
Using GEM-SA for Probabilistic Sensitivity

Analysis

Jeremy Oakley

CHEBS, University of Sheffield

j.oakley@sheffield.ac.uk

July 5, 2005

1 Introduction

GEM-SA is a general-purpose tool written by Marc Kennedy for building Gaussian

process emulators for deterministic models, and can be downloaded from

www.shef.ac.uk/st1mck/code.html These accompanying R functions are designed

to be used in conjunction with GEM-SA so that very large numbers of model runs

can be obtained from a computationally expensive health economic model.

The emulator is a computationally cheap surrogate for the economic model.

Once the emulator has been built, you should proceed as normal in conducting your

PSA, but with the emulator used in place of the economic model. The emulator

in GEM-SA is designed for a single output variable, and you will need to construct

one emulator for costs and a second for effectiveness. GEM-SA currently allows a

maximum of 30 input variables, and 400 runs of the model.

2 Terminology

You should note that GEM-SA uses terminology from the computer experiments,

which differs from that in health economics. In GEM-SA, the process of obtain-

ing a distribution of the model output given probability distributions for the model

1



inputs is known as uncertainty analysis (i.e. PSA in the health economics commu-

nity), and sensitivity analysis refers to identifying which uncertain inputs have the

greatest contribution to the output uncertainty. Specifically, GEM-SA is designed

to conduct a variance-based sensitivity analysis, in which the contribution to the

output variance from each input parameter is determined. (Currently, GEM-SA

requires the input distributions to be either independent normal or uniform to do

this, but can fit the emulator regardless of the input distributions).

3 Building and using the emulator - a walkthrough

This illustrated with a simple test example. We have a simple function of 5 uncertain

input parameters, X1, . . . , X5, with

X1 ∼ N(0, 1), log X2 ∼ N(0, 1), X3 ∼ Gamma(3, 2), X4 ∼ Beta(10, 20), X5 ∼ U [0, 5].

1. Open the script inputsetup.R in a text editor.

2. Edit line 4 to specify the distribution types (normal, lognormal, gamma etc.)

in the vector distributions:

distributions<-c(’n’,’l’,’g’,’b’,’u’).

3. Edit line 15 to specify the parameters of each distribution in the matrix

parameters:

parameters<-matrix(c(0,1,0,1,3,2,10,20,0,5),nrow=np,ncol=2,byrow=T)

4. Specify the number of model runs as the first argument in setupdesign in

line 19. E.g. for 100 model runs:

inputs<-setupdesign(100,distributions,parameters).

5. R will write the design points to the file c:/inputs.txt. Edit the path in line

23 if you wish to change the location of the inputs file.

6. Save your changes to the script inputsetup.R and run this script in R. You

may find it helpful to save distributions and parameters as R objects for

later use.

2



7. N.B. The inputs are chosen using a maximin LHS scheme in the function

setupdesign.R. This function generates a Latin Hypercube sample and then,

iteratively, randomly permutes the arrangement of design points in order to

increase the minimum distance between any two points. The number of it-

erations in line 50 of setupdesign.R is set at 100, but increasing this will

improve the design (at the cost of more computing time).

8. You must now run your economic model at the input values specified in

c:/inputs.txt. Each row corresponds to one model run, with the inputs

in order as specified in distributions. If your model produces two (or more)

outputs (e.g. cost and effectiveness), you must treat each output separately

and build one emulator per output. The output must be saved in a plain text

file, in a single column with one row per model run. For this example, we will

use the example testfunction.R included in the Zip file. In R, type

outputs<-testfunction(inputs)

write(outputs,"c:/outputs.txt",ncolumns=1)

to produce a vector of output values and write them to the file c:/outputs.txt.

9. Now that you have the input and output files, start up GEM-SA. Refer to the

on-line user manual (in particular “Creating a project”) for help on building

the emulator. Note that it is not necessary to specify input distributions within

GEM-SA for our purposes. On the options tab you should also uncheck the

“calculate main effects” and “sum effects” options. Once the project has been

run, you can exit GEM-SA.

10. Returning to R, open the script gpsetup.R in a text editor.

11. Edit the path in line 2 as necessary depending on where GEM-SA has been

installed.

12. Edit line 5 as necessary to change the location of the inputs file, the number

of model runs (nrow) and the number of input parameters (ncol).

13. Edit line 6 as necessary to change the location of the outputs file and the

number of model runs (nrow).

3



14. Save any changes and run the script gpsetup.R.

15. You can now estimate the model output at any set of new inputs x using the

function

emulate<(x,inputs,betahat,B,r)

where each row of x is one set of input parameters. A large monte carlo set

of n inputs can be generated within R by typing

x<-mcinputgenerate(n,distributions,parameters)

4 Testing the accuracy of the emulator

This can be done within GEM-SA using cross validation: a model run is left out

of the data for building the emulator, and the emulator prediction at the omitted

input value is then compared with the known corresponding output. Further details

can be found in the “Cross validation” section in the GEM-SA online manual.

4


