

An investigation of protease activity at nonlesional sites in Atopic Dermatitis

John Chittock¹, Kirsty Brown¹, Andrew Wigley¹, Jonathan Kilby¹, Michael J. Cork^{1,2} and Simon G. Danby¹

¹Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield Medical School, Sheffield, UK; ²The Paediatric Dermatology Clinic, Sheffield Children's Hospital, UK; *Corresponding Author: j.chittock@sheffield.ac.uk

INTRODUCTION

• Elevated protease activity within the stratum corneum accelerates barrier breakdown in chronic skin (SC) diseases such as atopic dermatitis (AD).¹

- We have developed a simple, non-invasive assay to quantify a broad spectrum of proteases at the skin surface.
- Using this assay, we recently identified a subset of neonates at-risk of developing AD with elevated protease activity, highlighting the potential for protease-associated barrier breakdown in normal appearing skin.²

RESULTS

Elevated surface protease activity is associated with barrier dysfunction in AD

• To extend these finding we have investigated protease activity at non-lesional sites in AD.

AIMS

- 1. To assess surface protease activity in conjunction with the biophysical and molecular properties of the skin barrier in AD patients at non-lesional sites.
- 2. To place our AD findings into context by comparing the results to a healthy adult cohort.

(nU/µg ⁻¹)							
TEWL (g/m²/h)	14.6 (±2.9)	*0.0007	10.7 (±2.6)	*0.0001	19.3 (±10.3)		
SC Hydration (RCU)	32.3 (±8.1)	ns	32.0 (±7.1)	ns	28.0 (±8.4)		
Skin-surface pH	4.7 (±0.2)	ns	4.8 (±0.4)	ns	4.9 (±0.3)		
Lipid structure (FWHM50)	9.6 (±2.0)	ns	11.0 (±1.2)	*0.0007	9.1 (±1.9)		
<i>FLG</i> (% carriers)	10		5		37		
SPINK5 (% carriers)	50		65		80		
SCCE (% carriers)	65		46				
Atopy (%)	45	45 0					
Early onset AD (%)	45		-		50		

Panel 1: Cohort demographics, (left) and the relationship between surface protease activity and TEWL / lipid structure determined by ATR-FTIR (right). Protease activity was normalised relative to protein mass quantified by IR densitometry. Significance was determined using a 1-way analysis of variance with Bonferroni's post-hoc analysis (****p=<0.0001). Mean ± standard deviation presented.

METHODS

Subjects

• **AD cohort:** Patients with quiescent AD (*n*=20) and active disease (*n*=68) underwent skin assessments at a single visit. A diagnosis of AD was made in accordance with the UK working party diagnostic criteria.³

• Healthy adult cohort: For comparison a cohort of adults with no history of skin disease or atopy was recruited and underwent identical assessments (*n*=20).

Surface protease activity correlates with SC hydration, TEWL and lipid structure

Panel 2: The relationship between surface protease activity and (a) stratum corneum (SC) hydration, (b) TEWL and (c) lipid structure (FWHM50) in patients with active disease at non-lesional sites. Pearson correlation coefficient calculated (r) and presented

Biophysical measurements

- Permeability barrier function was determined by measuring transepidermal water loss (TEWL) using an AquaFlux evaporimeter (Biox, UK) in climate controlled conditions.⁴
- Skin surface pH and SC hydration was determined using a Skin-pH-meter and Corneometer (C&K, Germany).^{5,6}
- Tape stripping was combined with IR densitometry (Heiland Electronic, Wetzlar, Germany) to measure mass of SC removed.⁷

Protease activity

• A broad-spectrum casein substrate was used to assay surface protease activity on forearm-collected D-Squame discs in line with previously published methodology.¹

ATR-FTIR spectroscopy

No association of surface protease activity with *FLG, SPINK5, KLK7*, atopy and early onset AD

Protease activity (nU/μg ⁻¹)	Present	Not present	P value	Protease activity (nU/µg ⁻¹)	Early onset AD	Hayfever	Asthma	Food allergy	FLG mutation	SPINK5 mutation	SCCE mutation
Early onset AD	6.2 (±5.4)	5.2 (±4.0)	ns	Early onset AD	-	6.6 (±6.5)	6.8 (±6.0)	5.9 (±5.3)	7.9 (±7.0)	6.0 (±5.1)	7.5 (±6.7)
Hayfever	5.7 (±5.6)	5.6 (±4.2)	ns	Hayfever	6.6 (±6.5)	-	6.1 (±5.9)	4.8 (±4.8)	7.3 (±6.8)	5.6 (±5.2)	7.7 (±7.4)
Asthma	6.1 (±5.0)	5.5 (±4.7)	ns	Asthma	6.8 (±6.0)	6.1 (±5.9)	-	5.8 (±5.0)	6.9 (±6.7)	5.7 (±4.2)	8.5 (±6.1)
Food allergy	5.0 (±4.5)	6.0 (±5.0)	ns	Food allergy	5.9 (±5.3)	4.8 (±4.8)	5.8 (±5.0)	-	4.9 (±5.5)	4.8 (±4.4)	5.4 (±4.9)
FLG mutation	6.5 (±5.9)	5.2 (±4.0)	ns	FLG mutation	7.9 (±7.0)	7.3 (±6.8)	6.9 (±6.7)	4.9 (±5.5)	-	6.4 (±5.6)	8.2 (±8.4)
SPINK5 mutation	5.3 (±4.1)	7.3 (±7.0)	ns	SPINK5 mutation	6.0 (±5.1)	5.6 (±5.2)	5.7 (±4.2)	4.8 (±4.4)	6.4 (±5.6)	-	5.5 (±5.0)
SCCE mutation	5.9 (±5.4)	5.5 (±4.3)	ns	SCCE mutation	7.5 (±6.7)	7.7 (±7.4)	8.5 (±6.1)	5.4 (±4.9)	8.2 (±8.4)	5.5 (±5.0)	-

Panel 3: Effect of AD risk alleles, atopy and early disease onset on surface protease activity in patients with active disease. Significance was determined using an unpaired students t-test. Mean ± standard deviation presented.

CONCLUSIONS

Subjects with quiescent AD possess a significant

REFERENCES

Rawlings AV, Breternitz M et al. Increased stratum corneum serine protease activity in acute eczematous atopic skin. Br J Dermatol 2009; 161: 70-7.

2) Chittock J, Cooke A, Lavender T et al. Development of stratum corneum chymotrypsin-like protease activity and

Lipid structure (full width half maximum [FWHM50] 1480-1460cm⁻¹)⁸ was analysed *in-vivo* using a silver halide probe (Art Photonics, Berlin, Germany) attached to a Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, Waltham, USA).⁹

Genotyping

• Both cohorts were screened for the following AD risk loci:¹⁰⁻¹² *FLG*: R501X; 2282del4; R2447X; S3247X; 3702delG (Mentype® PCR kit, Biotype Diagnostic GmbH, Dresden, Germany) **SPINK5**: E420K (TaqMan[™], Thermo Fisher Scientific, Waltham, USA) and KLK7: 3'UTR AACC insertion (SCCE).¹³

permeability barrier function defect compared to healthy controls with no history of atopy.

• In patients with active AD, protease activity is significantly elevated at both lesional¹ and non-lesional sites.

• This elevation in protease activity was associated with a less orthorhombic SC lipid structure and weakened permeability barrier function providing new insight to barrier breakdown in non-lesional skin.

• *FLG*¹⁰, *SPINK5*¹¹ and *KLK7*¹² AD risk alleles did not confer elevated protease activity at the skin surface in patients with active disease.

natural moisturising factors from birth to 4 weeks of age compared to adults. Br J Dermatol 2016; 175: 713-20.

3) Williams HC, Burney PG, Pembroke AC et al. Validation of the UK diagnostic criteria for atopic dermatitis in a population setting. UK diagnostic criteria for atopic dermatitis working party. Br J Dermatol 1996; 135(1): 12-7.

4) Fluhr JW, Feingold KR, Elias PM Transepidermal water loss reflects permeability barrier status: validation in human and rodent in-vivo and ex-vivo models. Exp Dermatol 2006; 15: 483-92.

5) Fluhr J, Bankova LG. Handbook of Non-Invasive Methods and the Skin 2006; 411-20.

6) Barel A, Clarys P. Handbook of non-invasive methods and the skin 2006; 337-44.

7) Voegeli R, Heiland J, Doppler S et al. Efficient and simple quantification of SC proteins on tape strippings by infrared densitometry. Skin Res Technol 2007; 13: 242-51.

8) Boncheva M, Damien F and Normand V. Molecular organisation of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy. Biochim Biophys Acta 2008; 1778(5): 1344-55.

9) Danby SG, Brown K, Higgs-Bayliss T et al. The effect of an emollient containing urea, ceramide NP and lactate on skin barrier structure and function in older people with dry skin. Skin Pharmacol Physiol 2016; 29(3): 135-47.

10) Brown SJ and McLean WHI. One remarkable molecule: Filaggrin. J Invest Dermatol 2012; **132(3):** 751-62.

11) Walley AJ, Chavanus S, Moffatt MF et al. Gene polymorphism in netherton and common atopic disease. Nat Genet 2001; **29(2)**: 175-8.

12) Vasilopoulos Y, Cork MJ, Murphy R et al. Genetic association between an AACC insertion in the 3' UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 2004; **123(1):** 62-6.

13) Hubiche T, Cecile GED, Benard A et al. Analysis of SPINK5, KLK7 and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol 2007; 87(6): 499-505.

ACKNOWLEDGEMENTS: We thank Les Hunter and Helen Wan for their assistance with volunteer recruitment and data collection.

FUNDING: This study was funded by The University of Sheffield

