
 
Department 
Of 
Economics 

The Central Influencer Theorem: 

Spatial Voting Contests with 

Endogenous Coalition Formation 

Subhasish M. Chowdhury and Sang-Hyun Kim 

 

 

Sheffield Economic Research Paper Series 
 
SERPS no. 2023019 
 
ISSN 1749-8368 
 
18 August 2023 



1 
 

The Central Influencer Theorem: Spatial Voting 
Contests with Endogenous Coalition Formation * 

 

 

Subhasish M. Chowdhury, a and Sang-Hyun Kim b 
a Department of Economics, University of Sheffield, Sheffield, S1 4DT, UK.  

Email: subhasish.chowdhury@sheffield.ac.uk 
b School of Economics, Yonsei University, Seoul 03722, South Korea.  

Email: sang.kim@yonsei.ac.kr 
 

 

 

This version: 17 August 2023 

 

 

Abstract 
We introduce a spatial voting contest without the ‘one person, one vote’ restriction. Players 
exert costly effort to influence the policy and the outcome is obtained through an adjustment 
function. Players are heterogeneous in terms of the position in the policy line, disutility function, 
and the effort cost. In equilibrium, two groups endogenously emerge: players in one group try 
to implement more leftist policy, while those in the other group try more rightist one. Since the 
larger group suffers a more severe free-riding problem, the equilibrium policy converges to the 
center only when the larger group has a cost advantage. We demonstrate how the location of 
the center (i.e., the steady-state point) can be either median, or a mean of all points, or a mean 
of the extreme points, depending on the convexities of the utility and cost functions. This 
reflects some well-known results as special cases. We extend the model to an infinite horizon 
setting and show that the median outcome can be reached only under certain conditions. 
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1. Introduction  

Policies within the government, organizations, committees, and similar entities are often 

selected and put into action through the process of (majoritarian) voting. Typically, a prevailing 

policy is in place, and the players engaged in the process possess individual preferences 

regarding the nature of a new policy while participating in the vote for policy alteration. This 

fundamental framework can be adapted to other communal decision-making procedures such 

as elections, lobbying, collective bargaining etc., and has been employed extensively in both 

theoretical and applied contexts within the realms of Economics and Political Science. 

In the context of a policy being evaluated along a single dimension, this framework yields the 

well-known 'median voter' outcome (Black, 1948; Downs, 1957). To elaborate, players are 

positioned along a linear policy spectrum based on their favored policy position. These players 

experience disutility if the policy deviates from their preferred point, and they cast a single 

possible vote accordingly. Within this framework, numerous studies have demonstrated that 

the policy outcome ultimately mirrors the preference of the voter positioned at the median. 

It's important, though, to acknowledge that numerous real-world scenarios surpass such 

straightforward frameworks, even within the context of a policy space characterized by a single 

dimension. To begin with, committees or members of the public frequently partake in policy 

contests, expending valuable resources to impact policies. In such instances, the conventional 

principle of one person, one vote does not hold. Take, for instance, scenarios involving rent-

seeking, electoral expenditures, or committee lobbying, where the process of influence 

encompasses broader dynamics and incurs associated influence costs. 

Furthermore, when it comes to implementing one's preferred policy or exerting influence on 

the existing status quo, players often form alliances or coalitions endogenously with other ‘like-

minded’ participants. Lastly, within these coalitions, some members may opportunistically rely 

on the efforts of others to advance their shared interests in shaping more favorable policies. 

In this study, we introduce a game-theoretic model that integrates the aforementioned elements 

within both static and dynamic frameworks and derive the resulting equilibria. As we 

demonstrate later, the model turns out to be an amalgamation of a spatial voting model and a 

collective contest model. Within this setting, players hold optimal preferences along a given 

line, characterized by a disutility function: the greater the divergence of the implemented policy 

from their preference, the higher their dissatisfaction.  
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The initial status quo policy is exogenously determined (rooted in historical context), yet 

players have the ability to exert efforts to influence and realign the policy. These efforts come 

at a cost and adhere to a known cost function. If players on the left (right) side of the initial 

policy collectively expend more effort, the ultimate policy outcome is more likely to move 

toward the left (right) side of the initial policy. Consequently, this process prompts players to 

naturally form coalitions and potentially exploit the efforts of fellow coalition members. An 

illustrative example of this scenario is provided in Figure 1 below. 

Figure 1. Illustrative example 

 

 

 

 

 
Suppose the line above illustrates the policy dimension. To illustrate the model structure, we 

offer two examples: first, consider the policy domain as gun control within the USA. In this 

context, a player situated at the far right extreme (designated as circle F) would symbolize the 

position of the National Rifle Association (NRA), making costly investment in advocating for 

the promotion and advancement of rifle shooting. Conversely, a player positioned at the far left 

extreme (circle A) corresponds to the Brady campaign, campaigning for stringent gun control 

measures to curb firearm-related violence. A player positioned in the middle (e.g., circle C) 

represents someone favoring gun ownership while advocating for rigorous background checks. 

Likewise, let us apply this notion to the scenario of Brexit in the UK. In this case, circles F, A, 

and C would respectively represent the positions of the 'hard Brexiteers,' proponents of a firm 

break from the European Union; the 'Better Together' campaigners, advocating for continued 

EU membership; and the immigration skeptical 'In' campaigners who support a softer Brexit 

stance. Naturally, there are additional players (situated at B, D, E, etc.) in both examples, each 

holding distinct preferences and stances. 

Continuing with the illustration, let us consider the black arrow as denoting the existing status 

quo. Since it is on the right side of Player C, in this case, player C aims for the policy to shift 

towards the left. It's important to note several intriguing aspects that set this structure apart 

from conventional voting models. First, each of the players can be different from each other 

not only in terms of the position in the policy line, but also in terms of how eager they are in 

Brady campaign, or 
‘In’ campaigners 

NRA, or 
Hard Brexiteers 

Status quo Background checker, or 
Immigration sceptic 

A B C D E F 
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shifting the status quo, and how cost effective they are in their effort to influence the policy. 

Second, although player C seeks a leftward policy shift, there exists a constraint on the extent 

of this shift; in other words, they do not want the policy to shift too far to the left (for instance, 

to point A). Third, player C forms an implicit alliance with players A, B, and D, as these players 

also share the preference for a leftward policy movement relative to the status quo. Finally, an 

interesting dynamic emerges: if players A, B, and D invest their efforts to facilitate the policy 

shift, it becomes feasible for player C to capitalize on their endeavors and abstain from 

expending effort, which is inherently costly. This interplay of preferences, constraints, and 

strategic considerations in contest distinguishes this model from standard voting frameworks. 

Players decide on the level and direction of costly effort to expend to shift the status quo. To 

model this, we employ an adjustment function that incorporates everyone’s efforts. Within this 

framework, players may exhibit heterogeneity in three distinct aspects: position in the policy 

line, effort cost function, and disutility function. We find that in equilibrium, two groups 

endogenously emerge: players in one group try to implement more leftist policy (i.e., they 

direct their effort to shift the policy to the left side), while those in the other group more rightist 

one. In general, the equilibrium policy converges to the ‘center’ if the larger of the groups has 

a sufficient cost advantage. However, the equilibrium policy may not converge towards the 

center if there is no such an advantage since the larger group suffers from a more severe free 

rider problem. Notably, the 'center' need not correspond to the median, as typically seen in 

conventional voting literature. Depending on the attributes of the effort cost function and the 

disutility function, alternative measures of centrality can be obtained. 

We define steady-state equilibrium as the situation in which the status quo and the implemented 

policy coincide. Our findings reveal interesting outcomes based on the characteristics of the 

disutility function and that of the effort cost function. We find that if both the disutility of non-

optimal policy and the effort cost function are linear, any policy can be a steady state policy. 

This is the case where there is no cost (dis)advantage. However, if the disutility of non-optimal 

policy is linear and the cost function is convex, then a steady-state policy is the optimal policy 

for a median player. On the contrary, if the disutility of non-optimal policy is concave (that is, 

the distance measure is convex) and the cost function is linear, then the steady-state policy is 

the mean of the two extreme players' optimal policies. Although no heterogeneity in terms of 

cost exists, all players except the two extreme ones engage in free riding in the equilibrium. 

Finally, if the distance measure and the cost function are equally convex, the steady-state policy 

is the (weighted) average of all players’ ideal points. 
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We then extend these analyses to a three-player dynamic setting with a logit-type adjustment 

function (a la Tullock (1980) contest success function). In an infinite horizon model, there 

exists an equilibrium in which the policy outcome converges again to the median player. 

Players expend more effort in each period as they become more patient (or forward-looking), 

but the convergence speed does not depend on the discount factor.  

Our results contribute to the spatial voting literature, revealing an intriguing nuance: although 

a central measure turns out to be the optimal policy, it does not necessarily have to be the 

median. This aligns with the research by Krasa and Polborn (2010), albeit in a distinct context 

involving competition between diverse candidates across two policy areas. Their work also 

highlights a central tendency that diverges from the conventional median voter outcome. 

Expanding on this trajectory, our study introduces the novel concept of contest into the spatial 

voting literature.  

In contrast to the assumptions of Downs (1957) and subsequent studies (e.g., Palfrey and 

Rosenthal, 1983; Becker, 1983; Sengupta and Sengupta, 2008, etc.), which posit equal 

influence for each player (one vote), our study embraces a more generic framework. We allow 

individuals to allocate varying resources, leading to the endogenous determination of an 

individual's level of influence.1 This approach supports and complements the results in Hanson 

and Stuart (1984) found in a different set up. In generalization, Baron (1996) implements a 

collective goods problem through dynamic voting. Our analysis shares similarities with this 

approach, albeit showcasing a more extensive array of outcomes and implications.  

We also contribute to the contest literature (Konrad, 2009) – especially in the areas of collective 

(group) contests and endogenous coalition formation. Traditionally, group contests entail pre-

defined player groupings with fixed prize values, and an externally specified group impact (or 

production) function. In contrast, we consider an additive impact function (akin to Katz et al., 

1990) but endogenize both the group size and the prize value. It's important to note that the 

contest literature generally lacks a specific focus on policy implementation directions. 

Moreover, the rules governing coalition formation, which dictate how prizes are distributed 

among group members, are often imposed arbitrarily (see the references in Balart et al., 2017). 

In contrast, our work tackles both these aspects by focusing on a linear policy dimension and 

offering an endogenous determination of each group member's potential share. Epstein and 

 
1 Lalley and Weyl (2018) propose quadratic voting as a method for binary collective decision making. Our model 
differs in that it doesn't presuppose the existence of two predetermined alternatives. Additionally, Xefteris and 
Ziros (2017) introduce vote trading under incomplete information, whereas we consider complete information. 
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Nitzan (2004) introduce a two-stage game. In the first stage the “groups decide which policy 

to lobby for and then, in a second stage, engage in a contest over the proposed policies”. Hence, 

they endogenize the ‘target’ but not the prize. We extend it by also endogenizing the groups, 

but the preference points in our model remain fixed. Similarly, Hirata and Kamada (2020) 

introduce a two-stage game of policy choice and donation and find that only the extreme donors 

donate. We consider a single stage model and find the centrality of extreme players as an 

equilibrium in a special case. Finally, Baik (2017) considers a multi-players contest on a prize 

that is public good for some and public bad for some others, but only the prize spread matters 

in equilibrium that involves free riding. In contrast to this model, we endogenize the prize as 

well as the group formation.  

Lastly, we also contribute to the emerging literature on contests with networks (Franke and 

Öztürk, 2015). 2  For examples, the Tug-of-war games, as characterized by Konrad and 

Kovenock (2005, 2009) and Agastya and McAfee (2006), involve a two-player scenario where 

policy shifts occur sequentially until a predetermined point is reached. Our model takes this 

concept further by accommodating multiple players and introducing an endogenously 

determined final point. Moreover, Duggan and Gao (2020) analyze a multi-dimensional tug-

of-war model in which risk averseness results in Rawlsian equilibrium and risk loving 

equilibrium is the arithmetic mean of players’ ideal points. In contrast, we implement a single 

dimension policy and risk neutrality but consider groups of contestants.  

In conclusion, our present study bridges the spatial voting model and the collective contests 

model, making contributions to both areas of literature. The subsequent sections of this paper 

outline the details of our model and the ensuing analyses. In Section 2, we present the model 

itself, while Section 3 and Section 4 report the results from the static and the dynamic analyses, 

respectively. Section 5 concludes.  

2.  Model 
Consider 𝑁𝑁 ≥ 2 players who spend effort to implement an individually more desirable policy.  

The policy space is bounded, continuous and one-dimensional. Such a space can be represented 

as a unit interval [0,1]. Let 𝑥𝑥𝑖𝑖 be the effort exerted by player 𝑖𝑖, 𝑑𝑑𝑖𝑖 ∈ {−1,1} be the direction 

toward which the effort is put, and 𝑦𝑦𝑖𝑖 ∈ [0,1] be the ideal point of player 𝑖𝑖. For expositional 

 
2 Our study diverges from the concept of spatial contests (Konrad, 2000), where the focus is on firms competing 
for positions within a differentiated market, aiming to secure advantageous locations. In contrast, this study 
investigates the dynamics of policy formation and decision-making about factors such as player preferences, 
policy adjustments, and coalition formations. 
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simplicity, we assume that all players are distinct in terms of their ideal points, but the distance 

between them can be arbitrary.3 More specifically and without loss of generality, we let 0 =

𝑦𝑦1 < 𝑦𝑦2 < ⋯ < 𝑦𝑦𝑁𝑁 = 1. Player 𝑖𝑖 decides on the pair (𝑥𝑥𝑖𝑖 ,𝑑𝑑𝑖𝑖) to maximize: 

𝑢𝑢𝑖𝑖(𝛿𝛿, 𝑥𝑥𝑖𝑖) = −𝛼𝛼𝑖𝑖�|𝛿𝛿 − 𝑦𝑦𝑖𝑖|� − 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖)      (1) 

where 𝛼𝛼𝑖𝑖 is a parameter capturing the sensitivity of the player to a change in policy, and the 

cost of effort 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖) is 𝜇𝜇𝑖𝑖(𝑥𝑥𝛾𝛾/𝛾𝛾) where 𝛾𝛾 ≥ 1. We further assume the distance measure ||. || to 

have the same functional form as the cost function, i.e., �|𝛿𝛿 − 𝑦𝑦𝑖𝑖|� = (|𝛿𝛿 − 𝑦𝑦𝑖𝑖|)𝜆𝜆/𝜆𝜆 where 𝜆𝜆 ≥

1. We find these assumptions about functional forms highly valuable to sharpen theoretical 

predictions. We present the results that do not rely on these functional form assumptions in 

Subsection 4.2. 

Also, we mostly restrict our focus on symmetric players, i.e., for all 𝑖𝑖 and 𝑗𝑗, 𝛼𝛼𝑖𝑖 = 𝛼𝛼𝑗𝑗 = 𝛼𝛼 and 

𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑗𝑗 = 1 . The consequences of relaxing this symmetry assumption are discussed in 

Subsection 3.3.  

The implemented policy is determined according to an ‘adjustment rule’, which is defined as 

follows. Let 𝒙𝒙 and 𝒅𝒅 denote the vectors of effort and directions, respectively. Then, given 

(𝒙𝒙,𝒅𝒅), the implemented policy is: 

𝛿𝛿(𝒙𝒙,𝒅𝒅) = 𝑆𝑆 + 𝑝𝑝(𝒙𝒙,𝒅𝒅) 

where 𝑆𝑆 is the status quo or the default policy, and 𝑝𝑝(𝒙𝒙,𝒅𝒅) is the adjustment. In other words, 

the newly implemented policy is the status quo policy adjusted by the aggregated efforts. Our 

model allows 𝑆𝑆 to be different from previously implemented policy. But when discussing the 

dynamics and steady state equilibrium, we assume that the status quo at period 𝑡𝑡  is the 

implemented policy at period 𝑡𝑡 − 1.   

The adjustment function 𝑝𝑝(𝒙𝒙,𝒅𝒅) ∈ [−1/2, 1/2] has the following form: 

𝑝𝑝(𝒙𝒙,𝒅𝒅) = 𝑝𝑝 �� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝐿𝐿�

,� 𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑅𝑅�

� 

 
3 If two or more players share the same ideal point (i.e., 𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑗𝑗for some 𝑖𝑖 ≠ 𝑗𝑗), there may exist multiple equilibria 
in which those players free ride on each other's effort in various ways. We ignore these cases because they would 
make the exposition significantly messier without adding any interesting insights. 
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where 𝐿𝐿� denotes the set of players who push the policy to the left, i.e., 𝐿𝐿� = {𝑗𝑗|𝑑𝑑𝑗𝑗 = −1} and 

similarly, 𝑅𝑅� = {𝑗𝑗|𝑑𝑑𝑗𝑗 = 1}, and has the following properties: 

i. 𝑠𝑠𝑠𝑠𝑠𝑠[𝜕𝜕𝑝𝑝(𝒙𝒙,𝒅𝒅)/𝜕𝜕𝑥𝑥𝑖𝑖] = 𝑠𝑠𝑠𝑠𝑠𝑠[𝑑𝑑𝑖𝑖] and 𝑠𝑠𝑠𝑠𝑠𝑠[𝜕𝜕2𝑝𝑝(𝒙𝒙,𝒅𝒅)/𝜕𝜕𝑥𝑥𝑖𝑖2] = −𝑠𝑠𝑠𝑠𝑠𝑠[𝑑𝑑𝑖𝑖].   

ii. If ∑ 𝑑𝑑𝑗𝑗𝑥𝑥𝑗𝑗 = 0, then 𝑝𝑝(𝒙𝒙,𝒅𝒅) = 0𝑁𝑁
𝑗𝑗=1 . 

iii. If ∑ 𝑑𝑑𝑗𝑗𝑥𝑥𝑗𝑗 = 0, then 𝜕𝜕𝜕𝜕(𝒙𝒙,𝒅𝒅)
𝜕𝜕𝑥𝑥𝑖𝑖

= −𝜕𝜕𝑝𝑝(𝒙𝒙,𝒅𝒅)/𝜕𝜕𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1  for 𝑖𝑖 ∈ 𝐿𝐿� and 𝑗𝑗 ∈ 𝑅𝑅�. 

The first is the usual assumption that the function is increasing and concave in effort. It looks 

different from the usual one because the objective of the players in 𝐿𝐿� is to reduce 𝑝𝑝(𝒙𝒙,𝒅𝒅). The 

second assumption states that if the level of efforts put forward the opposite directions are 

identical (i.e., ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿� =  ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅� )), then the default policy is implemented. It also implies that 

if nobody exerts a positive effort, then 𝛿𝛿(𝒙𝒙,𝒅𝒅) = S. The last assumption is that 𝑝𝑝(𝒙𝒙,𝒅𝒅) is 

symmetric. 4  More specifically, at a symmetric point (i.e., when ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿� =  ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅� ), the 

marginal change of the policy is also symmetric. Our leading example for 𝑝𝑝(𝒙𝒙,𝒅𝒅) is a ‘Contest 

Success Function (CSF)’ in the spirit of Tullock (1980): 

𝑝𝑝(𝒙𝒙,𝒅𝒅) = �
∑ 𝑑𝑑𝑗𝑗𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1

2∑ 𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1

  𝑖𝑖𝑖𝑖 ∑ 𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 > 0

0   Otherwise
      (2). 

From this, it is clear that out model is a collective rent-seeking game (similar to Katz et al., 

1990), which is played on a single-dimensional policy space. Another example is a linear 

function: 𝑝𝑝(𝒙𝒙,𝒅𝒅) = 𝜂𝜂�∑ 𝑑𝑑𝑗𝑗𝑥𝑥𝑗𝑗𝑁𝑁
𝑗𝑗=1 � for some positive but small 𝜂𝜂.  

The ideal points of all players {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  and the status quo policy 𝑆𝑆 are common knowledge. All 

players decide the effort level and the direction {𝑥𝑥𝑖𝑖 ,𝑑𝑑𝑖𝑖}𝑖𝑖=1𝑁𝑁  independently and simultaneously. 

An equilibrium is vectors of efforts and directions (𝒙𝒙∗,𝒅𝒅∗) such that for all 𝑖𝑖, given (𝒙𝒙−𝒊𝒊∗ ,𝒅𝒅−𝒊𝒊∗ ) 

and 𝑆𝑆, player 𝑖𝑖 maximizes (1).  

3.  Static Analysis  

We first characterize the condition under which given 𝒙𝒙, nobody has an incentive to change the 

direction of effort, then we explore how the equilibrium efforts determine the implemented 

policy. In Section 3.2, steady-state equilibria in which the status quo and the implemented 

 
4 Note that the last assumption does not directly imply that the marginal benefit t of exerting additional effort 
would be the same for those players, because in principle, both 𝛼𝛼𝑖𝑖 and |𝛿𝛿 − 𝑦𝑦𝑖𝑖| can influence the marginal utility 
of having 𝛿𝛿 closer to 𝑦𝑦𝑖𝑖. 
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policy coincide are characterized. To summarize the findings, if 𝛾𝛾 = 𝜆𝜆 = 1, i.e., both the 

distance and the effort cost functions are linear, then any policy 𝛿𝛿 ∈ [0,1] can be a steady-state 

equilibrium. In contrast, if the cost function is convex while the distance function is linear, 

i.e., 𝛾𝛾 > 1 and 𝜆𝜆 = 1, a steady state equilibrium policy must be in [𝑦𝑦𝑚𝑚−, 𝑦𝑦𝑚𝑚+] where 𝑦𝑦𝑚𝑚− is 

the ideal point of the left median player and 𝑦𝑦𝑚𝑚+ is the idea point of the right median player. 

Of course, when 𝑁𝑁 is an odd number then 𝑦𝑦𝑚𝑚− = 𝑦𝑦𝑚𝑚+ = 𝑦𝑦𝑚𝑚. If 𝛾𝛾 = 1 and 𝜆𝜆 > 1, the mean of 

the two extreme players’ ideal points, ½, emerges as the steady state point. Finally, if 𝛾𝛾 >

1 and 𝜆𝜆 > 1, then the mean of all players’ ideal points is the steady state. 

3.1 Group formation  

In this subsection, we consider how groups are formed, that is, given the vector of efforts 𝒙𝒙, 

how that of the directions 𝒅𝒅 is determined. The following lemma describes what the groups 

𝐿𝐿� = {𝑗𝑗|𝑑𝑑𝑗𝑗 = −1} and 𝑅𝑅� = {𝑗𝑗|𝑑𝑑𝑗𝑗 = 1} look like in equilibrium.  

Lemma 1. In equilibrium, there exists a threshold (or grouping rule) 𝜃𝜃 ∈ [0,1] such that the 

players whose ideal policy is in the left of 𝜃𝜃 are in group 𝐿𝐿�, and those who are in the right are 

in group 𝑅𝑅�. The player whose ideal policy is 𝜃𝜃, if exists, can be in either group. 

Proof: Obvious.  

We define 𝐿𝐿(𝜃𝜃) as the set of players who are at the left side of 𝜃𝜃, i.e., 𝐿𝐿(𝜃𝜃) = {𝑖𝑖|𝑦𝑦𝑖𝑖 < 𝜃𝜃}, and 

𝑅𝑅(𝜃𝜃) as 𝑅𝑅(𝜃𝜃) = {𝑖𝑖|𝑦𝑦𝑖𝑖 ≥ 𝜃𝜃}. Since now we can infer the vector of directions 𝒅𝒅 from (𝒚𝒚,𝜃𝜃), 

below we discuss how to determine an equilibrium threshold 𝜃𝜃∗  instead of the vector of 

directions 𝒅𝒅∗. 

For the sake of concreteness of the discussion, let 𝑝𝑝(𝒙𝒙,𝒅𝒅) be the Tullock-type CSF defined in 

(2) for a moment.5 Note that since 𝑦𝑦1 = 0 and 𝑦𝑦𝑁𝑁 = 1, ∑ 𝑥𝑥𝑗𝑗𝑗𝑗  is never zero in equilibrium. 

Therefore, the implemented policy as a function of 𝜃𝜃 is given by: 

𝛿𝛿(𝜃𝜃;𝒙𝒙,𝒚𝒚, 𝑆𝑆) = 𝑆𝑆 +
∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅(𝜃𝜃) − ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿(𝜃𝜃)

2∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿(𝜃𝜃)∪𝑅𝑅(𝜃𝜃)
 

  = 𝑆𝑆 − 1
2

+
∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅(𝜃𝜃)

2∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿(𝜃𝜃)∪𝑅𝑅(𝜃𝜃)
    (3). 

 
5 Except for the ones presented in Section 4.2, our results do not require any specific functional form assumption 
on the adjustment function 𝑝𝑝(𝒙𝒙,𝒅𝒅). 
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Note that given 𝒙𝒙,𝒚𝒚 and 𝑆𝑆, the implemented policy 𝛿𝛿(𝜃𝜃) is a decreasing step function: as 𝜃𝜃 

moves from 0 to 1, more and more players move from 𝑅𝑅(𝜃𝜃) to 𝐿𝐿(𝜃𝜃), so 𝛿𝛿(𝜃𝜃) decreases step 

by step. 

If the threshold 𝜃𝜃 is too small, too many players are on the right side of it, so the implemented 

policy ends up being biased toward the right. In such a case, a player in 𝑅𝑅(𝜃𝜃) but located close 

to 𝜃𝜃 has an incentive to change the direction of the effort from the right (𝑑𝑑 = 1) to the left 

(𝑑𝑑 = −1). If too many players are in 𝐿𝐿(𝜃𝜃), similarly, the implemented policy is biased towards 

the left, and a player located close to 𝜃𝜃 is willing to change the sides, i.e., 𝜃𝜃 must be moving 

towards the left. In equilibrium, the threshold must be set in a way such that nobody gains by 

changing her direction. The following lemma states that an equilibrium policy  𝛿𝛿(𝒙𝒙∗,𝒅𝒅∗;  𝑆𝑆) is 

such a threshold. 

Lemma 2. Given a vector of equilibrium effort 𝒙𝒙∗, the corresponding equilibrium groups are 

𝐿𝐿(𝜃𝜃∗) and 𝑅𝑅(𝜃𝜃∗)  where 𝜃𝜃∗ satisfies: 

𝜃𝜃∗ = 𝛿𝛿(𝜃𝜃∗;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆).      (4) 

Proof: Consider an arbitrary grouping rule 𝜃𝜃0 ∈ (0,1) according to which players on the left 

of 𝜃𝜃0 are in 𝐿𝐿, and those on the right of or on 𝜃𝜃0 are in 𝑅𝑅. Suppose that 𝛿𝛿(𝜃𝜃0;𝒙𝒙∗,𝒚𝒚) > 𝜃𝜃0, and 

that when the threshold moves from 𝜃𝜃0 < 𝑦𝑦𝑖𝑖  to 𝜃𝜃1 > 𝑦𝑦𝑖𝑖 , 𝛿𝛿(𝜃𝜃1;𝒙𝒙∗,𝒚𝒚) is still greater than 𝜃𝜃1. 

Then, the change from 𝜃𝜃0 to 𝜃𝜃1 (equivalently, from 𝑑𝑑𝑖𝑖 = 1 to 𝑑𝑑𝑖𝑖 = −1) improves the utility of 

player 𝑖𝑖  because by the change, ||𝛿𝛿 − 𝑦𝑦𝑖𝑖||  becomes smaller. This means that 𝜃𝜃0  is not an 

equilibrium threshold, and furthermore, any 𝜃𝜃 < 𝜃𝜃1 is not an equilibrium threshold either. We 

can say the same thing about the case in which 𝜃𝜃0 is greater than 𝛿𝛿, and moving 𝜃𝜃0 toward the 

left does not change the rank of the two. Because in equilibrium, nobody has an incentive to 

change the direction of the effort, the equilibrium dividing rule 𝜃𝜃� must satisfy –  

lim
𝜃𝜃→𝜃𝜃�+

𝛿𝛿(𝜃𝜃;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆) ≤ 𝜃𝜃� ≤ lim
𝜃𝜃→𝜃𝜃�−

𝛿𝛿(𝜃𝜃;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆), 

and the equilibrium implemented policy is either the right limit or the left limit. 

To prove the lemma by contradiction, suppose that the above inequalities are strict, which 

implies that there exists a point 𝑦𝑦𝑗𝑗 = 𝜃𝜃� such that when threshold 𝜃𝜃 is on the left of 𝑦𝑦𝑗𝑗, 𝜃𝜃 <

𝛿𝛿(𝜃𝜃;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆) , but 𝜃𝜃 > 𝛿𝛿(𝜃𝜃;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆)  when 𝜃𝜃  is on the right of 𝑦𝑦𝑗𝑗 . Graphically, 𝑦𝑦𝑗𝑗  is the 

threshold in which 𝛿𝛿(𝜃𝜃) jumps from the above of the 45-degree line to the beneath of it. In this 

case, player 𝑗𝑗  can pull the implemented policy 𝛿𝛿(𝑥𝑥𝑗𝑗 ,𝒙𝒙−𝒋𝒋∗ ;𝒚𝒚) toward her ideal policy 𝑦𝑦𝑗𝑗  by 
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reducing her effort 𝑥𝑥𝑗𝑗. This means 𝒙𝒙∗ was not a vector of equilibrium efforts in the first place, 

which contradicts the assumption. Therefore, in equilibrium at least one of the inequalities must 

hold as equality, and the equilibrium policy must be the dividing rule which satisfies 𝜃𝜃∗ =

𝛿𝛿(𝜃𝜃∗;𝒙𝒙∗,𝒚𝒚, 𝑆𝑆).               ∎ 

A few remarks follow immediately. First, the equilibrium grouping rule 𝜃𝜃∗ defined by Coate 

(2004) is unique if exists, because 𝛿𝛿(𝜃𝜃) is a decreasing step function. This, of course, does not 

mean that the equilibrium is unique. Second, even if the equilibrium groups are unique, there 

can be infinitely many thresholds 𝜃𝜃  that define the same groups. Third, it is 𝛿𝛿∗  not 𝑆𝑆  that 

determines the directions of efforts: even when S is on the left of 𝑦𝑦𝑖𝑖, player may prefer to push 

the policy to the left if the equilibrium policy 𝛿𝛿∗ ends up being on the right of 𝑦𝑦𝑖𝑖 . Lastly, 

because 𝛿𝛿(𝜃𝜃; 𝑆𝑆) increases as 𝑆𝑆 gets larger, given (𝑥𝑥,𝜃𝜃∗) is non-decreasing in 𝑆𝑆. 

3.2. Steady State  

In this subsection, we characterize equilibria where 𝛿𝛿∗ = 𝑆𝑆, namely steady-state equilibria. In 

such an equilibrium, the equilibrium groups are simply defined as 𝐿𝐿(𝑆𝑆) and 𝑅𝑅(𝑆𝑆). Given that 

the directions are set in the way to maximize each individual's utility, the game boils down to 

a simple collective rent-seeking game or a group contest. 

Again, for concreteness, let us consider the Tullock (1980) CSF and assume 𝜆𝜆 = 1. Taking the 

constants out of Eq. (1), the maximization problem of player 𝑖𝑖 in 𝑄𝑄(𝑆𝑆) (𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄 = 𝐿𝐿,𝑅𝑅) can 

be rewritten as: 

max
𝑥𝑥𝑖𝑖

𝛼𝛼 ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑄𝑄

∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿∪𝑅𝑅
− 𝑐𝑐(𝑥𝑥𝑖𝑖). 

Note that this objective function is identical to that in group contests with the value of the prize 

being 𝛼𝛼 (see Katz et al., 1990). Since a player can "win a (public-good) prize" even if she exerts 

zero effort, players have an incentive to free ride on the efforts of the other players in the same 

group. The first-order condition for player 𝑖𝑖 in 𝑄𝑄(𝑆𝑆) is: 

𝛼𝛼∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑄𝑄𝑐𝑐

�∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿∪𝑅𝑅 �2
− 𝑐𝑐′(𝑥𝑥𝑖𝑖∗) ≥ 0 

where the inequality condition is for a player who would choose 𝑥𝑥𝑖𝑖 = 0  because she is 

completely satisfied with the steady-state policy (i.e., 𝑦𝑦𝑖𝑖 = 𝑆𝑆 = 𝛿𝛿∗ ). In other words, in 

equilibrium, the FOCs hold as equality whenever 𝑥𝑥𝑖𝑖∗ > 0. Recall that the implemented policy 
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coincides with the status quo if and only if ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿(𝑆𝑆) = ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑅𝑅(𝑆𝑆) . Using this, we derive the 

following conditions: for all 𝑥𝑥𝑖𝑖∗ > 0, 

𝛼𝛼
4∑ 𝑥𝑥𝑗𝑗

∗
𝑗𝑗∈𝑄𝑄

= 𝑐𝑐′(𝑥𝑥𝑖𝑖∗) = (𝑥𝑥𝑖𝑖∗)𝛾𝛾−1.    (5) 

Equation (5) shows that the determination of the steady-state efforts and the corresponding 

policy crucially depend on the (non-)linearity of the cost function. If it is linear (𝛾𝛾 = 1), all the 

FOCs are identical to each other, so there is a large indeterminacy. In contrast, if it is convex 

(𝛾𝛾 > 1), regardless of how convex it is, everybody must expend the same amount of effort in 

a steady-state equilibrium. 

Now, consider the case with a convex distance measure, i.e., 𝜆𝜆 > 1. Given that 𝛿𝛿∗ = 𝑆𝑆, the 

FOC of player 𝑖𝑖's maximization problem is: 

𝛼𝛼(|𝑆𝑆 − 𝑦𝑦𝑖𝑖|)𝜆𝜆−1
𝛼𝛼 ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑄𝑄𝑐𝑐

�∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿∪𝑅𝑅 �2
− (𝑥𝑥𝑖𝑖∗)𝛾𝛾−1 ≥ 0. 

 Let us first consider the case of the linear cost function (𝛾𝛾 = 1). Since in a steady-state, 

𝛼𝛼∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑄𝑄𝑐𝑐 /�∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿∪𝑅𝑅 �2  is common to every player, the players with the largest 

𝛼𝛼(|𝑆𝑆 − 𝑦𝑦𝑖𝑖|)𝜆𝜆−1, that is, those farthest from 𝑆𝑆 expends a positive effort, while the others free 

ride. Because 𝑆𝑆 must be in between 0 and 1, the players farthest from 𝑆𝑆 in each group are those 

at the extremes, players 1 and 𝑁𝑁. In order for the FOCs of the extreme players to simultaneously 

hold as equality, |𝑆𝑆 − 𝑦𝑦1| must equal |𝑆𝑆 − 𝑦𝑦𝑁𝑁|. Therefore, 𝑆𝑆 = (𝑦𝑦1 + 𝑦𝑦𝑁𝑁)/2 = 1/2. 

  Next, suppose that the cost function is also strictly convex (𝛾𝛾 > 1). Notice that equilibrium 

effort 𝑥𝑥𝑖𝑖∗  is (|𝑆𝑆 − 𝑦𝑦𝑖𝑖|)
𝜆𝜆−1
𝛾𝛾−1  multiplied by �

𝛼𝛼∑ 𝑥𝑥𝑗𝑗
∗

𝑗𝑗∈𝑄𝑄𝑐𝑐

�∑ 𝑥𝑥𝑗𝑗
∗

𝑗𝑗∈𝐿𝐿∪𝑅𝑅 �
2�
1/(𝛾𝛾−1)

 which is a factor common to 

everybody. Thus, for ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿 = ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑅𝑅  to be the case, ∑ ��𝑆𝑆 − 𝑦𝑦𝑗𝑗��
𝜆𝜆−1
𝛾𝛾−1

𝑗𝑗∈𝐿𝐿  must equal 

∑ ��𝑆𝑆 − 𝑦𝑦𝑗𝑗��
𝜆𝜆−1
𝛾𝛾−1

𝑗𝑗∈𝑅𝑅 . Suppose the distance measure and the cost function are convex by the same 

degree, i.e., 𝛾𝛾 = 𝜆𝜆. Then, by equating ∑ �𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝐿𝐿  and ∑ �𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝑅𝑅 , we conclude that in 

such a case, 𝑆𝑆 = ∑ 𝑦𝑦𝑗𝑗/𝑁𝑁𝑁𝑁
𝑗𝑗=1 . The above logic is valid for a more general adjustment function 

𝑝𝑝(𝒙𝒙,𝒅𝒅), and the discussion thus far is summarized in the following proposition. 
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Proposition 1. Suppose that a steady-state equilibrium exists. 

(i) If 𝛾𝛾 = 𝜆𝜆 = 1, any point in [0,1] can be a steady-state equilibrium policy. 

(ii) If 𝛾𝛾 > 1 and 𝜆𝜆 = 1, a steady-state policy is the median player's ideal policy. That is, if 

𝑁𝑁 is an odd number, the steady-state policy must be 𝑦𝑦𝑚𝑚, and for 𝑁𝑁 an even number, any 

point in [𝑦𝑦𝑚𝑚−, 𝑦𝑦𝑚𝑚+] can be a steady-state policy. 

(iii) If 𝛾𝛾 = 1 and 𝜆𝜆 > 1, the steady-state policy is 1/2. 

(iv) If 𝛾𝛾 = 𝜆𝜆 > 0, the steady-state policy is the average of all ideal policies, ∑ 𝑦𝑦𝑗𝑗/𝑁𝑁𝑁𝑁
𝑗𝑗=1 . 

Proof. Note first that for a more general 𝑝𝑝(𝒙𝒙,𝒅𝒅), which can also be written as 𝑝𝑝(𝒙𝒙,𝜃𝜃), for a 

proper 𝜃𝜃 by Lemma 1, the FOC is: 

𝛼𝛼(|𝑆𝑆 − 𝑦𝑦𝑖𝑖|)𝜆𝜆−1 �
𝜕𝜕𝑝𝑝(𝑥𝑥𝑖𝑖 ,𝒙𝒙−𝒊𝒊∗ ,𝜃𝜃∗)

𝜕𝜕𝑥𝑥𝑖𝑖
|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗� − (𝑥𝑥𝑖𝑖∗)𝜆𝜆−1 ≥ 0. 

(i)   Suppose 𝛾𝛾 = 𝜆𝜆 = 1. Since a steady-state equilibrium exists by assumption, there exists 

a tuple (𝒙𝒙∗,𝜃𝜃∗) that satisfies the FOCs. Now, pick an arbitrary status quo 𝑆𝑆 ∈ [0,1], let the 

groups be 𝐿𝐿(𝑆𝑆) and 𝑅𝑅(𝑆𝑆). Pick a vector 𝒙𝒙∗∗ such that, 

∑ 𝑥𝑥𝑗𝑗∗∗𝑗𝑗∈𝑅𝑅(𝑆𝑆) = ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑅𝑅(𝜃𝜃∗)   and ∑ 𝑥𝑥𝑗𝑗∗∗𝑗𝑗∈𝐿𝐿(𝑆𝑆) = ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿(𝜃𝜃∗) . 

Then, since 𝑝𝑝(𝒙𝒙, 𝜃𝜃) = 𝑝𝑝�∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿(𝜃𝜃) ,∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅(𝜃𝜃) �, in other words, since the adjustment function 

depends only on the sums of efforts, �𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝒙𝒙−𝒊𝒊
∗ ,𝜃𝜃∗)

𝜕𝜕𝑥𝑥𝑖𝑖
|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗� = �𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝒙𝒙−𝒊𝒊

∗∗ ,𝑆𝑆)
𝜕𝜕𝑥𝑥𝑖𝑖

|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗∗� . Since the 

marginal cost of exerting effort is independent of the size (i.e., the RHS of the FOC is constant), 

the vector of efforts 𝑥𝑥∗∗ also satisfies the FOCs, and ∑ 𝑥𝑥𝑗𝑗∗∗𝑗𝑗∈𝑅𝑅(𝑆𝑆) = ∑ 𝑥𝑥𝑗𝑗∗∗𝑗𝑗∈𝐿𝐿(𝑆𝑆)  by definition. 

Hence, 𝑥𝑥∗∗ together with the status quo 𝑆𝑆 also constitutes a steady-state equilibrium.        ■ 

(ii)   Now suppose 𝛾𝛾 > 1 and 𝜆𝜆 = 1. Because at a symmetric point (when ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝑅𝑅 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗∈𝐿𝐿 ) 

the marginal change 𝜕𝜕𝜕𝜕(𝒙𝒙,𝜃𝜃)
𝜕𝜕𝑥𝑥𝑖𝑖

 is identical to everybody, the first-order condition implies that the 

equilibrium effort, too, must be identical, unless 𝑥𝑥𝑖𝑖∗ = 0 . Note that since lim
𝑥𝑥→0

𝑐𝑐′(𝑥𝑥) = 0 , 

lim
𝑥𝑥→0

𝑢𝑢𝑖𝑖′(𝑥𝑥, 𝛿𝛿) > 0, which implies everybody but the player with 𝑦𝑦𝑖𝑖 = 𝑆𝑆 = 𝛿𝛿∗ prefers to exert a 

positive amount of effort. Since the equilibrium effort level is identical across the players, in 

order for the sums of efforts to be equal to each other, there should be an equal number of 

players in each group. This implies that as long as 𝑆𝑆 divides the players into two symmetric 

groups, 𝑆𝑆 can be a steady-state policy.             ■ 
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(iii)     Next, consider the case where 𝛾𝛾 = 1 and 𝜆𝜆 > 1. Since in a steady-state, 𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝒙𝒙−𝒊𝒊
∗ ,𝜃𝜃∗)

𝜕𝜕𝑥𝑥𝑖𝑖
|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗ 

is common to every player, the players with the largest 𝛼𝛼(|𝑆𝑆 − 𝑦𝑦𝑖𝑖|)𝜆𝜆−1, that is, those farthest 

from 𝑆𝑆 expends a positive effort, while the others free ride. Because 𝑆𝑆 must be in between 0 

and 1, the players farthest from 𝑆𝑆 in each group are those at the extremes, players 1 and 𝑁𝑁. In 

order for the FOCs of the extreme players to simultaneously hold as equality, |𝑆𝑆 − 𝑦𝑦₁| must 

equal |𝑆𝑆 − 𝑦𝑦𝑁𝑁|. Therefore, 𝑆𝑆 = (𝑦𝑦₁ + 𝑦𝑦𝑁𝑁)/2 = 1/2.            ■ 

(iv)     Lastly, suppose that 𝛾𝛾 = 𝜆𝜆 > 0. From the FOC, we derive the following: if 𝑥𝑥𝑖𝑖∗ > 0, 

𝑥𝑥𝑖𝑖∗ = |𝑆𝑆 − 𝑦𝑦𝑁𝑁|. �𝛼𝛼 �
𝜕𝜕𝑝𝑝(𝑥𝑥𝑖𝑖 ,𝒙𝒙−𝒊𝒊∗ ,𝜃𝜃∗)

𝜕𝜕𝑥𝑥𝑖𝑖
|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗��

1/(𝛾𝛾−1)

 

Because 𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝒙𝒙−𝒊𝒊
∗ ,𝜃𝜃∗)

𝜕𝜕𝑥𝑥𝑖𝑖
|𝑥𝑥𝑖𝑖=𝑥𝑥𝑖𝑖∗ is common to every player, for ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑅𝑅 = ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿  to be the case, 

∑ �𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝐿𝐿  must equal ∑ �𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝑅𝑅 . By equating ∑ �𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝐿𝐿  and ∑ �𝑦𝑦𝑗𝑗 − 𝑆𝑆�𝑗𝑗∈𝑅𝑅 , we 

conclude that 𝑆𝑆 = ∑ 𝑦𝑦𝑗𝑗/𝑁𝑁𝑁𝑁
𝑗𝑗=1 .             ■ 

From the objective function of player 𝑖𝑖, one can see that as the number of players in a group 

increases, the incentive to free ride on the others' efforts increases. When both the distance and 

the cost functions are linear so that the smaller group has no disadvantage in terms of the cost 

or the utility, any policy can be a stable outcome of the game because the larger group suffers 

more with free rider problem than the smaller group does. In contrast, when the cost function 

is convex, while the asymmetry in the severity of free rider problem still exists, the cost 

disadvantage breaks the balance between the groups. The balance can be recovered only when 

the relative powers between the groups are equalized. 

This proposition shows that if the policy converges, it does to a ‘center’, whose definition 

depends on the convexity of the distance measure (𝜆𝜆) and that of the cost function (𝛾𝛾). The 

convergence point can be the median, the mean of two extreme players, the mean of all players 

or some point between a mean and the median. An interesting question to ask is to which point 

the steady-state policy would converge (i) as 𝜆𝜆 goes to infinity, or (ii) as 𝛾𝛾 goes to infinity. 

First, if 𝜆𝜆 is very high, the marginal utility of having a policy closer to the ideal point will be 

extremely high for the players at the extremes compared to the other players. Thus, as the 

distance measure becomes more convex (i.e., as ��𝑆𝑆 − 𝑦𝑦𝑗𝑗��
𝜆𝜆−1
𝛾𝛾−1) becomes more sensitive to the 

distance), the steady-state policy would get closer to 1/2, the middle point of the two extremes. 

It is not difficult to see that this result resonates with the case of 𝛾𝛾 = 1. 
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If the cost function is extremely convex, on the other hand, in the limit, the cost will be zero 

up to a certain point, then suddenly become infinite. Thus, it will be like everybody has one 

"vote" (observe that ��𝑆𝑆 − 𝑦𝑦𝑗𝑗��
𝜆𝜆−1
𝛾𝛾−1 becomes 1 as 𝛾𝛾 goes to infinity), therefore the policy that 

the median voter prefers will be implemented. Of course, this result is comparable to the case 

with 𝜆𝜆 = 1. 

Proposition 1 essentially provides the Central Influencer Theorem result for the static case. 

These results highlight the contribution of our study to the existing research, offering insights 

into the dynamics of policy shift, coalition formation, and the intricate interplay of costs and 

preferences. These are summarized in Table 1 below. 

Table 1. Result summary for the static case 

Effort cost Disutility Steady state equilibrium  

Linear Linear Any policy 

Convex Linear Median player’s ideal policy 

Linear Convex Mean of two extreme players’ ideal policy 

Convex Convex Mean of all players’ ideal policies 

 

3.3 Heterogeneous Players  

What will steady-state equilibria look like if players are heterogeneous? Examining all 

potential cases as comprehensively as Proposition 1 is challenging. Nonetheless, we can derive 

outcomes similar to those in Proposition 1. 

Suppose first that 𝛾𝛾 = 1 and 𝜆𝜆 = 1. When the players are identical in their valuation, this free-

riding incentive prevents the policy from converging to a center. In contrast, if the players are 

heterogeneous, everybody but those with the highest marginal utility free rides completely. 

Thus, the policy would converge to a point between the ideal points of two players with the 

highest marginal utilities. This is comparable to the model of Baik (2016) who analyzes a group 

contest where the players decide whether to support one or both of the two alternatives. In his 

model, the cost function is assumed to be linear, and the (asymmetric) marginal utilities are 

exogenously given. 
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Suppose that 𝛾𝛾 > 1 and 𝜆𝜆 = 1 and that players differ in their valuation (i.e., for some 𝑖𝑖 ≠

𝑗𝑗,𝛼𝛼𝑖𝑖 ≠ 𝛼𝛼𝑗𝑗) and in their power or resource (i.e., 𝜇𝜇𝑖𝑖 ≠ 𝜇𝜇𝑗𝑗).6  

Define the power-adjusted valuation as 𝛼𝛼�𝑖𝑖 = �𝛼𝛼𝑖𝑖
𝜇𝜇𝑖𝑖
�
1/(𝛾𝛾−1)

. If there exists a player i such that 

�∑ 𝛼𝛼�𝑗𝑗𝑗𝑗∈𝐿𝐿(𝑦𝑦𝑖𝑖) − ∑ 𝛼𝛼�𝑗𝑗𝑗𝑗∈𝑅𝑅(𝑦𝑦𝑖𝑖) � < 𝛼𝛼�𝑖𝑖, then it is straightforward to show that 𝑦𝑦𝑖𝑖 can be a steady-state 

equilibrium policy. That is, such player i is a median influencer. Notice that the inequality holds 

more easily when 𝛼𝛼�𝑖𝑖 is greater. So, the steady-state outcome is likely to be the ideal policy of 

a strong player who is more or less in the middle. If there does not exist such a player, the 

steady-state outcome will be somewhere in between two median players. This type of "median 

voter theorem" (or some variations of it) has often been used by some political scientists to 

predict the outcome of a complicated political game (e.g., Bueno de Mesquita, 2000, 2002). Its 

performance has proven outstanding, but it is difficult to say that such practices have always 

been firmly micro-founded. The analysis in this subsection provides a micro-foundation of 

such forecasting exercises. 

The third and fourth parts of Proposition 1 can easily be generalized to heterogeneous players. 

If 𝛾𝛾 = 1 and 𝜆𝜆 is sufficiently large, then still only the two extreme players will be active. 

However, the steady-state policy will not be the exact mean of the two ideal policies, but a 

weighted average of which weight reflects the power-adjusted valuations of the two players. 

Lastly, suppose that 𝛾𝛾 = 𝜆𝜆 > 0. Then, for ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐿𝐿  to equal ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝑅𝑅 , ∑ 𝛼𝛼�𝑗𝑗�𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝐿𝐿  must be 

equal to ∑ 𝛼𝛼�𝑗𝑗�𝑆𝑆 − 𝑦𝑦𝑗𝑗�𝑗𝑗∈𝑅𝑅 . Therefore, the steady-state outcome must be the weighted average of 

the players' ideal policies: 𝑆𝑆 =
∑ 𝛼𝛼�𝑗𝑗𝑦𝑦𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝛼𝛼�𝑗𝑗𝑁𝑁
𝑗𝑗=1

. 

4. Dynamic Analyses 

In this Section we extend our model to the dynamics of an infinite-horizon structure to show 

that the incentive to free ride slows down the convergence to the median player. First, we 

characterize the dynamics under certain conditions. Then we run a robustness check.  

4.1 Dynamic Equilibrium  

In this subsection, we investigate the dynamics of the model, assuming that (i) the adjustment 

function is the Tullock-type CSF, (ii) 𝜆𝜆 = 1 and (iii) 𝑁𝑁 = 3. Suppose that the game analyzed 

 
6 Recall that 𝜇𝜇𝑖𝑖 is a factor multiplied to the effort cost. So, a smaller 𝜇𝜇𝑖𝑖 represents a stronger power. 
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so far is repeated infinitely many times (𝑡𝑡 = 1,2, . . ,∞) and that for any 𝑖𝑖  and 𝑡𝑡 , player 𝑖𝑖 

maximizes the discounted utility: 

𝑈𝑈𝑖𝑖𝑖𝑖 = � 𝛽𝛽𝜏𝜏−𝑖𝑖 𝑢𝑢𝑖𝑖(𝛿𝛿𝜏𝜏, 𝑥𝑥𝑖𝑖𝜏𝜏)
∞

𝜏𝜏=𝑖𝑖
= � 𝛽𝛽𝜏𝜏−𝑖𝑖 �−𝛼𝛼|𝛿𝛿𝜏𝜏 − 𝑦𝑦𝑖𝑖| − 𝑥𝑥𝑖𝑖𝜏𝜏

𝛾𝛾 /𝛾𝛾�
∞

𝜏𝜏=𝑖𝑖
 

where 𝛽𝛽 ∈ [0,1) is the common discount factor, and 𝑥𝑥𝑖𝑖𝑖𝑖 is the effort exerted at period 𝑡𝑡. The 

status quo at period 𝑡𝑡 + 1 is given by the implemented policy at 𝑡𝑡  (i.e., 𝑆𝑆𝑖𝑖+1 = 𝛿𝛿𝑖𝑖 ). For 𝛽𝛽 

sufficiently large, there exist infinitely many (collusive) subgame perfect equilibria which 

depend on the history of actions, which we do not intend to explore here. Instead, we focus on 

equilibria in which a strategy 𝑥𝑥𝑖𝑖𝑖𝑖 is a function of the status quo 𝑆𝑆𝑖𝑖. If 𝛾𝛾 = 1, any policy can be 

a steady-state policy, which means that in such a case, the dynamics is either trivial or arbitrary. 

Thus, in this subsection, the cost function is assumed to be strictly convex. 

Since the dynamics from the left to the right and the other way around are symmetric, we only 

consider the case with 𝑆𝑆₁ < 𝑦𝑦𝑚𝑚 = 𝑦𝑦₂. As will be shown more clearly in the proof of Proposition 

2, given 𝑆𝑆₁ < 𝑦𝑦𝑚𝑚, 𝛿𝛿𝑖𝑖 ≤ 𝑦𝑦𝑚𝑚 for all 𝑡𝑡. In other words, the equilibrium policy never crosses the 

ideal point of the median player. This implies that 𝐿𝐿�𝑖𝑖 = {1} and 𝑅𝑅�𝑖𝑖 = {2, 3} for all 𝑡𝑡. 

Using the fact that 𝑆𝑆𝑖𝑖+1 = 𝑆𝑆𝑖𝑖 + 𝑝𝑝𝑖𝑖 = 𝑆𝑆𝑖𝑖−1 + 𝑝𝑝𝑖𝑖−1 + 𝑝𝑝𝑖𝑖 =. . . = 𝑆𝑆𝑖𝑖−𝑘𝑘 + ∑ 𝑝𝑝𝑖𝑖−τ𝑘𝑘
τ=0 , we can 

rewrite the discounted utility as: 

� 𝛽𝛽τ−t
∞

τ=t
�−𝛼𝛼|𝑆𝑆𝜏𝜏 + 𝑝𝑝𝜏𝜏 − 𝑦𝑦𝑖𝑖| − 𝑥𝑥𝑖𝑖𝜏𝜏

𝛾𝛾 /𝛾𝛾� 

= −𝛼𝛼 �
1

1 − 𝛽𝛽
(𝑆𝑆𝜏𝜏 + 𝑝𝑝𝜏𝜏 − 𝑦𝑦𝑖𝑖) + � 𝛽𝛽τ−t

∞

τ=t+1
� 𝑝𝑝𝜂𝜂

τ

η=t+1
� −

𝑥𝑥𝑖𝑖𝑖𝑖
𝛾𝛾

𝛾𝛾
−� 𝛽𝛽τ−t

∞

τ=t+1

𝑥𝑥𝑖𝑖𝜏𝜏
𝛾𝛾

𝛾𝛾
  

One can easily see that because a change in the policy has a permanent effect, the marginal 

utility of having a more desirable policy is always 𝛼𝛼/(1 − 𝛽𝛽), meaning that it does not depend 

on 𝑆𝑆𝑖𝑖. Then by the envelop theorem, we can ignore the decision in period 𝑡𝑡 + 1 and onward 

({𝑥𝑥𝑖𝑖𝜏𝜏}𝜏𝜏+1∞ ) when considering the decision making at period 𝑡𝑡. Thus, the first-order condition 

with respect to 𝑥𝑥𝑖𝑖𝑖𝑖 is: 

𝛼𝛼
1 − 𝛽𝛽

�
𝜕𝜕𝑝𝑝(𝑥𝑥𝑖𝑖𝑖𝑖 ,𝒙𝒙−𝒊𝒊𝒊𝒊∗ ,𝜃𝜃𝑖𝑖∗)

𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖
|𝑥𝑥𝑖𝑖𝑖𝑖=𝑥𝑥𝑖𝑖𝑖𝑖∗ � − (𝑥𝑥𝑖𝑖𝑖𝑖∗ )𝛾𝛾−1 ≥ 0 

where the inequality condition is for the median player facing 𝑆𝑆𝑖𝑖 close enough to 𝑦𝑦𝑚𝑚. 
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To proceed further, suppose the adjustment function is the Tullock-type CSF defined in (2). 

Let us suppose for a moment that all the FOCs hold as equality as 𝑆𝑆𝑖𝑖 is far enough from 𝑦𝑦𝑚𝑚. In 

this case, 𝑥𝑥2𝑖𝑖∗ = 𝑥𝑥3𝑖𝑖∗  because players 2 and 3 are in the same group and because their FOCs are 

identical. Thus, the FOCs are: 

� 𝛼𝛼
1−𝛽𝛽

� � 2𝑥𝑥2𝑖𝑖
∗

�𝑥𝑥1𝑖𝑖∗ +2𝑥𝑥2𝑖𝑖∗ �
2�  = (𝑥𝑥1𝑖𝑖∗ )𝛾𝛾 − 1    (5) 

� 𝛼𝛼
1−𝛽𝛽

� � 2𝑥𝑥1𝑖𝑖
∗

�𝑥𝑥1𝑖𝑖∗ +2𝑥𝑥1𝑖𝑖∗ �
2�  = (𝑥𝑥2𝑖𝑖∗ )𝛾𝛾 − 1    (6) 

from which we derive the following proposition. 

Proposition 2. Suppose that the adjustment function is the Tullock-type CSF. For any initial 

policy 𝑆𝑆₁ ∈ [0,1] , there exists an equilibrium in which {𝛿𝛿𝑖𝑖}𝑖𝑖=1∞  converges to the median 

player's ideal policy 𝑦𝑦𝑚𝑚 . As 𝛼𝛼  or 𝛽𝛽  gets larger, the equilibrium effort level 𝑥𝑥𝑖𝑖𝑖𝑖∗  also grows 

larger. However, the speed of convergence does not depend on 𝛼𝛼 and 𝛽𝛽, but it increases in 𝛾𝛾. 

Proof. We prove the proposition by construction. Observe that according to (3), given the 

groups and the efforts 𝑥𝑥, 𝑆𝑆 and 𝛿𝛿 are one-to-one. Thus, we can recover 𝑆𝑆 from 𝛿𝛿. Using this 

idea, an equilibrium can be constructed as follows. First, pick a dividing rule �̅�𝜃𝑖𝑖(< 𝑦𝑦𝑚𝑚), and 

calculate the optimal efforts using (6) and (7). This yields the equilibrium efforts: 

𝑥𝑥1𝑖𝑖∗ = 2
1
γ �

𝛼𝛼
1 − 𝛽𝛽

2
1
γ

2 + 2
1
γ
�

1
γ

 

𝑥𝑥2𝑖𝑖∗ = 𝑥𝑥3𝑖𝑖∗ = �
𝛼𝛼

1 − 𝛽𝛽
2
1
γ

2 + 2
1
γ
�

1
γ

 

and the adjustment 𝑝𝑝(𝑥𝑥𝑖𝑖∗, �̅�𝜃𝑖𝑖) = �2−2
1
γ

2+2
1
γ
� = �̅�𝑝. 

 Let 𝛿𝛿𝑖𝑖 = �̅�𝜃𝑖𝑖, and solve (3) for 𝑆𝑆𝑖𝑖. Denote this calculated status quo by 𝑆𝑆�̅�𝑖. Then, given 𝑆𝑆�̅�𝑖, an 

equilibrium policy is �̅�𝜃𝑖𝑖. Note that when �̅�𝜃 = 𝑦𝑦𝑚𝑚, the first-order condition for the median player 

does not have to hold as equality. Let us define 𝑆𝑆𝑚𝑚+ = 𝑦𝑦𝑚𝑚 + �̅�𝑝 and 𝑆𝑆𝑚𝑚− = 𝑦𝑦𝑚𝑚 − �̅�𝑝. Then, for 

𝑆𝑆𝑖𝑖 ∈ [𝑆𝑆𝑚𝑚−, 𝑆𝑆𝑚𝑚+], instead of the equality FOC of the median player, equation 𝑝𝑝(𝑥𝑥𝑚𝑚,𝒙𝒙−𝒎𝒎,𝑑𝑑∗) =

𝑦𝑦𝑚𝑚 − 𝑆𝑆𝑖𝑖 together with the FOCs for the other players characterizes the equilibrium. 
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In this equilibrium, {𝛿𝛿𝑖𝑖}𝑖𝑖=1∞  converges to the median in each round as much as �̅�𝑝 when 𝑆𝑆𝑖𝑖 ∉

[𝑆𝑆𝑚𝑚−, 𝑆𝑆𝑚𝑚+], and once 𝑆𝑆𝑖𝑖 ∈ [𝑆𝑆𝑚𝑚−, 𝑆𝑆𝑚𝑚+], 𝛿𝛿𝑖𝑖 is decided to be 𝑦𝑦𝑚𝑚, and stays there forever. Thus, 

as claimed above, {𝛿𝛿𝑖𝑖}𝑖𝑖=1∞  does not oscillate around 𝑦𝑦𝑚𝑚, so the initial grouping remains valid 

until 𝛿𝛿𝑖𝑖 reaches 𝑦𝑦𝑚𝑚. From the above formulas, one can easily see that 𝑥𝑥𝑖𝑖𝑖𝑖∗  increases in 𝛼𝛼 and 𝛽𝛽, 

and that the speed of convergence does not depend on 𝛼𝛼 and 𝛽𝛽 but on 𝛾𝛾. More specifically, �̅�𝑝 

increases in 𝛾𝛾.              ∎ 

We have reasonable belief that {𝛿𝛿𝑖𝑖}𝑖𝑖=1∞  converges to the median under a set of more relaxed 

assumptions, and the result regarding the equilibrium effort level will remain valid. However, 

the speed of convergence may depend on 𝛼𝛼 and 𝛽𝛽 if another type of adjustment function is 

used, if the players are asymmetric, or when the distance measure is non-linear. 

It is also worth mentioning that the speed of convergence is determined by both the free-riding 

incentive and the cost advantage: the amount of efforts in the larger group (𝑥𝑥2𝑖𝑖∗ + 𝑥𝑥3𝑖𝑖∗ ) is not 

twice as large as the effort level in the smaller group (𝑥𝑥1𝑖𝑖∗ ) because the players in the larger 

group have an incentive to free ride on each other's effort, which slows down the convergence. 

As 𝛾𝛾 gets larger, on the other hand, the cost advantage of the larger group becomes more 

significant, so the policy converges faster to the median. 

4.2 Robustness in dynamics 

One may wonder whether our main results remain valid even if the functional form 

assumptions on the distance and the cost functions are relaxed. The answer is yes if we make 

a simplifying assumption on the adjustment function as follows: 

𝑝𝑝(𝒙𝒙,𝒅𝒅) = 𝜂𝜂� 𝑑𝑑𝑗𝑗𝑥𝑥𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 

for some 𝜂𝜂 positive but small. That is, the adjustment function is linear. Then, we can show the 

following. 

Proposition 3. Suppose the adjustment function is linear. Let us further assume that the 

distance function ‖𝛿𝛿 − 𝑦𝑦‖ and the cost function 𝑐𝑐𝑖𝑖(𝑥𝑥) are strictly convex and continuously 

differentiable and that the first derivative of the distance function is zero at 𝛿𝛿 = 𝑦𝑦 , i.e., 
𝜕𝜕‖𝛿𝛿−𝑦𝑦‖
𝜕𝜕𝛿𝛿

|𝛿𝛿=𝑦𝑦 = 0. Then, the steady state equilibrium exists and is unique. If the agents behave 

myopically (i.e., the static optimal behavior is repeated), the policy 𝛿𝛿 converges to the steady 

state equilibrium. 
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Proof. Given the status quo policy, an individual's maximization problem has an interior 

solution because the distance and the cost functions are strictly convex. And the first-order 

condition is: 

𝛼𝛼𝑖𝑖𝜂𝜂
𝜕𝜕‖𝛿𝛿 − 𝑦𝑦𝑖𝑖‖

𝜕𝜕𝛿𝛿
|𝛿𝛿=𝛿𝛿∗ − 𝑐𝑐𝑖𝑖′(𝑥𝑥∗) = 0 

 Let 𝑥𝑥𝑖𝑖(𝛿𝛿) be the optimal effort given the policy 𝛿𝛿, i.e., 

𝑥𝑥𝑖𝑖�𝛿𝛿� = (𝑐𝑐′)−1 �𝛼𝛼𝑖𝑖𝜂𝜂
𝜕𝜕‖𝛿𝛿 − 𝑦𝑦𝑖𝑖‖

𝜕𝜕𝛿𝛿
|𝛿𝛿=𝛿𝛿��. 

Since 𝑐𝑐𝑖𝑖(𝑥𝑥)  is strictly convex and continously differentiable, the inverse function of the 

marginal cost is monotone increasing and continuous. Therefore, the optimal effort increases 

as 𝛿𝛿 moves away from 𝑦𝑦𝑖𝑖. Define 

𝑖𝑖�𝛿𝛿� = � 𝑥𝑥𝑖𝑖�𝛿𝛿�
𝑖𝑖∈𝐿𝐿�𝛿𝛿��

−� 𝑥𝑥𝑖𝑖�𝛿𝛿�
𝑖𝑖∈𝑅𝑅�𝛿𝛿��

. 

 
 Note that 𝑖𝑖(0) ≤ 0 ≤ 𝑖𝑖(1)  because 𝑦𝑦𝑖𝑖 ∈ [0,1]  for all 𝑖𝑖  and that 𝑖𝑖(𝛿𝛿)  is increasing. 𝑖𝑖(𝛿𝛿) 

continous in 𝛿𝛿 because 𝜕𝜕‖𝛿𝛿−𝑦𝑦‖
𝜕𝜕𝛿𝛿

|𝛿𝛿=𝑦𝑦 = 0. Thus, 𝑖𝑖�𝛿𝛿� = 0  for a 𝛿𝛿, and such 𝛿𝛿 is unique.  

To see the myopic dynamics, suppose that the equilibrium policy 𝛿𝛿∗ is smaller than the steady 

state policy, which means that 𝑖𝑖(𝛿𝛿∗) < 0 or equivalently 𝑝𝑝(𝒙𝒙,𝒅𝒅) > 0. Since the adjustment is 

made toward the right extreme, the status quo S must be even smaller than 𝛿𝛿∗. In other words, 

𝑆𝑆 was farther from the steady-state than 𝛿𝛿∗ is. Thus, the static equilibrium policy converges 

toward the steady state policy. The analysis for 𝛿𝛿∗ is smaller than the steady-state policy is 

analogous, and thus omitted.            ∎ 

5.  Discussion 

We construct a spatial voting model that operates without the constraint of the ‘one person, one 

vote’ principle. Within this framework, players in a policy line can exert costly effort to shift 

the status quo towards their favorable position. We demonstrate the endogenous formation of 

two distinct groups in equilibrium, each actively seeking to implement opposing policies. 

Furthermore, we show that the characteristics of effort costs and preferences play crucial roles, 

ultimately leading to the determination of a central policy as the steady-state equilibrium. This 

centrality can take various forms, such as the median, mean, or the average of extreme policies. 

The comprehensive outcomes of our analysis from Proposition 1 are stated below. 
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1. If both the disutility stemming from non-optimal policies and the effort cost function are 

linear, any policy point can potentially serve as a steady-state policy. This scenario reflects 

a lack of cost (dis)advantage across the policy spectrum. 

2. When the disutility due to non-optimal policies is linear, but the effort cost function is 

convex, the optimal policy for a median player becomes a steady-state policy. This mirrors 

the conventional median voter theorem, a milestone in the voting literature. 

3. If the disutility of non-optimal policy is convex but the effort cost function is linear, then 

our model is close Baik (2017). However, there are two important distinctions: whereas 

Baik’s model resembles a representative democracy, ours is comparable to a direct 

democracy. Also, unlike Baik (2017), the marginal utility of exerting effort is endogenous 

in our model, and hence we find that the steady-state policy is the mean of the two extreme 

players’ optimal policies.  

4. When both the disutility stemming from non-optimal policies and the effort cost function 

exhibit equal convexity, the steady-state policy converges to the (weighted) average of all 

players' optimal policies. This concurs with the 'risk loving equilibrium' identified by 

Duggan and Gao (2020), in a different setting. Despite risk-neutrality in our setting, the 

players form groups endogenously, and we reach similar conclusions.   

We extend the static model to an infinite horizon model to study dynamics but restrict our 

attention to a 3-player case. In such a structure, the equilibrium policy converges to the median 

player only under certain conditions. Players also expend more effort in each period as they 

become more patient. The convergence speed does not depend on the discount factor but does 

depend on the effort cost. These results are in contrast with the dynamic model of Baron (1996) 

who finds that in collective goods programs equilibrium ultimately converges to the median. 

Our findings exhibit broad similarities with Gerber and Lewis (2004), who empirically 

demonstrate that legislative decisions align with the median voter's preference under specific 

conditions. Moreover, our results can be aligned with a series of findings from various contexts, 

which highlight instances where a median voter equilibrium might not be achieved. These 

collective outcomes lend credence to the notion advanced by Hinich (1977), suggesting that 

median voter results should be viewed as context-dependent rather than universally applicable.  

Note that our results extend beyond their immediate domain and carry implications for various 

fields, including spatial competition models and political analysis. They offer connections to 

research exploring lobbying, politics, and interest group dynamics. While the spatial 
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competition model has been extensively employed in general interest politics, our study bridges 

the gap by considering its applicability in the realm of special interest politics. Whereas Coate 

(2004) covers special interest politics through a game involving advertising campaigns and 

contributions, we examine direct competition among players in a single-dimensional policy 

space. Moreover, our model covers a wider spectrum of political influences, including those 

not necessarily mediated by or directed toward public elections, such as international politics.  

Furthermore, it's important to note that a strand of literature within political science has often 

predicted the outcomes of intricate political games by employing variations of the median voter 

theorem (see, e.g., Bueno de Mesquita (2000, 2002)). However, one challenge has been the 

difficulty in conclusively establishing the micro-foundations underlying such practices. In this 

regard, our study serves a crucial role by offering a micro-foundation for these predictions. 

This enhancement in micro-foundation lends credibility to the utilization of the variations of 

median voter theorem-based analyses. 

The current study lays a foundation for further exploration, and there are several intriguing 

directions in which the research can be extended. We discuss three such avenues. 

Generalizing the model: one can generalize the model by incorporating more generic cost and 

disutility functions. This extension could also involve exploring policy spaces beyond linearity, 

enabling a more comprehensive analysis of policy dynamics. Moreover, extending the dynamic 

version to include more than three players could lead to richer and more complex outcomes. 

Incorporating different collective action and influence structures: The assumption of an 

additive collective action function can be expanded to encompass other network structures such 

as weakest link (Lee, 2012), best shot (Chowdhury et al., 2014), or a combination thereof 

(Chowdhury and Topolyan, 2016). Similarly, other contest success functions can be included. 

Empirical and experimental investigations: Translating the theoretical findings into empirical 

or experimental investigations could provide real-world validation and insights into the 

practical implications of the model. This step could help bridge the gap between theoretical 

predictions and actual decision-making scenarios. 

It is important to emphasize that while these extensions hold potential for further enriching the 

understanding of collective decision-making processes, they do not replace the fundamental 

insights provided by this study. Hence, we leave these ideas for future research. 
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