-ability} shows that the average decrease in sabotage intensity after the introduction of head-start as observed in model (1) is mainly driven by low-ability types who reduce their sabotage intensity after the introduction of head-start to a larger extent than high-ability types. Also, the negative and statistically significant linear combination of coefficients \textit{Introduction head-start} and \textit{Introduction head-start} \(\times\) \textit{Low-ability} indicates that low-ability types sabotage less strongly after the introduction of head-start than in the regime without AA \((p < 0.01)\).

The coefficient for the dummy \textit{Introduction handicap} is statistically significant, but positive in the second stage estimation of model (1) \((p < 0.05)\). Thus, overall, sabotage intensity increases, after the introduction of the handicap policy by 4.3 seconds per available working minute. The interaction term \textit{Introduction handicap} \(\times\) \textit{Low-ability} is not statistically significant, indicating that low-ability and high-ability types increase their sabotage intensity similarly after the introduction of handicap. When controlling for sabotage received in the previous round in model (3), the coefficients of \textit{Introduction handicap} and \textit{Introduction handicap} \(\times\) \textit{Low-ability} are not statistically significant by itself, but their linear combination is \((p = 0.02)\). This suggests that low-ability types sabotage more strongly after the introduction of handicap than in the regime without AA, while holding the received sabotage constant. Most importantly, a retaliation motivation is confirmed by the significant coefficient for receiving sabotage in the previous round.
Table 5. Sabotage and the Introduction of Affirmative Action

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1) Sabotage occurrence (probit)</th>
<th>(2) Sabotage occurrence (probit)</th>
<th>(3) Sabotage occurrence (probit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sabotage intensity (tobit)</td>
<td>Sabotage intensity (tobit)</td>
<td>Sabotage intensity (tobit)</td>
</tr>
<tr>
<td>Introduction head-start</td>
<td>-0.052 (0.074)</td>
<td>-0.162* (0.084)</td>
<td>-0.246*** (0.094)</td>
</tr>
<tr>
<td></td>
<td>-5.262*** (1.703)</td>
<td>-5.61 (2.581)</td>
<td>-4.411* (2.635)</td>
</tr>
<tr>
<td>Introduction handicap</td>
<td>0.104 (0.079)</td>
<td>-0.023 (0.082)</td>
<td>-0.140* (0.083)</td>
</tr>
<tr>
<td></td>
<td>4.279** (1.811)</td>
<td>6.302** (2.695)</td>
<td>2.261</td>
</tr>
<tr>
<td>Low-ability</td>
<td>0.124 (0.096)</td>
<td>-0.018 (0.084)</td>
<td>-0.043 (0.083)</td>
</tr>
<tr>
<td></td>
<td>1.112 (4.930)</td>
<td>4.583 (5.215)</td>
<td>0.114</td>
</tr>
<tr>
<td>Introduction head-start × Low-ability</td>
<td>0.256*** (0.099)</td>
<td>-8.265** (3.424)</td>
<td>2.437</td>
</tr>
<tr>
<td></td>
<td>Introduction handicap × Low-ability</td>
<td>0.288*** (0.094)</td>
<td>-3.544 (3.599)</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.006* (0.003)</td>
<td>0.574*** (0.061)</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>36.162*** (12.317)</td>
<td>35.285*** (12.521)</td>
<td>30.753*** (10.051)</td>
</tr>
<tr>
<td># Observations</td>
<td>1152 567</td>
<td>1152 567</td>
<td>1008 496</td>
</tr>
<tr>
<td># Pairs</td>
<td>36 33</td>
<td>36 33</td>
<td>36 32</td>
</tr>
<tr>
<td>Wald Chi²</td>
<td>17.731 36.359</td>
<td>43.317 44.341</td>
<td>68 133.271</td>
</tr>
</tbody>
</table>

Post-regressions Wald-tests p-values

<table>
<thead>
<tr>
<th></th>
<th>(1) Introduction HS = Introduction HC</th>
<th>(2) Introduction HS + Introduction HC × Low-ability = 0</th>
<th>(3) Introduction HS + Introduction HC × Low-ability = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.137</td>
<td>0.322</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.251</td>
</tr>
<tr>
<td></td>
<td>0.228</td>
<td>0.058</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>0.058</td>
<td>0.401</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>0.401</td>
<td>0.070</td>
<td>0.846</td>
</tr>
</tbody>
</table>

Notes: The data comprise one observation per individual per round (Part 2 and 3, NoAA-HS and NoAA-HC treatments). Estimation coefficients in columns one, three, and five report panel probit regressions with random effects clustered on the pairs’ level. The dependent variable *Sabotage occurrence* is a dummy variable that takes the value one in case of sabotage by subject *i* in round *t*. The coefficients show marginal effects. Estimation coefficients reported in columns two, four, and six report panel tobit regressions. The dependent variable is *Sabotage intensity*, conditioned on * sabotage* > 0. The data points * sabotage* = 0 are not included in the tobit estimations. Therefore, the dependent variable is truncated between 1 and 60. *Head-start* and *Handicap* are dummy variables that equal one in Part 3 under the respective AA policy and zero otherwise. The reference group is Part 2, when no AA policies applied. *Low-ability* is an indicator for the low-ability type (with the high-ability type as the reference group). *Head-start* × *Low-ability* and *Handicap* × *Low-ability* are interactions of dummies. *Sabotage received in t–1* corresponds to sabotage in received in the previous round. Not reported control variables are age, rounds’ dummies and a female dummy. Controlling for risk attitude and being the tournament winner in the preceding round does not substantially change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** *p < 0.01, ** *p < 0.05, * *p < 0.1.*

Result 5. (a) *The number of rounds in which low-ability types sabotage is significantly higher after the introduction of handicap.* (b) *Sabotage intensity is lower under head-start and higher under handicap than without an AA policy.* (c) *Handicap is less desirable, as it tends to result in more sabotaging.*

Results 5 (a) and (b) provide only partial support for Hypothesis 1. Result 5(c) contradicts Hypothesis 3. We can only speculate about potential reasons. It may be that the introduction of
handicap serves as a justification to sabotage since the designer is him- or herself ‘sabotaging’ high-ability types with a handicap. An analogous logic could work for the introduction of head-start: the designer ‘helps’ low-ability types with head-start, and high-ability types react to this policy of the ‘authority’ by reducing sabotage. Since we provide the first experiment of this kind, these questions remain open for future research.

7.3. Removal of Affirmative Action and Sabotage Behavior

The difference between sabotage in Part 3 and Part 2 for treatments HS-NoAA and HC-NoAA, i.e., for the removal of AA policies, is illustrated in Figure 9. As can be observed in Panel (A), average sabotage is higher in Part 3 when the AA policy is removed than in Part 2. High-ability types impose, on average, significantly more sabotage after the removal of the AA policy (head-start: increase by 12.9 seconds per working minute, \(p < 0.01 \); handicap: by 8.5 seconds, \(p = 0.09 \); FPP tests). Also, low-ability types sabotage significantly more in Part 3 after the removal of head-start (head-start: by 7.2 seconds, \(p < 0.01 \); handicap: 4.54, \(p = 0.25 \); FPP tests). Panel (B) illustrates the change in the occurrence of sabotage. It suggests that the number of rounds when subjects committed sabotage is higher in Part 3. However, the change is only marginally significant in one case: for high-ability types in the HC-NoAA treatment (\(p = 0.07 \), FPP test). All other comparisons are not significant.

![Figure 9. Change in Sabotage after the Removal of Affirmative Action Policies](image)

Notes: The sample includes Parts 2 and 3 of the HS-NoAA and HC-NoAA treatments. The data are based on mean individual values of differences in sabotage between Part 2 and Part 3. The error bars are standard errors.

Table 6 provides results from hurdle regression estimations for the data pooled from HS-NoAA and HC-NoAA treatments. The independent variables include indicators Removal head-start and Removal handicap that are equal to one in Part 3 of the respective treatments and zero

\[17\] We report the separate estimations for each treatment in Table A7 in Appendix I.
otherwise. To control for Part 2 differences between the treatments HS-NoAA and HC-NoAA we also include the HS-NoAA treatment dummy in our estimations. The Low-ability dummy and its interaction with AA removal dummies are meant to capture possible differences between types. In model (3), we control for the sabotage received in the previous round. As in all previous models, we include socio-demographic control variables.

As can be seen from the (marginal effects of) probit estimates in model (1), the probability of sabotage occurrence increases, ceteris paribus, by 0.31 after the removal of head-start. The coefficient of the removal of handicap on sabotage occurrence is positive and significant in models (2) and (3) when controlling for the interaction of the removal with the ability dummy. Together with the results of the post-estimations, the probit regression estimations suggest that the high-ability types engage in sabotage more often when handicap is removed as compared to the periods when it was in place, whereas the low-ability types do not. As can be seen from the tobit estimations, sabotage intensity increases after the removal of the AA policies. The effect of the removal of head-start is especially pronounced and more than twice the size of the effect of handicap (see post-estimation results with $p < 0.05$). The interaction dummy variables of the low ability and removed AA are in almost all specifications not significantly different from zero, suggesting that both types do not differ in their reactions to the AA removal. When controlling for received sabotage (i.e., potential retaliation) in column six, we see that, again, the experience of receiving sabotage has a strong and significant effect on sabotaging the opponent.\footnote{The results of random-effects GLS panel regressions reveal a similar pattern regarding the overall sabotage levels and are reported in Table A7 in Appendix I.}

Result 6. (a) The overall number of rounds with sabotage increases after the removal of AA policies. (b) Sabotage intensity also goes up after the removal of AA policies. (c) The effects are more pronounced after the removal of head-start than after the removal of handicap.

Results 6 (a) and (b) contradict Hypothesis 2. Result 6(c) contradicts Hypothesis 3. Similar to the earlier results, one way to interpret this finding is that, once AA policies are removed, high-ability types may think that committing more sabotage is now admissible. At the same time, low-ability types appear not to respond with more sabotage. This is a surprising result. We
expected that there would be more sabotage overall when a particular policy is introduced and not when it is removed.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Table 6: Sabotage and the Removal of Affirmative Action</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sabotage occurrence Panel probit</td>
<td>Sabotage occurrence Panel probit</td>
<td>Sabotage occurrence Panel probit</td>
<td>Sabotage occurrence Panel probit</td>
</tr>
<tr>
<td></td>
<td>Sabotage intensity tobit</td>
<td>Sabotage intensity tobit</td>
<td>Sabotage intensity tobit</td>
<td>Sabotage intensity tobit</td>
</tr>
<tr>
<td>HS-NoAA treatment</td>
<td>0.242**</td>
<td>0.242**</td>
<td>0.224**</td>
<td>16.392**</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.095)</td>
<td>(0.089)</td>
<td>(6.521)</td>
</tr>
<tr>
<td>Removal head-start</td>
<td>0.314***</td>
<td>0.342***</td>
<td>0.321**</td>
<td>34.436***</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.127)</td>
<td>(0.128)</td>
<td>(6.851)</td>
</tr>
<tr>
<td>Removal handicap</td>
<td>0.172**</td>
<td>0.167**</td>
<td>0.127**</td>
<td>13.839***</td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.076)</td>
<td>(0.075)</td>
<td>(3.355)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>0.119**</td>
<td>0.153**</td>
<td>0.173**</td>
<td>14.409**</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.057)</td>
<td>(0.066)</td>
<td>(6.897)</td>
</tr>
<tr>
<td>Removal head-start × Low-ability</td>
<td>-0.056</td>
<td>-1.482</td>
<td>-0.080</td>
<td>-10.808***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(3.036)</td>
<td>(0.105)</td>
<td>(3.961)</td>
</tr>
<tr>
<td>Removal handicap × Low-ability</td>
<td>-0.079</td>
<td>1.787</td>
<td>-0.094</td>
<td>-10.693**</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(3.932)</td>
<td>(0.068)</td>
<td>(4.676)</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.899***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Constant</td>
<td>15.761</td>
<td>15.349</td>
<td>4.350</td>
<td>18.023</td>
</tr>
<tr>
<td></td>
<td>(11.790)</td>
<td>(11.798)</td>
<td>(11.798)</td>
<td>(18.023)</td>
</tr>
<tr>
<td># Observations</td>
<td>1152</td>
<td>505</td>
<td>1152</td>
<td>505</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>56</td>
<td>72</td>
<td>52</td>
</tr>
<tr>
<td>Wald Chi²</td>
<td>41.996</td>
<td>158.338</td>
<td>55.689</td>
<td>158.953</td>
</tr>
<tr>
<td></td>
<td>(18.023)</td>
<td>(18.023)</td>
<td>(18.023)</td>
<td>(18.023)</td>
</tr>
</tbody>
</table>

Notes: The data comprise of one observation per individual per round (Part 2 and 3, HS-NoAA and HC-NoAA treatments). Estimation coefficients in columns one, three and five report panel probit regressions with random effects clustered on the pairs’ level. The dependent variable Sabotage occurrence \(_{it}\) is a dummy variable that takes the value 1 in case of a sabotage by subject \(i\) in round \(t\). The coefficients show marginal effects. Estimation coefficients reported in columns two, four and six report panel tobit regressions. The dependent variable is Sabotage intensity \(_{it}\), conditioned on sabotage \(_{it} > 0\). The data points sabotage \(_{it} = 0\) are not included in the tobit estimations. Therefore, the dependent variable is truncated between 1 and 60. **HS-NoAA treatment** is a treatment dummy that equals one in the treatment HS-NoAA and 0 otherwise. The reference group is HC-NoAA treatment. **Removal head-start and Removal handicap** are dummy variables that equal one in Part 3 of the respective treatment when AA policy was removed and zero otherwise. The reference group is Part 2 when the respective AA policies applied. **Low-ability** is an indicator for the low-ability type (with the high-ability type as the reference group). **Removal head-start × Low-ability** and **Removal handicap × Low-ability** are interaction of the dummy variables. Sabotage received in \(t-1\) corresponds to sabotage received in the previous round. Not reported control variables are age, rounds and a dummy for females. Controlling for risk attitudes and being the tournament winner in the preceding round does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** \(p < 0.01\), ** \(p < 0.05\), * \(p < 0.1\).
8. Discussion and Conclusion

AA policies are common, often controversial, and well-researched in economics, in general. However, hitherto no study has fully analyzed the effects of the lifecycle (introduction, continuation, and removal) of such policies in a controlled environment. Furthermore, comparative analyses of different AA instruments, such as head-start and handicap, have been lacking so far. Importantly, especially in organizations and workplaces, but not only there, such AA policies may affect not only effort provision, but also the level of sabotaging others. That is why our setup focuses also on sabotage.

In this study, we assess the combination of these three inter-related but erstwhile unexplored research topics. We run a laboratory experiment with a real effort tournament and the possibility of sabotaging others. We also investigate the effects of introducing and removing head-start and handicap on effort and sabotage in such a tournament.

Contrary to some earlier studies, we find that AA policies do not universally result in higher effort. In particular, high performers that already experienced contests without AA, reduce their effort after the introduction of the policy. Moreover, and reassuringly for policymakers, we observe less sabotage under AA policies, when the tournament started right away with an AA policy in place. When an existing AA policy is removed, it does not necessarily reduce effort, but unfortunately, it can significantly intensify sabotage in the short run.

These results are of importance both from the perspective of advancing scholarly literature on tournaments and from the perspective of policymaking. We first discuss some conclusions related to policymaking. Since it is almost impossible to get data allowing for causal inference on the whole lifecycle of an AA policy from outside the laboratory, policymakers often need to rely on theoretical predictions on the implications of the introduction or removal of an AA policy. Even the existing experimental studies investigate such effects in a between-subject manner. While their results can provide ample evidence on the difference in behavior between an AA policy and a regime without AA, they cannot capture the relevant dynamics of the introduction and removal of the policy itself.

In terms of the contribution to the relevant scholarly literature, our study provides a series of new techniques and results. First, we use a real-effort task and actual (not induced) individual ability to pair and match subjects in the tournament. The two AA policies that are incentive-identical but differ in the framing are implemented in a between-subject design. Our
experimental setup with introducing and removing the policies is novel. Moreover, our experimental design allows comparing the effects of AA policies both between- and within-subjects as well as investigating the intertemporal effects of the experience of such a policy in another new regime without AA guiding the tournament. Finally, our design allows us to assess the extensive and intensive margins of sabotage under different policies.

Our results support some of the existing observations and add new results to the literature. The most important finding, in a nutshell, is that the lifecycle of an AA policy is very relevant for its effects on effort provision and sabotage. Therefore, only one snapshot comparing an AA policy with a baseline cannot provide the broader picture that is – given our results – necessary for an empirical assessment that informs policymakers. For example, the first experimental study on AA by Schotter and Weigelt (1992) found that an AA policy does not affect effort provision. The finding was later corroborated in a field study by Calsamiglia et al (2013). We show in this study that the conclusion may depend on the type of AA policy, the type of the player, and the chronology of the AA lifecycle, i.e., the experience. High performers that have previously experienced a regime without AA may reduce their effort provision. Moreover, both Brown and Chowdhury (2017) in the field and Leibbrandt et al. (2018) in the laboratory found that an AA policy leads to higher levels of sabotage than in an environment without AA. The current study shows that such a negative effect of an AA policy may not necessarily be universal. Contestants may even commit fewer acts of sabotage when an AA policy is introduced (as for example in case of head-start). At the same time, contestants surprisingly commit more sabotage when they already have prior experience in a regime with an AA policy, after this policy is removed.

Our results also show that head-start and handicap seem to have quite similar effects on subjects' behavior in several dimensions. Nevertheless, some differences emerge: We observe more rounds with sabotage and higher sabotage intensity imposed by low-ability types after the introduction of handicap, compared to head-start. Furthermore, the removal of head-start seems to lead to more intense sabotage than the removal of handicap.

One, however, must take caution before generalizing our results. Similar to any laboratory experiment, this study has to face the test of external validity. We introduce a very stylized real effort tournament with sabotage that may be more appropriate for organizational and workplace-related tournaments than other contests. In search of more experimental control and
simplicity, we implement a two-player tournament. The number of involved players may well be relevant for the effects that we describe in the paper.

This brings us to possible extensions of our setup. Konrad (2000) showed that, when there are multiple players in a contest, committing sabotage becomes a public good, and due to the free-riding incentives in public goods, sabotage can vanish. Although field studies and laboratory experiments have shown that people still commit sabotage in multi-player settings, it is an open empirical question whether including more contestants in our design would bring different results. There is also a strand of literature that documents the effects of AA on sabotage towards the tournament designer. Ku and Salmon (2012) observed such negative effects. They randomly split subjects into high and low wage players. When the low wage players knew that they were discriminated against, they ended up producing much less in a piece-rate task. Similarly, Fallucchi and Quercia (2018) found that, when a proportion of a reward is saved for a specific group of subjects, then ‘retaliation’ against the experimenter increases. Our current design does not have such features, but understanding such behavior throughout the lifecycle of an AA policy seems relevant from a methodological perspective. Outside the laboratory, players often communicate with each other while taking part in tournaments. The effects of such communication on contestants’ behavior when an AA policy is introduced or removed is still an open question. Investigating these questions or setups with our experimental paradigm may provide additional explanations for the behavior that we have observed in our study.

References

APPENDIX (for online publication)

Appendix I: Figure and Tables

Figure A1. Scatter Plot of Total Number of Answers and Correct Number of Answers

![Scatter Plot](image)

Notes: Scatter plot of correct and total answers per round (of two minutes) in Parts 2 and 3. The solid line illustrates Spearman’s ρ. The dashed line is the 45°-line.

Table A1. Ability Score by Type

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>Rounds 1-4</th>
<th></th>
<th></th>
<th>Rounds 5-8</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Std. Dev.</td>
<td>Mean</td>
<td>Median</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>High-ability</td>
<td>72</td>
<td>10.44</td>
<td>10.13</td>
<td>2.65</td>
<td>13.28</td>
<td>13</td>
<td>2.54</td>
</tr>
<tr>
<td>Mid-ability</td>
<td>48</td>
<td>7.52</td>
<td>7.31</td>
<td>1.45</td>
<td>9.54</td>
<td>9.75</td>
<td>0.98</td>
</tr>
<tr>
<td>Low-ability</td>
<td>72</td>
<td>5.17</td>
<td>5.25</td>
<td>1.50</td>
<td>6.62</td>
<td>6.75</td>
<td>1.56</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>7.73</td>
<td>7.38</td>
<td>3.04</td>
<td>9.85</td>
<td>9.63</td>
<td>3.45</td>
</tr>
</tbody>
</table>
TABLE A2. DESCRIPTIVE STATISTICS OF EFFORT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per type or pair</td>
<td>Mean</td>
</tr>
<tr>
<td>No affirmative action</td>
<td>High-ability</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>Low-ability</td>
<td>5.67</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17.5</td>
</tr>
<tr>
<td>Head-start</td>
<td>High-ability</td>
<td>10.94</td>
</tr>
<tr>
<td></td>
<td>Low-ability</td>
<td>6.79</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17.73</td>
</tr>
<tr>
<td>Handicap</td>
<td>High-ability</td>
<td>11.51</td>
</tr>
<tr>
<td></td>
<td>Low-ability</td>
<td>7.24</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18.75</td>
</tr>
</tbody>
</table>

Notes: Medians, standard deviations, minima and maxima reported in the rows High-ability and Low-ability are computed based on the individual averages over eight rounds (i.e., with one independent observation per subject). Statistics reported in the rows Total represent effort levels exerted by both subjects in one pair. Here, we have one independent observation per pair. The subjects facing no AA in Part 2 were exposed to the head-start or handicap regimes in Part 3. Whereas subjects facing either head-start or handicap in Part 2 experienced no AA in Part 3.

TABLE A3. EFFORT AND THE REMOVAL OF AFFIRMATIVE ACTION POLICIES (ALTERNATIVE SPECIFICATION)

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA removed</td>
<td>0.279</td>
<td>1.041</td>
<td>0.431</td>
</tr>
<tr>
<td>Low-ability</td>
<td>-4.709***</td>
<td>-3.670***</td>
<td>-0.405</td>
</tr>
<tr>
<td>HS-NoAA treatment</td>
<td>-0.139</td>
<td>-0.417</td>
<td>-0.077</td>
</tr>
<tr>
<td>Low-ability × AA removed</td>
<td>-2.078***</td>
<td>-0.733***</td>
<td>0.077</td>
</tr>
<tr>
<td>HS-NoAA treatment × AA removed</td>
<td>0.554</td>
<td>0.017</td>
<td>0.265</td>
</tr>
<tr>
<td>Effort in t-1</td>
<td>11.721***</td>
<td>11.340***</td>
<td>2.153**</td>
</tr>
<tr>
<td># Observations</td>
<td>1,152</td>
<td>1,152</td>
<td>1,008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Overall R²</td>
<td>0.3247</td>
<td>0.3374</td>
<td>0.7331</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with effort_{it} as the dependent variable. The data comprise of one observation per individual per round (Part 2 and 3, HS-NoAA and HC-NoAA treatments). AA removed is equal one in rounds of Part 3, when no AA was in place anymore; and zero otherwise. HS-NoAA is a dummy taking value of one for the HS-NoAA treatment; and is zero otherwise. Low-ability is an indicator for the low-ability type (with high-ability types as the reference group). Low-ability × AA removed is an interaction of two dummy variables. Effort in t-1 corresponds to sabotage received in the previous round. Not reported control variables are age, rounds and a dummy for females. Controlling for risk attitudes and being the tournament winner in the preceding round does not change the results. Robust standard errors (clustered on pairs level) are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table A4. Descriptive Statistics on Sabotage

<table>
<thead>
<tr>
<th></th>
<th>Panel (A): Part 2</th>
<th></th>
<th>Panel (B): Part 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Contestants that never used sabotage</td>
<td>Sabotage occurrence (# rounds with sabotage, $s_{ij}>0$)</td>
<td>Intensive sabotage (conditional on sabotage, $s_{ij}>0$)</td>
<td>Average sabotage</td>
</tr>
<tr>
<td>NoAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-ability</td>
<td>27.78</td>
<td>4.11</td>
<td>36.10</td>
<td>20.81</td>
</tr>
<tr>
<td></td>
<td>(45.43)</td>
<td>(3.58)</td>
<td>(16.58)</td>
<td>(20.82)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>30.6</td>
<td>3.58</td>
<td>36.80</td>
<td>18.37</td>
</tr>
<tr>
<td></td>
<td>(46.72)</td>
<td>(3.33)</td>
<td>(15.47)</td>
<td>(19.76)</td>
</tr>
<tr>
<td>Average (within pairs)</td>
<td>29.17</td>
<td>3.85</td>
<td>36.45</td>
<td>19.59</td>
</tr>
<tr>
<td></td>
<td>(45.77)</td>
<td>(3.44)</td>
<td>(15.89)</td>
<td>(20.19)</td>
</tr>
<tr>
<td>Head-start</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-ability</td>
<td>16.67</td>
<td>3.67</td>
<td>20.41</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>(38.35)</td>
<td>(2.70)</td>
<td>(15.77)</td>
<td>(12.19)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>22.22</td>
<td>4.33</td>
<td>20.33</td>
<td>12.43</td>
</tr>
<tr>
<td></td>
<td>(42.78)</td>
<td>(3.11)</td>
<td>(14.21)</td>
<td>(14.23)</td>
</tr>
<tr>
<td>Average (within pairs)</td>
<td>19.44</td>
<td>4</td>
<td>20.37</td>
<td>11.42</td>
</tr>
<tr>
<td></td>
<td>(40.14)</td>
<td>(2.89)</td>
<td>(14.77)</td>
<td>(13.10)</td>
</tr>
<tr>
<td>Handicap</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-ability</td>
<td>38.89</td>
<td>2</td>
<td>17.08</td>
<td>5.91</td>
</tr>
<tr>
<td></td>
<td>(50.16)</td>
<td>(2.45)</td>
<td>(13.52)</td>
<td>(12.9)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>44.44</td>
<td>2.33</td>
<td>18.02</td>
<td>6.87</td>
</tr>
<tr>
<td></td>
<td>(51.13)</td>
<td>(3.05)</td>
<td>(13.14)</td>
<td>(13.33)</td>
</tr>
<tr>
<td>Average (within pairs)</td>
<td>41.67</td>
<td>2.17</td>
<td>17.53</td>
<td>6.39</td>
</tr>
<tr>
<td></td>
<td>(50)</td>
<td>(3.21)</td>
<td>(18.14)</td>
<td>(12.94)</td>
</tr>
</tbody>
</table>

Notes: One independent observation per subject (in rows *Total*, per pair). Standard deviations are reported in parentheses based on independent observations. The subjects facing no AA in Part 2 were exposed to the head-start or handicap regimes in Part 3. Whereas subjects facing either head-start or handicap in Part 2 experienced no AA in Part 3.
Table A5. GLS Regression of Impact of Affirmative Action on Sabotage in Part 2

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>(1) Sabotage</th>
<th>(2) Sabotage</th>
<th>(3) Sabotage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head-start</td>
<td>-7.159*</td>
<td>-8.898*</td>
<td>-9.723**</td>
</tr>
<tr>
<td></td>
<td>(4.270)</td>
<td>(4.568)</td>
<td>(3.801)</td>
</tr>
<tr>
<td></td>
<td>(4.195)</td>
<td>(4.445)</td>
<td>(3.477)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>3.091</td>
<td>1.343</td>
<td>-1.503</td>
</tr>
<tr>
<td></td>
<td>(1.963)</td>
<td>(2.392)</td>
<td>(2.525)</td>
</tr>
<tr>
<td>Head-start × Low-ability</td>
<td>3.498</td>
<td>7.387</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.350)</td>
<td>(5.551)</td>
<td></td>
</tr>
<tr>
<td>Handicap × Low-ability</td>
<td>3.195</td>
<td>5.852*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.012)</td>
<td>(3.110)</td>
<td></td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.648***</td>
<td>0.0109</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>29.649***</td>
<td>25.880***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.879)</td>
<td>(7.151)</td>
<td></td>
</tr>
<tr>
<td># Observations</td>
<td>1152</td>
<td>1152</td>
<td>1008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>R²</td>
<td>0.112</td>
<td>0.114</td>
<td>0.442</td>
</tr>
</tbody>
</table>

Post-regressions Wald-tests

<table>
<thead>
<tr>
<th></th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS = HC</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>0.544</td>
</tr>
<tr>
<td>HS + HS × Low-ability = 0</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>0.537</td>
</tr>
<tr>
<td>HC + HC × Low-ability = 0</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
</tr>
<tr>
<td>HS × Low-ability = HC × Low-ability</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td>0.784</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with sabotage as the dependent variable. The data are from Part 2 of all four treatments. Head-start and Handicap are subject- and time-invariant dummies for the AA policy. The reference group is the regime without AA. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Head-start × Low-ability and Handicap × Low-ability are the interaction of dummy variables. Sabotage received in t-1 corresponds to the one-round lagged sabotage variable. Not reported control variables are age, rounds and a dummy for females. Controlling for lagged received or committed sabotage, or being the tournament winner in the preceding round, and risk attitudes does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table A6. GLS Regression of Sabotage and the Introduction of Affirmative Action

<table>
<thead>
<tr>
<th></th>
<th>(1) Sabotage</th>
<th>(2) Sabotage</th>
<th>(3) Sabotage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction head-start</td>
<td>-5.962</td>
<td>-11.552**</td>
<td>-15.476***</td>
</tr>
<tr>
<td></td>
<td>(4.254)</td>
<td>(5.070)</td>
<td>(5.162)</td>
</tr>
<tr>
<td>Introduction handicap</td>
<td>5.376</td>
<td>-0.048</td>
<td>-8.214**</td>
</tr>
<tr>
<td></td>
<td>(3.562)</td>
<td>(4.181)</td>
<td>(3.990)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>5.276</td>
<td>-0.240</td>
<td>-2.808</td>
</tr>
<tr>
<td></td>
<td>(3.806)</td>
<td>(3.467)</td>
<td>(3.003)</td>
</tr>
<tr>
<td>Introduction head-start × Low-ability</td>
<td>11.142****</td>
<td>18.570****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.837)</td>
<td>(5.988)</td>
<td></td>
</tr>
<tr>
<td>Introduction handicap × Low-ability</td>
<td>10.885****</td>
<td>19.727****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.982)</td>
<td>(5.806)</td>
<td></td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.564***</td>
<td>0.564***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.147)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>26.399***</td>
<td>22.275***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.127)</td>
<td>(8.502)</td>
<td></td>
</tr>
<tr>
<td># Observations</td>
<td>1152</td>
<td>1152</td>
<td>1008</td>
</tr>
<tr>
<td># Pairs</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>R²</td>
<td>0.014</td>
<td>0.026</td>
<td>0.304</td>
</tr>
</tbody>
</table>

Post-regressions Wald-tests

- **Introduction HS = Introduction HC**: 0.035
- **Introduction HS+ Introduction HC**: 0.923
- **HS × Low-ability = 0**: 0.007
- **Introduction HC × Low-ability**: 0.001
- **Introduction HS × Low-ability**: 0.962
- **Introduction HC × Low-ability**: 0.896

Notes: GLS panel regression (random effects) with sabotage as the dependent variable. The data are from the NoAA-HS and NoAA-HC treatments. Introduction head-start and Introduction handicap are dummy variables that equal one in Part 3 under the respective AA policy and zero otherwise. The reference group is Part 2, when no AA policies applied. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Introduction head-start × Low-ability and Introduction handicap × Low-ability are the interaction of dummy variables. Sabotage received in t-1 corresponds to the one-round lagged sabotage variable. Not reported control variables are age, rounds and a dummy for females. Controlling for lagged received or committed sabotage, or being the tournament winner in the preceding round, and risk attitudes does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
TABLE A7. SABOTAGE AND THE REMOVAL OF AFFIRMATIVE ACTION BY TREATMENT

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Panel (A): HS-NoAA treatment</th>
<th>Panel (B): HC-NoAA treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Sabotage occurrence Panel probit</td>
<td>(2) Sabotage occurrence Panel probit</td>
</tr>
<tr>
<td></td>
<td>(2) Sabotage intensity Panel tobit</td>
<td>(2) Sabotage intensity Panel tobit</td>
</tr>
<tr>
<td></td>
<td>(3) Sabotage occurrence Panel probit</td>
<td>(3) Sabotage occurrence Panel probit</td>
</tr>
<tr>
<td></td>
<td>(3) Sabotage intensity Panel tobit</td>
<td>(3) Sabotage intensity Panel tobit</td>
</tr>
<tr>
<td>AA removed</td>
<td>0.076 (0.066)</td>
<td>0.120 (0.075)</td>
</tr>
<tr>
<td></td>
<td>16.618***</td>
<td>14.246***</td>
</tr>
<tr>
<td></td>
<td>(1.485)</td>
<td>(2.385)</td>
</tr>
<tr>
<td></td>
<td>0.106 (0.081)</td>
<td>0.165* (0.089)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>-4.757 (0.072)</td>
<td>0.255* (6.918)</td>
</tr>
<tr>
<td></td>
<td>(6.179)</td>
<td>(2.964)</td>
</tr>
<tr>
<td></td>
<td>-0.058 (0.081)</td>
<td>-0.075 (0.089)</td>
</tr>
<tr>
<td>Low-ability × AA removed</td>
<td>(2.964)</td>
<td>(1.135)</td>
</tr>
<tr>
<td></td>
<td>(1.390)</td>
<td>(3.267)</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.002 (0.005)</td>
<td>0.018*** (0.003)</td>
</tr>
<tr>
<td></td>
<td>0.565*** (0.089)</td>
<td>36.473*** (10.980)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.832 (14.880)</td>
<td>12.311 (11.512)</td>
</tr>
<tr>
<td></td>
<td>7.367 (14.834)</td>
<td>47.781** (22.318)</td>
</tr>
<tr>
<td># Observations</td>
<td>576</td>
<td>576.000</td>
</tr>
<tr>
<td># Pairs</td>
<td>36</td>
<td>36.000</td>
</tr>
<tr>
<td>Wald Chi2</td>
<td>26.919</td>
<td>83.979</td>
</tr>
<tr>
<td>Post-regressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald-tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA removed + Low-ability × AA removed = 0</td>
<td>0.537</td>
<td>0.356</td>
</tr>
<tr>
<td>p-values</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Notes: Sabotage occurrence is analyzed with panel probit regressions with random effects. Marginal effects are reported. Sabotage intensity is analyzed with panel tobit regressions and conditioned on $sabotage_{it}>0$ and censored below and above at 1 and 60. The data are from Parts 2 and 3 of the HS-NoAA and HC-NoAA treatments. AA removed is equal to one for Part 3. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Low-ability × AA removed is an interaction. Sabotage received in t-1 corresponds to sabotage received in the previous round. Not reported control variables are age, rounds and a dummy for females. Controlling for risk attitudes, and being the tournament winner in the preceding round does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table A8. GLS Regression on Sabotage and the Removal of Affirmative Action

<table>
<thead>
<tr>
<th></th>
<th>(1) Sabotage</th>
<th>(2) Sabotage</th>
<th>(3) Sabotage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-NoAA treatment</td>
<td>5.848</td>
<td>5.844</td>
<td>2.399</td>
</tr>
<tr>
<td></td>
<td>(3.818)</td>
<td>(3.817)</td>
<td>(2.666)</td>
</tr>
<tr>
<td></td>
<td>(5.844)</td>
<td>(6.591)</td>
<td>(5.933)</td>
</tr>
<tr>
<td>Removal handicap</td>
<td>5.878</td>
<td>7.222*</td>
<td>5.640*</td>
</tr>
<tr>
<td></td>
<td>(3.853)</td>
<td>(4.097)</td>
<td>(3.283)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>1.671</td>
<td>3.469</td>
<td>4.590</td>
</tr>
<tr>
<td></td>
<td>(1.866)</td>
<td>(2.278)</td>
<td>(2.936)</td>
</tr>
<tr>
<td>Removal head-start × Low-ability</td>
<td>-4.415</td>
<td>(2.792)</td>
<td>-6.928</td>
</tr>
<tr>
<td>Removal handicap × Low-ability</td>
<td>-2.689**</td>
<td>(1.362)</td>
<td>-4.783*</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>12.147</td>
<td>11.128</td>
<td>11.760*</td>
</tr>
<tr>
<td></td>
<td>(11.469)</td>
<td>(11.447)</td>
<td>(6.911)</td>
</tr>
<tr>
<td># Observations</td>
<td>1,152</td>
<td>1,152</td>
<td>1,008</td>
</tr>
<tr>
<td># Pairs</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>R²</td>
<td>0.097</td>
<td>0.103</td>
<td>0.492</td>
</tr>
</tbody>
</table>

Post-regressions Wald-tests

<table>
<thead>
<tr>
<th></th>
<th>p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal HC = Removal HS</td>
<td>0.103</td>
</tr>
<tr>
<td>Removal HS + Removal</td>
<td>0.008</td>
</tr>
<tr>
<td>HS × Low-ability = 0</td>
<td></td>
</tr>
<tr>
<td>Removal HC + Removal</td>
<td>0.224</td>
</tr>
<tr>
<td>HC × Low-ability = 0</td>
<td></td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with * sabotages as the dependent variable. The data are from the HS-NoAA and HC-NoAA treatments. *HS-NoAA treatment* is a treatment dummy that equals one in the treatment HS-NoAA and 0 otherwise. The reference group is HC-NoAA treatment. *Removal head-start* and *Removal handicap* are dummy variables that equal one in Part 3 of the respective treatment when AA policy was removed and zero otherwise. The reference group is Part 2 when the respective AA policies applied. *Low-ability* is an indicator for the low-ability type (with the high-ability type as the reference group). *Removal head-start × Low-ability* and *Removal handicap × Low-ability* are interaction of the dummy variables. *Sabotage received in t-1* corresponds to the one-round lagged effort variable. Not reported control variables are age, rounds and a dummy for females. Controlling for the lagged received or committed sabotage, or being the tournament winner in the preceding round, and risk attitudes does not change the results. Robust standard errors (clustered on the pairs’ level) are in parentheses. *** *p < 0.01, ** *p < 0.05, * *p < 0.1.
Appendix II: Additional results

AII.1. Experience of Existing Affirmative Action and Effort Provision

As shown in 6.2., the effects of AA policies are less positive when subjects have previously entered the tournament without AA policy. In what follows, we directly compare subjects’ effort levels under the AA polices in Part 2 with effort under the same conditions in Part 3. In order to do so, we pool the data from Part 2 of the HS-NoAA and HC-NoAA treatments and Part 3 of the NoAA-HS and NoAA-HC treatments. Figure AII.1 illustrates the empirical distributions of average individual effort by subject’s types.

Figure AII.1. Empirical CDFs of Effort under Affirmative Action

![Graph](image.png)

Notes: Data points are individual average efforts in one part

As can be seen, the effort of high-ability types that operated under AA policies in Part 3 is lower than those that operated under AA policies in Part 2 (both \(p \leq 0.08 \), FP2S test). Effort of low-ability types, however, does not differ (\(p \geq 0.32 \)). The regression results reported in Panel (A) of Table AII.1 provide additional support for this observation: Panel (B) reports the analysis of the effect of the previous experience of the AA policy on the effort without AA.
Table AII.1. Effort and Past Experience

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Panel (A): Competition under head-start and handicap</th>
<th>Panel (B): Competition under no affirmative action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experience</td>
<td>Panel (A): -2.016* (0.812)</td>
<td>Panel (B): -2.016* (0.823)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -3.337** (1.211)</td>
<td>Panel (B): -3.337** (1.472)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -3.28* (1.472)</td>
<td>Panel (B): -3.28* (0.344)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.695* (0.684)</td>
<td>Panel (B): 0.695* (0.684)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.560 (0.835)</td>
<td>Panel (B): 0.560 (0.835)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.001 (0.199)</td>
<td>Panel (B): 0.001 (0.199)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.618 (0.823)</td>
<td>Panel (B): 0.618 (0.823)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.612 (0.825)</td>
<td>Panel (B): 0.612 (0.825)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.56 (0.974)</td>
<td>Panel (B): 0.56 (0.974)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.001 (0.210)</td>
<td>Panel (B): 0.001 (0.210)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -0.001 (0.799)</td>
<td>Panel (B): -0.001 (0.799)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -0.001 (0.799)</td>
<td>Panel (B): 0.012 (0.726)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -0.001 (0.726)</td>
<td>Panel (B): -0.001 (0.726)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.185 (0.165)</td>
<td>Panel (B): 0.185 (0.165)</td>
</tr>
<tr>
<td>Experience × Head-start</td>
<td>Panel (A): 0.111 (0.944)</td>
<td>Panel (B): 0.111 (0.944)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>Panel (A): -2.818*** (0.563)</td>
<td>Panel (B): -2.818*** (0.710)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -4.092*** (0.706)</td>
<td>Panel (B): -4.092*** (0.706)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -4.090*** (0.283)</td>
<td>Panel (B): -4.090*** (0.283)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -5.777**** (0.502)</td>
<td>Panel (B): -5.777**** (0.502)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -5.604**** (0.473)</td>
<td>Panel (B): -5.604**** (0.473)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -1.331*** (0.217)</td>
<td>Panel (B): -1.331*** (0.217)</td>
</tr>
<tr>
<td>Experience × Low-ability</td>
<td>Panel (A): 2.657** (0.970)</td>
<td>Panel (B): 2.657** (0.970)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 2.66*** (0.969)</td>
<td>Panel (B): 2.66*** (0.969)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.587 (0.332)</td>
<td>Panel (B): 0.587 (0.332)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -0.333 (0.798)</td>
<td>Panel (B): -0.333 (0.798)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): -0.038 (0.244)</td>
<td>Panel (B): -0.038 (0.244)</td>
</tr>
<tr>
<td>Effort in t-1</td>
<td>Panel (A): 0.815*** (0.034)</td>
<td>Panel (B): 0.815*** (0.034)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 0.789**** (0.029)</td>
<td>Panel (B): 0.789**** (0.029)</td>
</tr>
<tr>
<td>Constant</td>
<td>Panel (A): 9.914*** (1.950)</td>
<td>Panel (B): 9.914*** (1.950)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 10.453*** (1.894)</td>
<td>Panel (B): 10.453*** (1.894)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 10.73*** (1.903)</td>
<td>Panel (B): 10.73*** (1.903)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 2.342*** (0.647)</td>
<td>Panel (B): 2.342*** (0.647)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 10.581*** (1.628)</td>
<td>Panel (B): 10.581*** (1.628)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 10.483*** (1.621)</td>
<td>Panel (B): 10.483*** (1.621)</td>
</tr>
<tr>
<td></td>
<td>Panel (A): 2.505**** (0.567)</td>
<td>Panel (B): 2.505**** (0.567)</td>
</tr>
<tr>
<td># Observations</td>
<td>Panel (A): 1,152</td>
<td>Panel (B): 1,152</td>
</tr>
<tr>
<td># Pairs</td>
<td>Panel (A): 72</td>
<td>Panel (B): 72</td>
</tr>
<tr>
<td>Overall R²</td>
<td>Panel (A): 0.134</td>
<td>Panel (B): 0.134</td>
</tr>
</tbody>
</table>

Notes: GLS panel regression (random effects) with effort it as the dependent variable. Robust standard errors (clustered on the pairs’ level) are in parentheses. Estimations are based on the data when subjects experienced AA policies, i.e., Part 2 of the HS-NoAA and HC-NoAA treatments and Part 3 of NoAA-HS and NoAA-HC. Experience equals one if the data is from Part 3. Head-start equals one when the AA policy is head-start. Experience × Head-start is their interaction. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Experience × Low-ability is an interaction variable. Effort in t-1 corresponds to the effort in the previous period. Not reported control variables are age, rounds and a dummy for females. Controlling for lagged effort of the rival, being the tournament winner in the preceding round, and risk attitudes does not change the results. *** p < 0.01, ** p < 0.05, * p < 0.1.

AII.2. Experience of Existing Affirmative Action and Sabotage Behavior

Figure 12 shows the empirical distribution of individual sabotage behavior under AA policies in Part 2 and in Part 3. It suggests that sabotage is more severe in Part 3 than in Part 2. This difference is especially pronounced for handicap (all p-values for comparison under handicap in Part 2 and Part 3 are below 0.87, with only one exception, i.e., sabotage occurrence among high-ability types, FP2S tests). Models (1)-(3) in Table AII.2 report the regression results of sabotage behavior under AA policies.
FIGURE AII.2. EMPIRICAL CDFS OF SABOTAGE UNDER AFFIRMATIVE ACTION

(A) Average sabotage (over all rounds)

(B) Sabotage occurrence

(C) Sabotage intensity (conditional on sabotage > 0)

Notes: Based on mean individual values.
TABLE AII.2. PAST EXPERIENCE AND SABOTAGE

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Panel (A): Competition under head-start and handicap</th>
<th>Panel (B): Competition under no affirmative action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Sabotage occurrence Probit</td>
<td>(4) Sabotage occurrence Probit</td>
</tr>
<tr>
<td></td>
<td>(2) Sabotage intensity Tobit</td>
<td>(5) Sabotage intensity Tobit</td>
</tr>
<tr>
<td></td>
<td>(3) Sabotage occurrence Probit</td>
<td>(6) Sabotage occurrence Probit</td>
</tr>
<tr>
<td></td>
<td>(4) Sabotage intensity Tobit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) Sabotage intensity Tobit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) Sabotage intensity Tobit</td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td>0.133* 15.731***</td>
<td>-0.077 - 13.201***</td>
</tr>
<tr>
<td></td>
<td>(0.072) (3.126)</td>
<td>(0.307) (4.332)</td>
</tr>
<tr>
<td>Head-start</td>
<td>0.108 -1.423</td>
<td>0.149 13.723***</td>
</tr>
<tr>
<td></td>
<td>(0.072) (3.141)</td>
<td>(0.512) (5.040)</td>
</tr>
<tr>
<td>Experience × HS-NoAA</td>
<td>0.201*** -0.377</td>
<td>0.023 0.090</td>
</tr>
<tr>
<td></td>
<td>(0.057) (3.504)</td>
<td>(0.265) (3.878)</td>
</tr>
<tr>
<td>Low-ability</td>
<td>0.188** -0.110</td>
<td>0.031 -3.867</td>
</tr>
<tr>
<td></td>
<td>(0.082) (6.269)</td>
<td>(0.280) (6.861)</td>
</tr>
<tr>
<td>Experience × Low-ability</td>
<td>0.004* (0.002)</td>
<td>0.012*** 0.694***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.003) (0.071)</td>
</tr>
<tr>
<td>Sabotage received in t-1</td>
<td>0.574*** (0.061)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>10.858 (9.383)</td>
<td>42.587*** (10.407)</td>
</tr>
<tr>
<td></td>
<td>10.846 (9.408)</td>
<td>41.278*** (10.648)</td>
</tr>
<tr>
<td></td>
<td>10.355 (7.779)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.587*** (10.407)</td>
<td></td>
</tr>
<tr>
<td># Observations</td>
<td>1,152 512</td>
<td>1,152 560</td>
</tr>
<tr>
<td></td>
<td>1,152 512</td>
<td>1,152 560</td>
</tr>
<tr>
<td># Pairs</td>
<td>72 52</td>
<td>1,152 560</td>
</tr>
<tr>
<td></td>
<td>72 52</td>
<td>1,152 560</td>
</tr>
<tr>
<td>Wald Chi²</td>
<td>44.169 37.457</td>
<td>13.785 58.350</td>
</tr>
</tbody>
</table>

Notes:
- Sabotage occurrence is analyzed with panel probit regressions with random effects. Marginal effects are reported. Sabotage intensity is analyzed with panel tobit regressions, conditioned on sabotage > 0 and censored below and above at 1 and 60. The first six columns are based on the data from Part 2 of the HS-NoAA and HC-NoAA treatments, and Part 3 of NoAA-HS and NoAA-HC treatments. Columns seven to twelve are based on Part 2 of the NoAA-HS and NoAA-HC treatments, and Part 3 of the HS-NoAA and HC-NoAA treatments. Experience equals 1 if the data is from Part 3 and zero otherwise. Head-start equals 1 when the AA policy is head-start. Low-ability is an indicator for the low-ability type (with the high-ability type as the reference group). Experience × Low-ability is an interaction. Experience × HS-NoAA is equal to one in Part 3 of the treatment HS-NoAA (when NoAA followed HS) and 0 otherwise. Sabotage received in t−1 corresponds to sabotage received in the previous round. Not reported control variables are age, round and a dummy for females. Controlling for risk attitudes and being the tournament winner in the preceding round does not change the results. Robust standard errors (clustered on pairs level) are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
Appendix III: Experimental Instructions (For Online Publication Only)

Experimental instructions for the paper “The Lifecycle of Affirmative Action Policies and Its Effect on Effort and Sabotage Behavior” by Subhasish M. Chowdhury, Anastasia Danilov, and Martin G. Kocher

*** Date: May 16, 2023 ***

This online Appendix includes original instructions given to the subjects during the experiment and their translations in English. At the beginning of the experiment, introductory instructions were distributed on paper (see Subsection Paper Instructions). Other instructions were displayed on the screen (see Subsection Online Instructions).

*** The text in italic and blue represents our comments to the reader of this publication. It was not presented to the participants of the experiment. *** Treatment differences are highlighted in red.

The German version of all instructions can be found in Subsections AIII.3. and AIII.4.

AIII.1. Paper Instructions (English Translation)

*** In this section you can find the English translation of the introductory instructions. These instructions were distributed to subjects on paper at the beginning of the experiment. The experimenters verbally asked the participants to read the instructions and pointed out that the terms such as participant, group member or experimenter refer to male as well as female individuals, i.e., are not gender specific. The original instructions can be found in Subsection AIII.3. ***

Welcome and thank you for your participation in this experiment.

You receive €4 for arriving on time.

During the experiment you can earn money by receiving points. The number of points that you receive during the experiment depends on your decisions.

The points that you earn in the experiment will be exchanged into Euros at the end of the experiment. The exchange rate is:

\[
10 \text{ Points} = 30 \text{ Cents}
\]

It is very important that you carefully read the instructions and understand them.

The experiment consists of four parts and a questionnaire. Each part will be introduced on a screen with the header „Instructions – Part ...“). The on-screen text will explain in detail what the respective part of the experiment is about. Please read the instructions carefully. If you have any questions, please let us know by raising your hand. Your question will then be answered at your place.

Parts one to three each consists of several identical rounds. At the end of the experiment, one the rounds from each part one to three will be randomly selected. You will be paid out the sum of money that you have earned in these three rounds and part four in cash.

Please turn off your mobile phone and refrain from talking with other participants. Any communication between participants will automatically result in the involved persons being excluded from the experiment without compensation.
All decisions are **anonymous**, meaning that **none** of the participants or experimenter learn the identities of the other participants and their decisions, either during or after the experiment.

If you have questions, please raise your hand and an experimenter will come to your place.

AIII.2. Screen Instructions

In this section you find English translation of the instructions and screen texts that were presented on the screen. If nothing else is noted, the text was identical for all subjects. All treatment differences are highlighted in red. The original instructions can be found in Subsection AIII.4.

#1

Welcome to the experiment and thank you very much for your participation.

Click OK to go to the instructions for Part 1.

#2

Instructions Part 1:

Part 1 consists of **8 identical rounds** of **2 minutes** duration each. At the end of each round, you will be informed about your earnings. At the end of the experiment, one of the 8 rounds will be chosen randomly and with equal probability. This means that the earnings from one of the 8 rounds will be paid out to you at the end of the experiment.

In each round of part 1 you have to solve math problems. The problems include one elementary arithmetical operation that has to be performed with two numbers (as for example 4*10). They can include addition, subtraction, multiplication or division of two numbers (one and two digits). You may only use **paper and pencil** as an aid. Any other tools such as calculators or cell phones are not allowed. If you use any other tool, you will be excluded from the experiment and will not receive any payment.

Calculate as many problems as you can! The more problems you solve correctly, the more money you can earn. **For each problem you correctly calculate, you will receive 5 points. During each round of 2 minutes, you can calculate as many problems as you like.** The remaining time is displayed in the upper right corner of the screen.

Please type your solutions as fast as you can into the input field on the screen and click the OK button. A new task will then appear. You will also receive feedback as to whether your last answer was right or wrong.

You will soon be familiarized with the appearance of the screen and some sample tasks after clicking „Continue”.

If you still have questions, please raise your hand and an experimenter will come to you.
Time left [sec.]: <remaining seconds were displayed here>

Example

Below are three example problems that will appear one after another.

You can see a mathematical task. Next to the task you see an input field and the OK button. The remaining time is displayed in the upper right corner.

Please calculate the solution for the example below, enter it in the input field and click on the OK button.

Number of correctly solved problems: <a counter of the correct answers was displayed here>

How much is?

4*10 = __________ [input field] [OK]

*** If the answer was wrong, the following sentence appeared below the answer: ***

Your last answer was wrong. Here is the next problem.

*** If the answer was correct, the following sentence appeared below the answer: ***

Your last answer was correct. Here is the next problem.

*** Two more math problems appeared after each other instead of 4*10. After three tasks were answered, the following sentence appeared: ***

The practice phase is now over.

Please click on START when you are ready to answer the understanding questions about Part 1. [START]

#4 The questions appeared one by one. Only correct answers were accepted. We mark correct answers in bold here. These highlights were not visible to participants.

Understanding questions – Part 1

1. How many rounds does part 1 consist of? 5, 8, 10, 12
2. How long does each round last? 1 minute, 2 minutes, 5 minutes
3. Which aid tools may you use? Calculator, cell phone, paper and pen, none
4. How many points do you get for each correctly solved problem? 0, 5, 10, 15
5. How many points do you get for each incorrectly answered problem? 0, 5, 10, 15
6. The points will be converted into Euro at the end of the experiment. What is the conversion rate? 10 points = 0.10€, 10 points = 0.15€, 10 points = 0.30€

You have now answered all questions correctly. Click on „START PART 1“ to start with part 1. [START PART 1]
In a few seconds, Part 1 begins. The remaining seconds are displayed in the upper right corner.

Each of the eight rounds in Part 1 had a two-minutes working phase with the following information on the screen:

Part 1

Round <the number of rounds was displayed here>

Number of correctly solved problems: <a counter of the correct answers was displayed here>

How much is?
11*53 = ______

*** Above is one example of the problem. After an answer was entered and the OK button clicked, a new problem appeared. Starting from the second problem, one of the two following sentenced informed the participants about the correctness of their last answer: ***

Your last answer was correct. Here is the next problem.

*** or ***

Your last answer was wrong. Here is the next problem.

At the end of each round in part 1 following information was displayed:

Result of round <the number of the round was displayed here>

You solved <the number of correct answers> problems correctly.

Your payoff for this round amounts to <the number of correct answers multiplied by 5> points.

Screens 6 and 7 where repeated for 8 rounds of Part 1.

At the end of the round 8 subjects proceeded to the following screen:

On which rank relative to the other persons in this room do you estimate yourself after completing the task in Part 1? ______

(Rank 1: the most correctly solved tasks; rank 24: the least correctly solved tasks)

If you estimate your rank correctly or deviate by one (up or down), you will receive 0.50 Euros in addition to all other payoffs.
Part 1 is now over.
Click CONTINUE to go to the instructions for Part 2.

Instructions Part 2:

Part 2 consists of 8 identical rounds, each lasting 2 minutes. At the end of the experiment, one of the 8 rounds will be chosen randomly and with equal probability for pay-out. This means that the earnings from one of the 8 rounds will be paid to you at the end of the experiment.

Task:

Also in this part, you solve mathematical problems consisting of two one- or two-digit numbers. The problems are very similar to those in Part 1. As in the previous part, you may use paper and pen but no other tools such as a calculator or a mobile phone.

Group Allocation:

All participants are divided into groups of two. The group composition remains the same over all 8 rounds. None of the participants will know the identity of the participant they are in a group with.

Before that, however, all participants will be divided into categories based on their performance (i.e., the number of correctly solved problems) in the last four rounds of Part 1.

- The participants with the best performance (i.e., with the highest number of correctly solved problems) will be assigned to category I.
- The participants with the next best performance belong to category II.
- The rest will be assigned to category III.

You were assigned to category <category of the subject>.

The other participant in your group is from category <category of the partner>.

This division into categories and groups remains unchanged throughout all rounds.

The following text was displayed to all participants in the NoAA-HS and NoAA-HC Treatments in Part 2:

The performance of each member of the group corresponds to the number of tasks he/she completed correctly.

The following text was displayed in the HS-NoAA treatment in Part 2 to participants of Category I:

Since you belong to Category I - the one with the best performance - and the other group member belongs to Category III - the one with the worst performance, the other group member receives a "credit" of 12 correctly solved tasks. You do not receive any credit. This means that only the performance of the group member in Category III is improved by 12 in each round, with your performance remaining unchanged.
The individual performance in each round is thus determined as follows:

Performance of the group member from Category I = number of correctly solved tasks

Performance of the group member from Category III = number of correctly solved tasks + 12

The following text was displayed in the HS-NoAA treatment in Part 2 to participants of Category III:

Since you belong to Category III - the one with the worst performance - and the other group member belongs to Category I - the one with the best performance you receive a „credit” of 12 correctly solved tasks. The other group member will not receive any credit. This means that only your performance is improved by 12 in each round, with the performance of the group member in Category I remaining unchanged.

The individual performance in each round is thus determined as follows:

Performance of the group member from Category I = number of correctly solved tasks

Performance of the group member from Category III = number of correctly solved tasks + 12

The following text was displayed to Category II participants in the HS-NoAA treatment in Part 2:

One randomly selected participant (B) from the group receives a „credit” of 12 correctly solved tasks. The other associated participant (A) receives no credit. This means that the performance of one group member is improved by 12 in each round, while the performance of the other group member remains unchanged.

The individual performance in each round is thus determined as follows:

Performance of group member A = number of correctly solved tasks

Performance of group member B = number of correctly solved tasks + 12

For the non-recipients, the following was displayed: You are group member A.

For the AA recipients it was displayed: You are group member B.

The following text was displayed in the HC-NoAA treatment in Part 2 to participants of Category I:

Since you belong to Category I - the one with the best performance - and the other group member belongs to Category III - the one with the worst performance, you receive a „deduction” of 12 correctly solved tasks. The other group member does not receive a „deduction”. This means that only your performance will be worsened by 12 in each round, with the performance of the Category III group member remaining unchanged.

The individual performance in each round is thus determined as follows:
Performance of the group member from Category I = number of correctly solved tasks - 12
Performance of the group member from Category III = number of correctly solved tasks

The following text was displayed in the HC-NoAA treatment in Part 2 to participants of Category III:

Since you belong to Category III - the one with the worst performance - and the other group member belongs to Category I - the one with the best performance, the other group member receives a „deduction” of 12 correctly solved tasks. You do not receive a „deduction”. This means that only the performance of the Category I group member is worsened by 12 in each round, while yours remains unchanged.

The individual performance in each round is thus determined as follows:

Performance of the group member from Category I = number of correctly solved tasks - 12
Performance of the group member from Category III = number of correctly solved tasks

The following text was displayed to Category II participants in the HC-NoAA treatment in Part 2:

One randomly selected participant (A) from the group receives a „deduction” of 12 correctly solved tasks. The other associated participant (B) receives no deduction. This means that the performance of one group member is reduced by 12 in each round, while the performance of the other group member remains unchanged.

The individual performance in each round is thus determined as follows:

Performance of group member A = number of correctly solved tasks -12
Performance of group member B = number of correctly solved tasks.

For the non-recipients, the following was displayed: You are group member B.
For the AA recipients it was displayed: You are group member A.

#11

„Timeout” button:

In addition, each participant has the option of pressing a „Timeout” button at any time during a round. When this button is pressed, a cartoon appears on the participant’s screen for 9 seconds. During this time, the participant will not be able to work on any mathematical problems.

The time for the round continues to run during the timeout. This means that the participant will have 9 seconds less time to complete problems per timeout.
In other words, if you want to read cartoons instead of solving mathematical problems, click the „Timeout“ button.

In each round, you can use the „Timeout” button as often as you like.

„Lock Member” button:
In addition, each participant has the option to lock their group member's screen for 9 seconds. If the screen is locked, the affected group member can neither work on the tasks nor read cartoons during this time. Also here, the time continues to run. This means that the affected group member has 9 seconds less time to work on mathematical problems per lockout phase.

If you decide to lock the screen of the other group member, please note the following:

- Your own screen will then be locked for 3 seconds at the same time. During this time, you will not be able to work on problems or take timeouts. After that, however, you can continue with math problems or take another timeout.

- Before you can lock the group member again, 3 seconds must have elapsed since the end of the last lockout period (i.e., 12 seconds after you last pressed the „Lock member” button).

- In each round, you can use the „Lock member” button as often as you like.

If your screen was locked, please note the following:

- Your screen will be locked for 9 seconds.

- During this time, you will not be able to solve problems, read cartoons, or lock the other group member.

- There will be at least a 3 second pause between two 9 seconds lock phases.

Payoffs in one round:
In each round you can earn money.

You will receive a bonus of 285 points if your performance is better than that of the other group member. If your performance is worse than that of the other group member, you will receive a payment of 35 points. In the event of a tie, it will be randomly determined which group member will receive the bonus of 285 points and who will receive 35 points.

The input screen will tell you how many problems you have solved correctly. The remaining time will be displayed in the upper right corner of the screen.

Please note:
Although you will see a round payoff at the end of each round, only the payoff from one randomly selected round will be included in your earnings for the second part of the experiment. Which of the 8 rounds is the payoff relevant round will be made visible for all participants at the end of the experiment. Since the determination of the payoff round is random, each of the 8 rounds can be decisive for the earnings you receive from the second part of the experiment.

This is the end of the instructions for Part 2.
Do you have any questions about these instructions? Then please raise your hand. An experimenter will come to you to answer your questions.

If you have no questions, click on „read and understood“. Then you will see how the screen will look like in Part 2.

On this screen the subjects could try the functions of the buttons and familiarize themselves with the screen.

This is what your screen looks like in Part 2.

Number of correctly solved problems: <a counter of the correct answers was displayed here>

How much is?
4*10 =

Above is one example of the problem. After an answer was entered and the OK button clicked, a new problem appeared. Starting from the second problem, one of the two following sentenced informed the participants about the correctness of their last answer.

Please click „Continue“ to end the practice phase.

Do you have any further questions?

If you do not have any questions, please click on CONTINUE to get to our understanding questions. As soon as all participants have answered the questions correctly, Part 2 of the experiment will begin.

If you still have open questions, please raise your hand. An experimenter will then come to you.

The questions appear one after the other. Only the correct answers will be accepted. We have indicated the correct answers for the reader.

Comprehension questions – Part 2

1. In Part 2, all participants will be assigned to groups. How many participants does a group consist of? 2, 3, 4, 5

2. How many rounds does part 2 consist of? 5, 8, 10, 12

3. Do you interact with the same group member in each round? yes, no

4. What are the consequences of pressing the „Timeout“ button?
 ○ None.

III.A.9
A cartoon is displayed on the screen of a randomly selected participant for 9 seconds.

A cartoon is displayed on my screen for 9 seconds, during which I can work on mathematical tasks.

A cartoon is displayed on the screen for 9 seconds and I cannot work on any mathematical tasks during this time.

5. Participants of which category have performed best in the last 4 rounds of Part 1? Category I, Category II, Category III

6. Participants of which category have performed worst in the last 4 rounds of Part I? Category I, Category II, Category III

7. Have Category II participants performed better than Category III participants in the last 4 rounds of Part 1? yes, no

*** The correct answers for the questions 8 and 9 varied between the treatment conditions (i.e., depend on whether the affirmative action applied or not).

The following question was displayed to Category I and Category III participants in Treatment HS-NoAA (HC-NoAA).

8. Which group member receives credit (deduction) out of 12 correctly solved tasks?
 - The group member of Category I
 - The group member of Category III

The following questions were displayed to Category I and Category III participants in all treatments.

9. Imagine the following scenario:
 (A:)
 The category I group member answers 18 tasks correctly.
 The category III group member answers 2 tasks correctly.

 Who gets the bonus of 285 points?
 - The category I group member
 - The category III group member
 - It is determined by chance

 (B:)
 The category I group member answers 14 tasks correctly.
 The category III group member answers 8 tasks correctly.

 Who gets the bonus of 285 points?
 - The category I group member
 - The category III group member
 - It is determined by chance

The following questions were displayed to Category II participants in all treatments.

8. Imagine the following scenario:
 (A:)
Group member A answers 18 tasks correctly.
Group member B answers 2 tasks correctly.
Group member B also gets a credit of 12 correctly solved tasks.

Who gets the bonus of 285 points?
- Group member A
- The group member B
- It is determined by chance

(B:)
Group member A answers 14 tasks correctly.
Group member B answers 8 tasks correctly.
Group member B also receives a credit of 12 correctly solved tasks.

Who gets the bonus of 285 points?
- Group member A
- The group member B
- It is determined by chance

10. What are the consequences of pressing the „Lock member” button, among other things?
- My screen is locked for 9 seconds, and a cartoon appears.
- The screen of the other group member is locked for 9 seconds, and a cartoon appears.
- The screen of the other group member is locked for 9 seconds. My screen is locked for 3 seconds. No cartoon appears.

#16
Comprehension questions - Part 2
You have now answered all the questions correctly.
Click on „START PART 2” to start with Part 2.

#17
In a few seconds, Part 2 begins.
The remaining seconds are displayed in the upper right corner.
Each of the eight rounds in Part 2 had a two-minutes working phase with the following information on the screen:

Part 2

Round <the number of rounds was displayed here>

Number of correctly solved problems: <a counter of the correct answers was displayed here>

<table>
<thead>
<tr>
<th>How much is?</th>
</tr>
</thead>
<tbody>
<tr>
<td>8*82 = [___]</td>
</tr>
<tr>
<td>[OK]</td>
</tr>
</tbody>
</table>

*** Above is one example of the problem. After an answer was entered and the OK button clicked, a new problem appeared. Starting from the second problem, one of the two following sentenced informed the participants about the correctness of their last answer. ***

Your last answer was correct. Here is the next problem.

*** or ***

Your last answer was wrong. Here is the next problem.

[Timeout] [Lock Member]

*** After clicking "Block member", a blank screen appeared with the following message: ***

You have blocked the other member. Please wait until 3 seconds have passed.

*** or ***

You have been blocked. Please wait until 9 seconds have passed.

*** A cartoon appeared after clicking "Time out". See subchapter III.5 for examples. ***

At the end of each round in part 2 following information was displayed:

Result of round <the number of rounds was displayed here>

You solved <the number of correct answers> problems correctly.

The other group member answered <the number of correct answers of the other group member> tasks correctly.

Only in HS-NoAA treatment for Category I and Category II (A):

Your group member's performance was improved with a credit of 12 correctly solved tasks.

Your performance remained unchanged.

Only in HS-NoAA treatment for Category III and Category II (B):

Your performance was improved with a credit of 12 correctly solved tasks.

Your group member's performance remained unchanged.
Only in HC-NoAA treatment for Category I and Category II (A):
Your performance was worsened with a deduction of 12 correctly solved tasks.
Your group member's performance remained unchanged.

Only in HC-NoAA treatment for Category III and Category II (B):
Your group member's performance was worsened with a deduction of 12 correctly solved tasks.
Your performance remained unchanged.

*** If the participant won the tournament: ***
Your payoff amounts to 285 points.

*** Otherwise: ***
Your payoff amounts to 35 points.

More information can be found in the table below.

<table>
<thead>
<tr>
<th>Round</th>
<th>Number of correctly answered tasks (You)</th>
<th>Number of correctly answered tasks (the other group member)</th>
<th>Payoff (You)</th>
<th>Payoff (the other group member)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One of the 8 rounds will be randomly selected and paid out at the end of the experiment.
Part 2 is now over.

Click CONTINUE to go to the instructions for Part 3.

Instructions Part 3:

Part 3 also consists of 8 identical rounds, each lasting 2 minutes.

Task:

In this part, you should also solve mathematical problems consisting of two one- or two-digit numbers. The tasks are very similar to those in Part 1 and Part 2. As in the previous part, you may use paper and pen, but no other tools such as a calculator or a mobile phone.

Group Allocation:

The group composition remains the same in Part 3 as in Part 2, i.e., you are assigned into a group with the same participant as before. Furthermore, the group composition remains the same over all 8 rounds. None of the participants will know the identity of the participant he/she is in a group with at any time.

Also, the classification into the categories remains unchanged. This means, based on the performance in rounds 5 to 8 in Part 1, the following applies:

You were assigned into Category <category of the participant>.

The other participant in your group is from Category <category of the partner>.

This division remains unchanged throughout all rounds.

In contrast to Part 2, the following applies:

The following text was displayed in HS-NoAA in Part 3 to Category I and Category III participants:

Please note that there is no credit for the Category III group member in Part 3.

This means that the performance of each group member corresponds to the number of correctly completed tasks.

The following text was displayed in HS-NoAA in Part 3 to Category II participants:

Please note that in Part 3 there is no credit for the Category B group member.

This means that the performance of each group member corresponds to the number of correctly completed tasks.

The following text was displayed in HC-NoAA in Part 3 to Category I and Category III participants:

Please note that there is no deduction for the Category I group member in Part 3.
This means that the performance of each group member corresponds to the number of correctly completed tasks.

The following text was displayed in HC-NoAA in Part 3 to Category II participants:

Please note that there is no deduction for group member A in Part 3.

This means that the performance of each group member corresponds to the number of correctly completed tasks.

The participants of the NoAA-HS and NoAA-HC treatments have the same text modules displayed in Part 3 as the participants of the HS-NoAA and HC-NoAA treatments in Part 2 (see #10).

#22 Identical with #11.

#23 Identical with #12.

#24 Comprehension questions for part 3:

*** In part 3, the participants also had to answer the comprehension questions. These were identical to questions 1-4 and 8-9 in Part 2 except for one small change: instead of "Part 2", the text said "Part 3" (see #15). ***

*** Screens #25-#29 are identical to #16 to #20 except for "Part 3" instead of "Part 2". Participants in Treatments HS-NoAA and HC-NoAA were shown the same text modules in Part 3 as participants in Treatments NoAA-HS and NoAA-HC were shown in Part 2. The participants of treatments NoAA-HS and NoAA-HC were shown the same text modules in Part 3 as the participants of treatments HS-NoAA and HC-NoAA in Part 2. ***
Instructions Part 4

In the part 4 of the experiment, you will be asked to choose from six different gambles (as shown below). Each circle represents a different gamble, and you must choose the one that you prefer. Each circle is divided in half. The two numbers in each circle represent the amount of experimental points the gamble will give you.

The computer will toss the coin. If the outcome is heads, you will receive the number of points in the light grey area of the circle you have chosen. If the outcome is tails, you will receive the number of points shown in the dark grey area of the circle you have chosen. Note that no matter which gamble you pick, each outcome will occur with a 50% chance.

Please select the gamble of your choice by entering the number of your gamble (1, 2, 3, 4, 5, or 6) in the field “I choose Gamble” and press OK.

You will be informed at the end of the experiment about the outcome of the coin for the gamble of your choice.

Once everyone has made their decision, Part 4 will end.
Which lottery do you prefer?
I choose lottery: _________

#32

Your payment

Your total payment consists of one round from each of parts 1 to 3, plus the amount from part 4 (lottery), plus a show-up fee of EUR 4.

Your payment

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Part 1, Round xxx was selected as the payout.</td>
<td>xxx€</td>
</tr>
<tr>
<td>In Part 2, Round xxx was selected as relevant for payout.</td>
<td>xxx€</td>
</tr>
<tr>
<td>In Part 3, Round xxx was selected as relevant for payout.</td>
<td>xxx€</td>
</tr>
<tr>
<td>In part 4, you selected lottery xxx. The result of the coin toss was tails</td>
<td>xxx€</td>
</tr>
<tr>
<td>For estimating your rank you will receive</td>
<td>xxx€</td>
</tr>
<tr>
<td>A show-up fee</td>
<td>4€</td>
</tr>
</tbody>
</table>

Your total payment is therefore xxx€

Please click "continue" to fill in a questionnaire below.
#33 A socio-demographic questionnaire completed the experiment. This is available from the authors on request.
Als die Instruktionen verteilt wurden, haben die Experimentatoren die Teilnehmenden mündlich aufgefordert die Instruktionen zu lesen und darauf hingewiesen, dass die Begriffe wie Teilnehmer, Gruppenmitglied oder Experimentator sich auf männliche sowie weibliche Individuen beziehen, d.h. nicht geschlechtsspezifisch sind.

Willkommen zum Experiment und vielen Dank für Ihre Teilnahme

Sie erhalten 4€ für Ihr pünktliches Erscheinen.

Während des Experiments erhalten Sie Punkte, durch die Sie Geld verdienen können. Die Anzahl der Punkte, die Sie während des Experiments erhalten, hängt von Ihren getroffenen Entscheidungen ab.

Die Punkte, die Sie während des Experiments verdienen, werden am Ende des Experiments in Euro umgerechnet. Der Wechselkurs ist dabei:

10 Punkte = 0,30€

Es ist deshalb sehr wichtig, dass Sie die Instruktionen sorgfältig lesen und verstehen.

Bitte schalten Sie Ihr Handy aus und sprechen Sie nicht mit anderen Teilnehmern. Jede Kommunikation zwischen Teilnehmern dieses Experiments wird automatisch dazu führen, dass Sie von der weiteren Teilnahme an diesem Experiment ausgeschlossen werden. Sie erhalten dann auch keine Bezahlung für Ihre Teilnahme.

Alle Entscheidungen, die Sie treffen, sind anonym, das heißt keiner der anderen Teilnehmer oder der Experimentator werden die Identität der Teilnehmer und Ihre Entscheidungen erfahren.

Falls Sie noch Fragen haben, heben Sie bitte die Hand und einer der Experimentleiter wird zu Ihnen kommen und Ihre Fragen individuell beantworten.

Sie erhalten auch noch 4€ für Ihre Teilnahme.

#1

Herzlich Willkommen zum Experiment und vielen Dank für Ihre Teilnahme.

Klicken Sie auf OK um zu den Instruktionen für Teil 1 zu gelangen.
Instruktionen Teil 1:

Berechnen Sie so viele Aufgaben wie möglich! Je mehr Aufgaben Sie richtig lösen, desto mehr Geld können Sie verdienen. Für jede Aufgabe, die Sie richtig beantworten, erhalten Sie 5 Punkte. Während jeder Runde von 2 Minuten Dauer können Sie so viele Aufgaben lösen, wie Sie möchten. Die verbleibende Zeit (in Sekunden) wird Ihnen im oberen rechten Eck des Bildschirms angezeigt.

Gleich werden Sie mit dem Aussehen des Bildschirms und einigen Beispielaufgaben vertraut gemacht, nachdem Sie auf „Fortfahren“ geklickt haben.

Falls Sie noch Fragen haben, heben Sie bitte Ihre Hand und ein Experimentator wird zu Ihnen kommen.
Verbleibende Zeit [sec.]: <verbleibende Zeit in Sekunden>

Beispielaufgaben

Unten sehen Sie drei Beispielaufgaben, die hintereinander erscheinen werden.

Sie können eine mathematische Aufgabe sehen. Neben der Aufgabe sehen Sie ein Eingabefeld und den OK-Knopf. Oben rechts wird die verbleibende Zeit eingeblendet.

Bitte berechnen Sie die Lösung für das untenstehende Beispiel, tragen es in das Eingabefeld ein und klicken auf den OK-Knopf.

Anzahl richtig gelöster Aufgaben: <Anzahl der richtig gelösten Aufgaben>

Wie viel ist?

4*10 = [Eingabefeld] [OK-Knopf]

*** Wenn die Antwort richtig war. folgender Text erscheint: ***

Ihre letzte Antwort war richtig. Hier ist die nächste Aufgabe.

*** Wenn die Antwort falsch war, folgender Text erscheint: ***

Ihre letzte Antwort war falsch. Hier ist die nächste Aufgabe.

*** Nach drei Aufgaben: ***

Die Übungsphase ist nun vorbei.

Bitte klicken Sie auf START, wenn Sie bereit sind die Verständnisfragen zu Teil 1 zu beantworten.

Verständnisfragen – Teil 1:

1. Aus wie vielen Runden besteht Teil 1? 5, 8, 10, 12
2. Wie lange dauert jede Runde? 1 Minute, 2 Minuten, 5 Minuten
3. Welche Hilfsmittel dürfen Sie benutzen? Taschenrechner, Handy, Papier und Stift, keine
4. Wie viel Punkte erhalten Sie für jede richtig gelöste Aufgabe? 0, 5, 10, 15
5. Wie viel Punkte erhalten Sie für jede falsch beantwortete Aufgabe? 0, 5, 10, 15
6. Die Punkte werden am Ende des Experiments in Euro umgerechnet. Was ist der Umrechnungskurs? 10 Punkte = 0.10€, 10 Punkte = 0.15€, 10 Punkte = 0.30€

Sie haben nun alle Verständnisfragen richtig beantwortet. Klicken Sie auf „START TEIL 1“, um mit Teil 1 zu beginnen.
Nach Ablauf von 5 Sekunden beginnt Teil 1.
Die verbleibende Sekundenzahl finden Sie rechts oben eingeblendet.

Jede von 8 Runden von Teil I hat zwei Minuten Arbeitsphase mit dem folgenden Bildschirm:

Teil 1
Runde <Nummer der Runde>

Anzahl der richtig gelösten Aufgaben: <Anzahl der richtig gelösten Aufgaben>

Wie viel ist?

6 * 29 =

---OK---

*** Nach dem Klicken vom OK-Knopf erschien die nächste Aufgabe. Zusätzlich ab der zweiten Aufgabe erschien auch der folgende Text auf dem Bildschirm: ***

*** Wenn die letzte Antwort richtig war: *** Ihre letzte Antwort war richtig. Hier ist die nächste Aufgabe.

*** Wenn die letzte Antwort falsch war: *** Ihre letzte Antwort war falsch. Hier ist die nächste Aufgabe.

Am Ende jeder Runde erhielten die Teilnehmer folgende Informationen:

Ergebnis von Runde <Nummer der Runde>

Sie haben <Anzahl der richtig gelösten Aufgaben> Aufgaben richtig beantwortet.

Ihre Auszahlung in dieser Runde beträgt <Anzahl der richtig gelösten Aufgaben multipliziert mit 5> Punkte.

---OK---

Bildschirm 6 und 7 wurden angezeigt in jeder von 8 Runden vom Teil I.

Am Ende von der achten Runde machten die Teilnehmenden weiter mit dem folgenden Bildschirm:

Auf welchem Platz relativ zu den anderen Teilnehmern in diesem Raum schätzen Sie sich nach Bearbeitung der Aufgaben in Teil I ein? _____

(1: die meisten richtig gelösten Aufgaben, 24: die wenigsten richtig gelösten Aufgaben)

Falls Sie Ihren Platz korrekt einschätzen oder um einen Platz nach oben bzw. nach unten abweichen, erhalten Sie zusätzlich zu allen anderen Auszahlungen 0.50 Euro.

---OK---
Teil 1 ist nun zu Ende.
Klicken Sie auf Weiter, um zu den Instruktionen für Teil 2 zu gelangen.

Instruktionen Teil 2:

Aufgabe:
Auch in diesem Teil sollen Sie mathematische Aufgaben lösen, die aus zwei ein- oder zweistelligen Zahlen bestehen. Die Aufgaben sind denen aus Teil 1 sehr ähnlich. Wie im vorherigen Teil dürfen Sie Papier und Stift benutzen, jedoch keine anderen Hilfsmittel wie einen Taschenrechner oder ein Handy.

Gruppenzuordnung:
Alle Teilnehmer sind jeweils **zu zweit in eine Gruppe** eingeteilt. Die Gruppenzusammenstellung bleibt über alle 8 Runden die gleiche. Keiner der Teilnehmer wird zu irgendeinem Zeitpunkt erfahren, mit welchem anderen Teilnehmer er in einer Gruppe ist.

Vorher werden alle Teilnehmer jedoch in Kategorien eingeteilt, welche auf ihrer Leistung der letzten vier Runden in Teil 1 basieren.

- Die Teilnehmer mit der besten Leistung (d.h. mit der höchsten Anzahl der richtig gelösten Aufgaben) werden in die Kategorie I eingeteilt.
- Die Teilnehmer mit der nächstbesten Leistung gehören zu der Kategorie II.
- Der Rest wird der Kategorie III zugeteilt.

Sie wurden in die **Kategorie <Kategorie Nummer>** eingeteilt.

Der andere Teilnehmer in Ihrer Gruppe ist aus der **Kategorie <Kategorie Nummer>**.

Diese Einteilung **bleibt** über alle Runden **unverändert**.

Der folgende Text wurde im NoAA-HS und NoAA-HC Treatments im Teil 2 allen Teilnehmenden angezeigt:

Die Leistung jedes Gruppenmitglieds entspricht der Anzahl der von ihm richtig bearbeiteten Aufgaben.

Der folgende Text wurde im HS-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie I angezeigt:

III.A.23

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

\[
\begin{align*}
\text{Leistung des Gruppenmitglieds aus der Kategorie I} &= \text{Anzahl der richtig gelösten Aufgaben} \\
\text{Leistung des Gruppenmitglieds aus der Kategorie III} &= \text{Anzahl der richtig gelösten Aufgaben} + 12
\end{align*}
\]

Der folgende Text wurde im HS-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie III angezeigt:

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

\[
\begin{align*}
\text{Leistung des Gruppenmitglieds aus der Kategorie I} &= \text{Anzahl der richtig gelösten Aufgaben} \\
\text{Leistung des Gruppenmitglieds aus der Kategorie III} &= \text{Anzahl der richtig gelösten Aufgaben} + 12
\end{align*}
\]

Der folgende Text wurde im HS-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie II angezeigt:

Ein zufällig ausgewählter Teilnehmer (B) aus der Gruppe erhält eine „Gutschrift“ von 12 richtig gelösten Aufgaben. Der andere zugehörige Teilnehmer (A) erhält keine Gutschrift. Das heißt, die Leistung von einem Gruppenmitglied wird in jeder Runde um 12 verbessert, wobei die Leistung des anderen Gruppenmitglieds unverändert bleibt.

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

\[
\begin{align*}
\text{Leistung des Gruppenmitglieds A} &= \text{Anzahl der richtig gelösten Aufgaben} \\
\text{Leistung des Gruppenmitglieds B} &= \text{Anzahl der richtig gelösten Aufgaben} + 12
\end{align*}
\]

Für die Nicht-Empfänger wurde angezeigt: Sie sind Gruppenmitglied A.

Für die AA-Empfänger wurde angezeigt: Sie sind Gruppenmitglied B.

Der folgende Text wurde im HC-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie I angezeigt:

III.A.24

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

Leistung des Gruppenmitglieds aus der Kategorie I = Anzahl der richtig gelösten Aufgaben - 12

Leistung des Gruppenmitglieds aus der Kategorie III = Anzahl der richtig gelösten Aufgaben

Der folgende Text wurde im HC-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie III angezeigt:

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

Leistung des Gruppenmitglieds aus der Kategorie I = Anzahl der richtig gelösten Aufgaben - 12

Leistung des Gruppenmitglieds aus der Kategorie III = Anzahl der richtig gelösten Aufgaben

Der folgende Text wurde im HC-NoAA Treatment in Teil 2 den Teilnehmenden der Kategorie II angezeigt:

Ein zufällig ausgewählter Teilnehmer (A) aus der Gruppe erhält einen „Abzug“ von 12 richtig gelösten Aufgaben. Der andere zugehörige Teilnehmer (B) erhält keinen Abzug. Das heißt, die Leistung von einem Gruppenmitglied wird in jeder Runde um 12 verschlechtert, wobei die Leistung des anderen Gruppenmitglieds unverändert bleibt.

Die individuelle Leistung in jeder Runde wird somit folgendermaßen bestimmt:

Leistung des Gruppenmitglieds A = Anzahl der richtig gelösten Aufgaben - 12

Leistung des Gruppenmitglieds B = Anzahl der richtig gelösten Aufgaben

Für die Nicht-Empfänger: Sie sind Gruppenmitglied B.

Für die AA-Empfänger: Sie sind Gruppenmitglied A.
„Auszeit“-Knopf:

Die Zeit für die Runde läuft während der Auszeit weiter. Das heißt, pro Auszeit hat ein Teilnehmer jeweils 9 Sekunden weniger Zeit, Rechenaufgaben zu bearbeiten.

Mit anderen Worten, wenn Sie Cartoons lesen möchten, statt Rechenaufgaben zu lösen, klicken Sie den „Auszeit“-Knopf.

In jeder Runde können Sie den „Auszeit“-Knopf so oft nutzen, wie Sie wollen.

„Mitglied sperren“-Knopf:
Zusätzlich hat jeder Teilnehmer die Möglichkeit, den Bildschirm seines Gruppenmitglieds 9 Sekunden lang zu sperren. Ist der Bildschirm gesperrt, so kann das betroffene Gruppenmitglied in dieser Zeit weder an den Aufgaben arbeiten noch Cartoons lesen. Auch hier läuft die Zeit für die Runde weiter. Das heißt, pro Sperr-Phase hat das betroffene Gruppenmitglied jeweils 9 Sekunden weniger Zeit, Rechenaufgaben zu bearbeiten.

Sollten Sie sich entscheiden, den Bildschirm eines anderen Gruppenmitglieds zu sperren, so beachten Sie bitte Folgendes:
- Ihr eigener Bildschirm wird daraufhin zur selben Zeit für 3 Sekunden gesperrt. Während dieser Zeit können Sie keine Aufgaben beantworten und keine Auszeit nehmen. Danach können Sie jedoch weiter Ihre Aufgaben bearbeiten oder die Auszeit nehmen.
- Bevor Sie das Gruppenmitglied erneut sperren können, müssen 3 Sekunden nach dem Ende der letzten Sperrphase (d.h. 12 Sekunden nach dem Sie zuletzt den Knopf „Mitglied sperren“ geklickt haben) vergangen sein.
- In jeder Runde können Sie den „Mitglied sperren“-Knopf so oft nutzen, wie sie wollen.

Sollte Ihr Bildschirm gesperrt werden, beachten Sie bitte folgendes:
- Ihr Bildschirm wird für 9 Sekunden gesperrt.
- Während dieser Zeit können Sie keine Aufgaben beantworten, keine Auszeit nehmen und nicht das andere Gruppenmitglied sperren.
- Zwischen zwei Sperr-Perioden von 9 Sekunden wird mindestens jeweils eine Pause von 3 Sekunden liegen.
Rundenauszahlung:

In jeder Runde können Sie Geld verdienen.

Der Eingabebildschirm wird Sie darüber informieren, wie viele Aufgaben Sie richtig bearbeitet haben. Die verbleibende Zeit wird Ihnen in der oberen rechten Ecke des Bildschirms angezeigt.

Bitte beachten Sie:

Obwohl Sie am Ende jeder Runde eine Rundenauszahlung angezeigt bekommen, wird lediglich die Rundenauszahlung aus einer einzigen der 8 Runden Ihre gesamte Auszahlung für den zweiten Teil des Experiments bestimmen. Welche der insgesamt 8 Runden für alle Teilnehmer die auszahlungsrelevante Runde ist, wird am Ende des Experimentes für alle Teilnehmer sichtbar ausgelost. Da die Auszahlungsrunde zufällig bestimmt wird, kann also jede der 8 Runden entscheidend sein für die Auszahlung, die Sie für den zweiten Teil des Experiments erhalten.

Dies ist das Ende der Instruktionen für Teil 2.

Haben Sie Fragen zu den Instruktionen? Dann heben Sie bitte die Hand. Ein Experimentator kommt zu Ihnen, um Ihre Fragen zu beantworten.

Falls Sie keine Fragen haben, klicken Sie auf "gelesen und verstanden". Dann sehen Sie, wie der Bildschirm in Teil 2 aussehen wird. er Bildschirm in Teil 2 aussehen wird.

Bitte klicken Sie "Fortfahren", um die Übungsphase zu beenden.
Haben Sie weitere Fragen?

Falls Sie keine Fragen haben, klicken Sie auf WEITER, um zu Verständnisfragen zu gelangen. Sobald alle Teilnehmer die Fragen richtig beantwortet haben, beginnt Teil 2 des Experiments.

Falls Sie noch offene Fragen haben, heben Sie bitte die Hand. Ein Experimentator kommt zu Ihnen.

Verständnisfragen zum Teil 2:

1. In Teil 2 werden alle Teilnehmer in Gruppen zugeteilt. Aus wie vielen Teilnehmern besteht eine Gruppe?
 2 3 4 5
 Antwort: 2. Alle Teilnehmer werden in Zweiergruppen eingeteilt.

2. Aus wie viel Runden besteht Teil 2?
 5 8 10 12
 Antwort: 8. Teil 2 besteht aus 8 Runden á 2 Minuten.

3. Interagieren Sie in jeder Runde mit dem gleichen Gruppenmitglied?
 ja nein
 Antwort: ja. Die Gruppenzuordnung bleibt unverändert

4. Welche Folgen hat das Drücken vom Knopf „Auszeit“?
 ○ keine
 ○ auf dem Bildschirm von einem zufällig ausgewählten Teilnehmer wird für 9 Sekunden ein Cartoon angezeigt
 ○ auf meinem Bildschirm wird für 9 Sekunden ein Cartoon angezeigt, während dessen kann ich Rechenaufgaben bearbeiten
 ○ auf meinem Bildschirm wird für 9 Sekunden ein Cartoon angezeigt und ich kann während dieser Zeit keine Rechenaufgaben bearbeiten
 Antwort: auf ihrem Bildschirm wird für 9 Sekunden ein Cartoon angezeigt und ich kann während dieser Zeit keine Rechenaufgaben bearbeiten

5. Teilnehmer welcher Kategorie haben die beste Leistung in den letzten 4 Runden von Teil 1 erbracht?
 Kategorie I Kategorie II Kategorie III
 Antwort: Kategorie I. Teilnehmer der Kategorie I haben mehr Aufgaben in den Runden 5 bis 8 von Teil 1 richtig beantwortet als Teilnehmer der Kategorie II und III.

6. Teilnehmer welcher Kategorie haben die schlechteste Leistung in den letzten 4 Runden von Teil 1 erbracht?
 Kategorie I Kategorie II Kategorie III
Antwort: Kategorie III. Teilnehmer der Kategorie III haben die wenigsten richtigen Antworten in den Runden 5 bis 8 in Teil I eingegeben.

7. Haben Teilnehmer der Kategorie II bessere Leistungen als die Teilnehmer der Kategorie III in den letzten 4 Runden von Teil 1 erbracht?
 ja nein
 Antwort: ja, Teilnehmer der Kategorie II haben mehr Aufgaben richtig beantwortet als die Teilnehmer der Kategorie III (in den Runden 5 bis 8 von Teil I)

Die folgende Frage wurden den Teilnehmenden der Kategorie I und III angezeigt im Treatment HS-NoAA (HC-NoAA). Die Antworten variierten für unterschiedliche Treatments:
8. Welches Gruppenmitglied erhält eine Gutschrift (Abzug) von 12 richtig gelösten Aufgaben?
 o Das Gruppenmitglied der Kategorie I
 o Das Gruppenmitglied der Kategorie III

Die folgenden Fragen wurden den Teilnehmenden der Kategorie I und III angezeigt in allen Treatments. Die Antworten variierten für unterschiedliche Treatments:
9. Stellen Sie sich das folgende Szenario vor:
 (A:)
 Das Gruppenmitglied der Kategorie I beantwortet 18 Aufgaben richtig.
 Das Gruppenmitglied der Kategorie III beantwortet 2 Aufgaben richtig.
 Wer bekommt den Bonus von 285 Punkten?
 o Das Gruppenmitglied der Kategorie I
 o Das Gruppenmitglied der Kategorie III
 o Es wird durch Zufall bestimmt

 (B:)
 Das Gruppenmitglied der Kategorie I beantwortet 14 Aufgaben richtig.
 Das Gruppenmitglied der Kategorie III beantwortet 8 Aufgaben richtig.
 Wer bekommt den Bonus von 285 Punkten?
 o Das Gruppenmitglied der Kategorie I
 o Das Gruppenmitglied der Kategorie III
 o Es wird durch Zufall bestimmt

Die folgenden Fragen wurden den Teilnehmenden der Kategorie II angezeigt in allen Treatments. Die Antworten variierten für unterschiedliche Treatments:
8. Stellen Sie sich das folgende Szenario vor:
 (A:)
 Das Gruppenmitglied A beantwortet 18 Aufgaben richtig.
 Das Gruppenmitglied B beantwortet 2 Aufgaben richtig.
 Das Gruppenmitglied B erhält zudem eine Gutschrift von 12 richtig gelösten Aufgaben.
 Wer bekommt den Bonus von 285 Punkten?
 o Das Gruppenmitglied A
 o Das Gruppenmitglied B
o Es wird durch Zufall bestimmt

(B:)
Das Gruppenmitglied A beantwortet 14 Aufgaben richtig.
Das Gruppenmitglied B beantwortet 8 Aufgaben richtig.
Das Gruppenmitglied B erhält zudem eine Gutschrift von 12 richtig gelösten Aufgaben.

Wer bekommt den Bonus von 285 Punkten?
o Das Gruppenmitglied A
o Das Gruppenmitglied B
o Es wird durch Zufall bestimmt

10. Welche Folgen hat unter anderem das Drücken des Knopfs „Mitglied Sperren“?
o Mein Bildschirm wird für 9 Sekunden gesperrt und es erscheint ein Cartoon
o Der Bildschirm des anderen Gruppenmitglieds wird für 9 Sekunden gesperrt und es erscheint ein Cartoon
o Der Bildschirm des anderen Gruppenmitglieds wird für 9 Sekunden gesperrt. Mein Bildschirm wird für 3 Sekunden gesperrt. Es erscheint kein Cartoon.

Antwort: Der Bildschirm des anderen Gruppenmitglieds wird für 9 Sekunden gesperrt. Mein Bildschirm wird für 3 Sekunden gesperrt. Es erscheint kein Cartoon.

Verständnisfragen - Teil 2

Sie haben nun alle Verständnisfragen richtig beantwortet.

Klicken Sie auf „START TEIL 2“, um mit Teil 2 zu beginnen.
Nach Ablauf von wenigen Sekunden beginnt Teil 2.

Die verbleibende Sekundenzahl finden Sie rechts oben eingeblendet.

Jede von 8 Runden von Teil 2 hat zwei Minuten Arbeitsphase mit dem folgenden Bildschirm:

Teil 2

Runde <Nummer der Runde>

Anzahl richtig gelöster Aufgaben: **<Anzahl der richtig gelösten Aufgaben>**

Wie viel ist?

8*82 =

***Nach dem Klicken vom OK-Knopf erschien die nächste Aufgabe. Zusätzlich ab der zweiten Aufgabe erschien auch der folgende Text auf dem Bildschirm: ***

*** Wenn die letzte Antwort richtig war: *** Ihre letzte Antwort war richtig. Hier ist die nächste Aufgabe.

*** Wenn die letzte Antwort falsch war: *** Ihre letzte Antwort war falsch. Hier ist die nächste Aufgabe.

*** Auszeit ***

Mitglied sperren

*** Nach dem Klicken von "Mitglied sperren" erschien einen leereren Bildschirm mit folgender Nachricht: ***

Sie haben das andere Mitglied gesperrt. Bitte warten Sie bis 3 Sekunden vorbei sind.

***زوار ***

Sie wurden gesperrt. Bitte warten Sie, bis die 9 Sekunden vorbei sind.

*** Nach dem Klicken von "Auszeit" erschien ein Cartoon. Siehe Unterkapitel AIII.5 für Beispiele. ***

Am Ende jeder Runde erhielten die Teilnehmer folgende Informationen:

Ergebnis von Runde <Nummer der Runde>

Sie haben Aufgaben richtig beantwortet.

Das andere Gruppenmitglied hat **<Anzahl der richtig gelösten Aufgaben>** Aufgaben richtig beantwortet.

Der folgende Text wurde in HS-NoAA den Teilnehmenden der Kategorie I sowie II-A angezeigt:
Die Leistung Ihres Gruppenmitglieds wurde mit einer Gutschrift von 12 richtig gelösten Aufgaben verbessert.
Ihre Leistung blieb unverändert.

Der folgende Text wurde in HS-NoAA den Teilnehmenden der Kategorie III sowie II-B angezeigt:
Ihre Leistung wurde mit einer Gutschrift von 12 richtig gelösten Aufgaben verbessert.
Die Leistung Ihres Gruppenmitglieds blieb unverändert.

Der folgende Text wurde in HC-NoAA den Teilnehmenden der Kategorie I sowie II-A angezeigt:
Ihre Leistung wurde mit einem Abzug von 12 richtig gelösten Aufgaben verschlechtert.
Die Leistung Ihres Gruppenmitglieds blieb unverändert.

Der folgende Text wurde in HC-NoAA den Teilnehmenden der Kategorie III sowie II-B angezeigt:
Die Leistung Ihres Gruppenmitglieds wurde mit einem Abzug von 12 richtig gelösten Aufgaben verschlechtert.
Ihre Leistung blieb unverändert.

*** Wenn der Teilnehmende das Turnier gewonnen hat: ***
Ihre Auszahlung beträgt 285 Punkten.

*** Wenn der Teilnehmende das Turnier verloren hat: ***
Ihre Auszahlung beträgt 35 Punkten.

Mehr Informationen finden Sie in der untenstehenden Tabelle

<table>
<thead>
<tr>
<th>Round</th>
<th>Anzahl der richtig beantworteten Aufgaben (Sie)</th>
<th>Anzahl der richtig beantworteten Aufgaben (das andere Gruppenmitglied)</th>
<th>Auszahlung in Punkten (Sie)</th>
<th>Auszahlung in Punkten (Das andere Gruppenmitglied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eine der 8 Runden wird am Ende des Experiments zufällig ausgewählt und ausgezahlt.

#20

Teil 2 ist nun zu Ende

Klicken Sie auf Weiter, um zu den Instruktionen für Teil 3 zu gelangen.

#21

Instruktionen Teil 3:

Auch Teil 3 besteht aus 8 identischen Runden von jeweils 2 Minuten Dauer.

Aufgabe:

Auch in diesem Teil sollen Sie mathematische Aufgaben lösen, die aus zwei ein- oder zweistelligen Zahlen bestehen. Die Aufgaben sind denen aus Teil 1 und Teil 2 sehr ähnlich. Wie in vorherigen Teilen dürfen Sie Papier und Stift benutzen, jedoch keine anderen Hilfsmittel wie einen Taschenrechner oder ein Handy.

Gruppenzuordnung:

Auch die Einteilung in die Kategorien bleibt unverändert. Das heißt, basierend auf der Leistung in den Runden 5 bis 8 in Teil 1, gilt Folgendes:

Sie wurden in die Kategorie I eingeteilt.

Der andere Teilnehmer in Ihrer Gruppe ist aus der Kategorie Gruppenteilnehmer.

Diese Einteilung bleibt über alle Runden unverändert.

Im Unterschied zu Teil 2 gilt Folgendes:

Der folgende Text wurde den Teilnehmenden der Kategorie I und III im Teil 3 in HSNoAA angezeigt:

Bitte beachten Sie, dass es in Teil 3 keine Gutschrift für das Gruppenmitglied der Kategorie III gibt.

Das heißt die Leistung jedes Gruppenmitglieds entspricht der Anzahl der von ihm richtig bearbeiteten Aufgaben.
Der folgende Text wurde den Teilnehmenden der Kategorie II im Teil 3 in HS-NoAA angezeigt:

Bitte beachten Sie, dass in Teil 3 keine Gutschrift für das Gruppenmitglied der Kategorie B gibt.

Das heißt die Leistung jedes Gruppenmitglieds entspricht der Anzahl der von ihm richtig bearbeiteten Aufgaben.

Der folgende Text wurde den Teilnehmenden der Kategorie I und III im Teil 3 in HC-NoAA angezeigt:

Bitte beachten Sie, dass es in Teil 3 keinen Abzug für das Gruppenmitglied der Kategorie I gibt.

Das heißt die Leistung jedes Gruppenmitglieds entspricht der Anzahl der von ihm richtig bearbeiteten Aufgaben.

Der folgende Text wurde den Teilnehmenden der Kategorie II im Teil 3 in HC-NoAA angezeigt:

Bitte beachten Sie, dass in Teil 3 keinen Abzug für das Gruppenmitglied A gibt.

Das heißt die Leistung jedes Gruppenmitglieds entspricht der Anzahl der von ihm richtig bearbeiteten Aufgaben.

Die Teilnehmenden der Treatments NoAA-HS und NoAA-HC haben im Teil 3 die gleichen Textbausteine wie die Teilnehmenden der HS-NoAA und HC-NoAA Treatments in Teil 2 angezeigt bekommen (siehe #10).

#22 Identisch mit #11.
#23 Identisch mit #12.
#24 Verständnisfragen zum Teil 3:

*** Auch im Teil 3 mussten die Teilnehmenden die Verständnisfragen beantworten. Diese waren identisch mit den Fragen 1-4 und 8-9 in Teil 2 bis auf eine kleine Änderung: Statt "Teil 2" stand im Text "Teil 3" (siehe #15). ***

*** Die Bildschirme #25-#28 sind identisch mit #16 bis #20 bis auf "Teil 2" statt "Teil 2". Die Teilnehmenden von Treatments HS-NoAA und HC-NoAA haben im Teil 3 die gleichen Textbausteine wie die Teilnehmenden der Treatments NoAA-HS und NoAA-HC im Teil 2 angezeigt bekommen. Die Teilnehmenden von Treatments NoAA-HS und NoAA-HC haben im Teil 3 die gleichen Textbausteine wie die Teilnehmenden der Treatments HS-NoAA und HC-NoAA im Teil 2 angezeigt bekommen. ***
In Teil 4 treffen Sie nur eine Entscheidung. D.h. Teil 4 besteht nur aus einer Runde.

Bitte wählen Sie Ihre bevorzugte Lotterie, indem Sie die Zahl Ihrer Lotterie (1,2,3,4,5 oder 6) in das Feld “Ich wähle Lotterie” eingeben und auf “OK” klicken.

Sie werden am Ende des Experiments über das Ergebnis des Münzwurfs für Ihre bevorzugte Lotterie informiert.

Sobald jeder Teilnehmer seine Entscheidung getroffen hat, endet Teil 4.
Welche Lotterie bevorzugen Sie?
Ich wähle Lotterie: _________

Ihre Auszahlung

Ihre Gesamtauszahlung setzt sich aus jeweils einer Runde aus den Teilen 1 bis 3, sowie aus dem Betrag aus Teil 4 (Lotterie), zuzüglich einer Teilnahmegebühr von EUR 4 zusammen.

<table>
<thead>
<tr>
<th>Ihre Auszahlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Teil 1 wurde Runde xxx als auszahlungsrelevant gewählt. xxx€</td>
</tr>
<tr>
<td>In Teil 2 wurde Runde xxx als auszahlungsrelevant gewählt. xxx€</td>
</tr>
<tr>
<td>In Teil 3 wurde Runde xxx als auszahlungsrelevant gewählt. xxx€</td>
</tr>
<tr>
<td>In Teil 4 haben Sie Lotterie xxx gewählt. Das Ergebnis des Münzwurfs war Zahl. xxx€</td>
</tr>
<tr>
<td>Für die Schätzung Ihres Rangs erhalten Sie xxx€</td>
</tr>
</tbody>
</table>

Teilnahmegebühr 4€

Ihre gesamte Auszahlung beträgt somit: xxx€
Bitte klicken Sie “weiter”, um nachfolgend einen Fragebogen auszufüllen.

#33 Einen sozio-demographischen Fragebogen schloss das Experiment ab. Dieser ist verfügbar bei den Autoren auf Nachfrage.

AIII.V. Examples of Cartoons