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ABSTRACT
Hydraulic models of sewer systems are commonly used to predict the risk of urban flooding. However, 
suitable calibration datasets in flood conditions are scarce. The quantification of energy losses within 
manhole structures is a current source of uncertainty within such models. To address this gap, a scaled 
physical manhole model is used to quantify hydraulic energy losses during surcharging and non-surcharging 
conditions. Two different novel configurations were tested; (1) With and without the presence of a manhole 
lid; (2) With and without the presence of a shallow flow on the surface. Results showed that total head losses 
were found to increase in surcharging conditions. The presence of the lid also marginally increased total 
head losses. The datasets are used to assess the performance of a numerical urban flood model (SIPSON) 
and comparisons highlighted that SIPSON tends to overestimate energy losses in surcharging conditions.

1. Introduction

Urban flood events frequently involve interaction between free 
surface flow over an urban area and piped flows within sewer 
or storm water networks. During flood conditions, surcharg-
ing flow can pass from the sewer network to the surface flow 
via hydraulic structures such as manholes, gullies and gutters. 
Current climatic (IPCC 2014; Tripathi et al. 2014), economic and 
social trends (Braud et al. 2013; Huong and Pathirana 2013; Jung, 
Chang, and Moradkhani 2011; Saghafian et al. 2008; Suriya and 
Mudgal 2012) suggest that the frequency, magnitude and cost 
of flooding are likely to increase in the future. Urban flood mod-
els are commonly used to evaluate the risk of flooding due to 
sewer surcharge following intense rainfall (Martins, Leandro, and 
Djordjevic 2016; Martins et al. 2017). Such models commonly 
utilize the St Venant Equations to describe the motion of fluids in 
sewers and enclosed channel networks. Within the sewer drain-
age system the primary direction of flow is defined by the net-
work, hence a 1D form of the Equations is used. Such hydraulic 
models rely on empirically derived parameters (Djordjevic et al. 
2005; Rossman 2006) to represent local energy (head) losses at 
junctions and urban drainage features such as manholes (Hare 
1983; Howarth and Saul 1984; Lindvall 1984; Pedersen and Mark 
1990). Local head losses in manholes are caused by a range of 
factors including the retardation of the fluid just upstream the 
entrance, in partially filled pipes; sudden expansion of the flow 
at the entrance; resonance oscillations in the manhole or the 
acceleration of the fluid at the outlet (Asztely 1995).

Manhole head losses can be estimated via the robust calibration 
of urban drainage models, or more commonly, using experimental 
results obtained from experiments on physical models. Marsalek 

(1987) reported that head losses in straight line manholes were 
proportional to the velocity head of the inlet flow. However, fur-
ther studies have pointed out the complex nature of energy losses 
in manholes due to the almost infinite variety of geometrical and 
hydraulic conditions that can occur (O’Loughlin and Stack 2002). 
Parameters that have been found to affect head losses in man-
holes include: 1) depth ratio between the upstream branches 
and the downstream channel (Hsu and Lee 1998; Taylor 1944); 2) 
upstream and downstream hydraulic conditions (i.e. subcritical or 
supercritical), (Del Giudice, Gisonni, and Hager 2000; Gargano and 
Hager 2002; Hager and Gisonni 2005; Zhao, Zhu, and Rajaratnam 
2006); 3) bed discordance over the manhole junction (Biron, Best, 
and Ror 1996); 4) presence of a lateral pipe and variation in flow 
rates between the main pipe and lateral pipe (Ramamurthy and 
Zhu 1997; Zhao, Zhu, and Rajaratnam 2006); 5) the joining angle 
between any lateral pipes and the main pipe (Pfister and Gisonni, 
2014); 6) ratio between water depth in the manhole and pipe diam-
eter (Ramamurthy and Zhu 1997); 7) ratio between pipe diameter 
and manhole diameter (Ramamurthy and Zhu 1997); 8) existence 
of sump inside the manhole and benching effects (Arao, Kusuda, 
and Moriyama 2011); 9) other flow characteristics, e.g. the flowrates 
in the inlet pipes, whether the pipes are running gull or part-full, 
supercritical or subcritical, the effect of tail water level and the water 
level in the manhole (O’Loughlin and Stack 2002).

Where multiple flows bifurcate or combine at manholes 
energy losses have been investigated in 90° bend junctions 
(Marsalek and Greck 1988); in 90° combining junctions (Marsalek 
1985; Wang et al. 1998); in a bend manhole for combined sewer 
systems considering typical relative curvature and deflection 
angles of 45° and 90° (Del Giudice, Gisonni, and Hager 2000); in 
a 45° junction manhole (Del Giudice and Hager 2001); for a 25.8° 
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shallow flow depth on the surface. In order to evaluate the per-
formance of commonly used numerical urban flood modelling 
tools, experimental conditions and energy loss coefficients are 
simulated within an hydraulic model, SIPSON, and the result-
ing performance is compared to experimental (pressure) data 
recorded within the facility.

2. Overview

2.1. Quantifying energy losses in sewer to surface 
surcharging conditions

Surcharging conditions occur when the sewer system has 
reached its maximum capacity and there is a consequent flow 
exchange between sewer and floodplain. For surcharge to occur 
the hydraulic head of the sewer flow must be greater than the 
manhole crest or, if present, the hydraulic head of the surface 
flow (Rubinato et al. 2017). In this study we consider that this con-
dition is analogous to a bifurcation, in which the flow splits into 
two streams, one continuing within the sewer, and one existing 
to the surface (i.e. similar to a junction condition as described 
by Pfister and Gisonni 2014; Zhao, Zhu, and Rajaratnam 2006 
amongst others). In the case of a relatively wide surface channel 
in respect to the piped sewer system, the difference in hydraulic 
head of the surface flow upstream and downstream of the man-
hole will be small. Hence considering the sewer inflow in steady 
flow conditions, the energy balance Equation over the control 
volume can be defined as:
 

where g is the acceleration of gravity (m/s2), Q1 is the sewer 
inlet flow (m3/s), Q3 is the sewer outlet flow (m3/s), Qe is the 
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combining junction with two inflows and one outflow (Zhao, Zhu, 
and Rajaratnam 2006). Oka and Ito (2005) determined energy 
losses coefficients for smooth, sharp-edged tees of circular cross 
section for five branch angles which ranges from 45° to 135°. 
Pfister and Gisonni (2014) presented an extensive experimental 
campaign on a physical model to investigate the local head losses 
of combining flows at 45° and 90° junction manholes on circular 
conduits, with various diameters and in the presence of sub and 
supercritical approaching flows. The results and analysis along 
with the application of the basic principle of mass, energy and 
momentum conservation provide a theoretical basis for the pre-
diction of energy losses at junction manholes.

However, despite the important application of hydraulic mod-
els to urban flood events, local energy losses in manholes during 
sewer to surface surcharge events have yet to be investigated. In 
addition the effect of manhole lids on energy losses in conditions 
where the manhole is flowing full are also not understood. The lack 
of reliable data sets during flood events means direct calibration 
of energy losses in surcharging flows is difficult (Hunter et al. 2008) 
and appropriate energy losses coefficients associated with these 
hydraulic conditions have not been fully identified. A lack of under-
standing of head losses in drainage systems can lead to inaccurate 
modelling and flood hazard maps (Arao et al. 2012) and other drain-
age infrastructure problems such as the blowout of manhole covers 
(Guo and Song 1991; Zhou, Hicks, and Steffler 2002).

An experimental facility has been developed at the University 
of Sheffield (Rubinato et al. 2017) to simulate the interaction 
between surface and sewer flows at manhole interaction points. 
The aim of this work is to provide new empirical results of energy 
losses through in line manholes during sewer-surcharge events. 
Various inflow and surcharge rates are considered and tests 
include conditions with and without the application of a man-
hole lid and the interaction of flow escaping the manhole with 

Figure 1. top view of the model. F1, F2, F3 indicate respectively the flowmeters used to measure Q1, Q2, Q3. Vd is the valve downstream fitted within the sewer pipe used to 
restrict the sewer capacity for the second set of tests described in Section 3.1.2. all dimensions in meters.
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flow surcharge rate (m3/s, equivalent to Q1-Q3), ΔH is the total 
energy loss over the control volume and H1, H2 and H3 (m) are 
the hydraulic heads of the upstream pipe flow, surface flow and 
downstream pipe flow, respectively. Given that only the pipe 
flow is pressurized, these can be expressed as
 

 

 

Where ui is the mean flow velocity over the cross section flow at 
the reference point, i (m/s), pi/ρg, is the pressure head at the ref-
erence point, i (m), h2 is the surface flow depth and zi is the flow 
elevation above datum at each reference point. Rearranging 
Equation (1), the total energy loss can be defined as:
 

In case of surcharge event (Qe>0), with both the inlet pipe and the 
outlet pipe pressurized and given the assumption that frictional 
losses are negligible over the control volume (Ramamurthy, 
Carballada, and Tran 1988; Pfister and Gisonni 2014; Zhao, Zhu, 
and Rajaratnam 2006, 2008) correspondent energy loss coeffi-
cients can be defined as:
 

 

 

Similar to previous studies on junction manholes (Pfister and 
Gisonni 2014; Zhao, Zhu, and Rajaratnam 2006), the total energy 
loss ΔH and hence energy loss coefficients K13, K12 and KTOT can 
be determined using Equations (1)-(8) given knowledge of 
hydraulic head over the manhole structure. In conditions where 
surcharging flow is not present, Equations (1)-(8) can be simpli-
fied such that KTOT = K13.

3. Methodology

This section presents the experimental facility utilized for col-
lecting the data, hydraulic conditions for the tests conducted 
and a description of the numerical flood model, SIPSON.

3.1. Experimental setup

The experimental facility was constructed to represent an 
equivalent real surface/sewer system at 1/6 geometrical scale 
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(Rubinato et al. 2017). It is composed of a surface (slope 1:1000) 
and a sewer system each with independent flow control (Figure 1). 
The sewer system (no slope) is linked to the urban surface via 
a single in-line manhole of 240 mm inner diameter; the height 
difference, z, from the invert of the pipe system to the manhole 
crest is 0.478 m (Figure 1). The pipe network is characterized by 
75 mm inner diameter pipework (simulating a 450-mm pipe at 
full scale). The urban surface is 8.2 m long, 4 m wide and has side 
walls of 0.10-m height. Inlet and outlet tanks are fitted upstream 
and downstream of the urban surface model. The inlet tank of 
the surface (dimensions L = 4 m, W = 0.3 m, H = 0.35 m) receives 
water from a 75  mm pipe connected to the main laboratory 
header tank, which feeds into the sewer and surface inlets and 
re-circulate water within the entire system. Inlet flow to the sur-
face and sewer systems are controlled via upstream butterfly 
valves (Vi) of 75  mm internal diameter. To measure flow rates 
75  mm internal diameter electro-magnetic (MAG) flow meters 
are installed at the inlets and the outlets of the facility. The 
sewer system includes also a downstream gate valve (Vd) fitted 
in proximity of the outlet. This valve is located 6550 mm from 
the centerline of the manhole. The valve can be set to a range of 
‘closure ratios’ from 48% to 86% as well as fully open.

To monitor pressure within the experimental facility, pressure 
transducers (Gems series 5000) have been installed and they are 
located within the sewer system (Figure 1), one upstream (350 mm 
from the centerline of the manhole), to measure p1; one down-
stream (520 mm from the centerline of the manhole) to measure 
p3, and an additional transducer within the base of the manhole, 
in order to monitor water level within the manhole structure (hm). 
Flow depth (h2) on the urban surface is measured via a pressure 
sensor fitted upstream of the manhole (460 mm from the center-
line of the manhole) (Figure 1). Pressure head and flow depth val-
ues (p1/ρg, p3/ρg and h2) used to derive energy loss coefficients, 
(2)-(8), are obtained directly from these readings. Mean velocity for 
the calculation of velocity head in the sewer network is obtained by 
dividing flow rate running through the pipe by the cross sectional 
area. The same procedure is used to quantify the velocity head of 
the surface flow based on the measured flow depth and discharge.

The maximum flow rate within the sewer system is 11 l/s. By 
using the Reynolds Similitude (Re), this flow rate corresponds to 
≈70 l/s in a real-pipe system, up to a max Reynolds Number of 
190000.

Velocities on the urban surface were quantified to be between 
0.1 and 0.25 m/s which corresponds to a real-scale velocity field 
of 0.245–0.625 m/s based on Froude similitude. This is within the 
range that might be expected for a shallow water running over 
an urban surface during a flood event, and is similar to the range 
used by (Djordjevic et al. 2013) for the physical modelling of gully 
performance during flood events.

For tests conducted with the lid on the top of the manhole, to 
avoid lifting the lids are fixed within the system via the application 
of a 10.3 kg weight. In this condition a small amount of flow is 
able to escape via the edges of the lid.

3.1.1. Calibration of pressure transducers and flow meters
Each pressure sensor has been calibrated to determine the rela-
tionship between pressure and electrical output signal. All cali-
brations found were linear with a minimum R2 of 0.999. Expected 
maximum errors in pressure readings can be estimated based on 
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at the cross-section at position x and time t. The mass and energy 
conservation are computed at each node through:
 

Where zn the surface elevation in the node, u the node cross-sec-
tional average velocity, the area of the node is An, the external 
inflow Qn, and the local energy loss coefficient is K. A Preissmann 
four-point implicit Finite differences scheme is used with the conju-
gate gradient method to solve the system of Equations (9), (10) and 
(11). The scheme is unconditionally stable with time step limited 
only to 4 × ∆x/∆t. For surcharging pipes, the Preissmann open-slot is 
used (Preissmann 1961). Roughness is computed using manning’s 
roughness formula and coefficients. The time step used was 0.1 [s].

3.2.2. Localized losses
SIPSON calculates minor losses inside the manhole using the 
node cross sectional velocity (11). It also subdivides the pipes 
in several smaller sections and computes the head inside the 
nodes assuming that the representative velocity is the one at 
the cross section of the node instead of the up and downstream 
tubes. The cross sectional velocity assumption can be con-
sidered true for a very unidirectional flow, however for highly 
turbulent flows inside the manholes it may not be appropriate, 
hence errors may be expected.

4. Results and Discussions

This section presents energy losses and energy loss coefficients 
for the tests described in section 3.1.2. The effect of both the 
application of a manhole lid and of shallow surface flow on 
energy losses is analysed. Finally, coefficients are incorporated 
into SIPSON and resulting numerical simulations are presented. 
The performance of the models is evaluated based on meas-
ured and predicted pressure head values within the experi-
mental facility (upstream and downstream of the manhole) as 
well as measured and predicted water levels at the manhole.

4.1. Results (Set 1)

Experimentally determined hydraulic heads losses (H1-H3), (H1-
H2) and ΔH are plotted in Figure 2 against inflow velocity head 
(u1

2/2 g) components for tests conducted with (WL) and without 
the lid (WoTL) in place in both surcharging and non-surcharg-
ing conditions. A linear relationship between head losses and 
velocity head of the sewer in flow can be observed. Head loss 
coefficients (K) can hence be determined based on the slope of 
the regression lines fitted to the experimental data (Figure 2). 
These coefficients and their confidence limits (R2 > 0.986 for all 
the cases) are given in Table 1. It is noted that non-surcharging 
K13 values are slightly higher than previous studies on losses for 
flow within in-line manholes (e.g. Marsalek 1987), this may be 
due to the specific geometrical setup of the facility or the rela-
tively high range of manhole flow depths tested. In all surcharg-
ing cases K12 is higher than K13 indicating higher energy losses 
in the flow stream that transfers to the surface when compared 
with the stream that travels through the sewer. As expected, 
in non-surcharging conditions, energy loss coefficients are 

(11)An

dzn

dt
= Qn +

M∑
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±Qm z +
u2cs

2g
= zn ± K

ucs
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2g

the maximum observed variation between the measured values 
and the calibration relationships. The maximum expected meas-
urement error is ±0.72 mm in the sewer pipe and ±0.109 mm on 
the floodplain.

Following a similar procedure, a calibration was completed 
to determine the relationship between the flow valve input Vi1 
and Vi2 (mA) (Figure 1) set by the operator (which directly con-
trols the valve opening) and the flow rates Q1, Q2 and Q3 (l/s) as 
recorded by the flow meters at F1, F2, F3, respectively (Figure 1). A 
verification set of tests has been conducted to compare the flow 
rate measured by the magnetic flowmeters after having applied 
the liner interpolation against the values provided by the labo-
ratory measurement tank. All values recorded within this set of 
verification tests were within 2.5% of measurement tank values.

3.1.2. Hydraulic testing conditions
A series of steady state experimental tests was completed to 
estimate energy losses through a manhole. Two main sets of 
tests were completed to investigate the effects of a manhole lid 
(Set 1) and the effects of interaction between flow surcharging 
via the manhole and a uniform flow depth on the surface (Set 2). 
Tests were conducted in both surcharging (Qe > 0) and non-sur-
charging (Qe = 0) conditions.

•  Set 1: A set of duplicate tests were conducted in which 
sewer inlet flow and surcharge rate was varied (Qe ranged 
between 0 and 2.59 l/s), with (WL) and without (WoTL) the 
presence of a lid described above. Surface inflow (Q2) was 
set as zero in all cases and the downstream sewer valve was 
set at a constant position (Vd = 48%).

•  Set 2: Tests were completed with two different flow condi-
tions on the surface in combination with varying degree 
of closure of the downstream sewer valve (Vd presented in 
section 3.1) and surcharge rate (Qe ranged between 0 and 
7.28 l/s). All tests were conducted without lid in place.

For all the tests conducted, the sewer pipe entering the man-
hole was flowing full and under pressure, and the inflow was 
turbulent.

3.2. Numerical setup – SIPSON

After determining the range of head loss coefficients for the 
tests described above a fully dynamic numerical model, SIPSON 
(Djordjevic et al. 2005) was tested based on the hydraulic condi-
tions listed in section 3.1.2. The following subsection describes 
the SIPSON model.

3.2.1. Sipson
SIPSON solves the full dynamic Saint-Venant Equations in the 
pipes:
 

 

where z is the water level, Q is the flow rate in the pipe, A is the 
cross-sectional area, g is the gravity acceleration, B is the water 
surface width, Sf is the bed friction. These values are computed 
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unaffected by the presence of a manhole lid. However in sur-
charging conditions, the coefficients (and hence energy losses) 
are lower when the lid is removed (from K13,SWL = 0.699 to K13,SWoL 
= 0.559; from K12,SWL = 3.865 to K12,SWoL = 1.269 and from KTOT,SWL 
= 0.933 to KTOT,SWoL = 0.836). This suggests higher turbulent 
energy losses in conditions where the flow is forced past a lid 
than when compared to a condition in which flow can move 
freely to the surface. As expected, this is most evident when 
considering the sewer to surface coefficient (K12), only a small 
difference is observed when considering the sewer pipe (K13) 
and overall energy loss coefficient (KTOT). In the latter case this is 
due to the relative magnitude of the flow moving to the surface 
vs through the sewer pipe. Overall energy losses, KTOT, were also 
observed to be higher in surcharging conditions than non-sur-
charging conditions (both with and without the application of 
the lid). This is expected due to the additional energy losses 
encountered when the flow moves from sewer to surface.

Figure 2. experimentally determined hydraulic heads losses ΔH13, ΔH12 and ΔH against velocity head components calculated for Set 1 (above) and Set 2 (below) tests. For 
Set 1, Wl-nS = With lid and no surcharge condition; Wotl-nS = Without lid and no surcharge condition; Wl-S = With lid and surcharge condition; WotlS = Without lid and 
surcharge condition. For Set 2 tests were based on different Vd closure rate and different surface flow conditions.

Table 1. energy losses coefficients calculated for Set 1 tests (nS = non surcharge, 
S = surcharge, Wl = with lid, Wotl = without lid) and for Set 2 tests.

Q2 (l/s) Hydraulic Condition K13 K12 KTOT

Set 1

0 nS Wl 0.757 / 0.757
0 nS Wotl 0.760 / 0.760
0 S Wl 0.699 3.865 0.933
0 S Wotl 0.559 1.269 0.836

Set 2

Q2 (l/s) Vd (%) K13 K12 Ktot
2.75 48 0.551 1.235 0.806
2.81 62 0.628 1.217 0.855
2.73 71 0.567 1.253 0.989
2.52 81 0.552 1.244 1.103
2.76 86 0.628 1.238 1.147
9.21 48 0.569 1.196 0.832
9.20 62 0.562 1.205 0.808
9.22 71 0.553 1.230 0.967
8.16 81 0.526 1.086 0.998
8.14 86 0.626 1.226 1.140
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Results show that the energy loss coefficient K13 decreases 
as the downstream valve is closed, however when the closure 
is higher than 81%, of the total diameter of the pipe, there is an 
increase of instability (K13 for V = 86% > K13 for V = 81%) which 
may be due to the high turbulent flow that is forced to escape 
the sewer system through the manhole. Results also show that 
K12 is not dependent on the ratio of closure of the pipe or the 
flow conditions on the surface. Results show that KTOT gradually 
increases as the downstream valve is closed until the ratio of clo-
sure of the pipe (Vd) reaches a specific threshold, 86%, very close 

4.2. Results (Set 2)

Experimentally determined hydraulic head losses (H1-H3), 
(H1-H2) and ΔH are plotted in Figure 2 for SET 2 tests. A linear 
relationship between head losses and velocity head of the 
sewer inlet flow can be observed in all cases. Head loss coeffi-
cients (K13, K12 and KTOT) are determined based on the slope of 
the regression lines fitted to the experimental data. These coef-
ficients and their confidence limits (R2>0.993 for all the cases) 
are given in Table 1.

Figure 3. experimental scheme replicated within the numerical model SIPSon (top) and experimental (Set 1) vs numerical results for surcharging (S, right of dashed line) 
and no-surcharging conditions (nS, left of dashed line), without and with lid application on the top of the manhole. error between experimental and numerical results 
(Hexperimental-HSIPSon) plotted on secondary axis.
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system and a floodplain surface. A framework for the quantifica-
tion of energy losses is presented and the effects of a manholes 
lids and interacting surface flows have been examined over a 
range of flow conditions.

Tests have shown that total energy losses in surcharging condi-
tions are increased relative to non-surcharging conditions. The flow 
stream that travels from the sewer to surface encounters higher 
energy losses than the flow stream that travels through the sewer. 
The presence of a manhole lid considerably increases sewer to 
surface energy loss coefficients, likely due to the increased turbu-
lent energy losses as pressurized flow escapes from the manhole 
lid. Energy loss coefficients for sewer to surface flow are approxi-
mately two times the energy loss coefficients through the straight 
manhole without the application of the lid and approximately five 
times the energy loss coefficients through the straight manhole 
with the application of the lid. Due to the relative magnitude of 
flows passing onto the surface and through the sewer, the effect 
a lid on overall energy loss coefficients is small but noticeable.

Tests also showed that the sewer to surface energy loss coef-
ficient is unaffected by both the presence of surface flow and 
downstream sewer hydraulic conditions, and has hence found to 
be constant for all conditions tested. Sewer energy loss coefficients 
and total energy loss coefficients were found to be independent of 
surface flow conditions but increased as the downstream restric-
tion was closed. In this case the overall head losses become higher 
as result of an increasing proportion of the flow being pushed 
onto the surface, encountering higher turbulent losses in the pro-
cess. Given the behaviour of the observed coefficients, for a given 
manhole structure and given knowledge of energy loss coefficient 
and sewer inflow it is possible to quantify sewer surcharge rate 
(Qe) in steady flow conditions based on the framework set out in 
section 2. This represents a potential alternative for the quantifi-
cation of sewer to surface flow exchange that is commonly used 
with urban flood models (Rubinato et al., 2017) based on the weir/
orifice equations. However the behaviour and variability of these 
energy loss coefficients over a range of other manhole structures 
with different shaft lengths and geometries is not currently known.

When replicating experimental conditions within the SIPSON 
numerical model despite a good overall representation of the 
observed data, the performance of the model was found to dete-
riorate in the more complex surcharging flow conditions.

The limitations of this study should be noted. First, the present 
investigation has been restricted to a straight-flow-through man-
hole of a fixed depth with fully submerged inlets and outlet pipes 
of equal diameter. Many more cases and conditions remain to be 
investigated (e.g. different manhole lids and blockages effects) 
to explore the behaviour and variability of the energy loss coef-
ficients. Second, unsteady events have not yet been considered, 
further research should therefore consider how energy losses are 
affected by rapidly changing flow rates which are common in 
urban flooding situations.
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to the full closure of the entire pipe capacity. In this case, KTOT 
increases significantly. This behaviour is a consequence of the 
increasing proportion of flow which is transferred to the surface 
encountering higher turbulent losses as the flow moves from the 
sewer into the surface.

4.3. Comparison between SIPSON and experimental data

The pressure datasets obtained from SET 1 were used to eval-
uate the performance of SIPSON. The experimental facility was 
replicated within the numerical model and the scheme used is 
displayed in Figure 3. Figure 3 shows the location of each sec-
ondary head loss parameter (L1, L2, L3, L4, L5, L6) applied within 
the numerical models. L1 (0.36) and L2 (0.36 × 2) where obtained 
based on the head loss for the used diameter for a 90° bend PVC 
non flanged pipe (Lencastre 1996), L3 (NSWL = 0.757, NSWoTL = 
0.760, SWL = 0.699, SWoTL = 0.559) from the experimental data 
obtained from the SET 1 and presented in Table 1, L4 (0.0625) 
from the losses in sudden expansions as presented by (Idel’Cik, 
1969), L5 (1.5) from gate valve losses as presented by (Puppini 
1947), and L6 (1.269) based on the coefficients obtained for loss 
for the surcharge using SET 2 data (K12).

Figure 3 shows the experimental data (SET 1 tests) of pressure 
head upstream and downstream of the manhole and flow depth in 
the manhole against the numerical predictions from SIPSON using 
the coefficients presented above and measured inflow data. The error 
between numerical and experimental observations is plotted on the 
secondary axis. Overall a good agreement between experimental 
and numerical results is shown as confirmed by the RMSE values 
(between numerical model and the experimental results) quantified 
for each scenario (R2 > 0.982 in all the cases as displayed in Table 2).

For non-surcharging conditions, SIPSON generates pressure 
head values that follow the trend of the experimental results both 
upstream, within and downstream of the manhole with a magni-
tude that only marginally differs from the experimental results. 
For the non-surcharging conditions, discrepancies are very close, 
between 0 and 0.04 m without the application of the lid on the 
top of the manhole and within the range 0–0.025 m with the lid 
application. As expected because there is no flow escaping the 
manhole the presence of the lid does not influence the hydrau-
lic conditions. When considering surcharging conditions, SIPSON 
tends to overestimate experimental pressure results as displayed 
in Figure 3. Dissimilarities are greater for tests conducted with 
the application of the lid (up to 0.1 m) whilst in no-lid cases the 
deviations between experimental and numerical do not exceed 
0.04 m. This demonstrates how the extra complexity of bifurcating 
flows impacts the accuracy of the numerical modelling results.

5. Summary and Conclusions

An experimental facility was used to quantify energy losses coef-
ficients associated with a scale model manhole that links a sewer 

Table 2. Correlation between numerical and experimental data using R2 and rMSe 
(Wl = with lid, Wotl = without lid).

Upstream (p1) Manhole (hm) Downstream (p3)
rSMe [mm] Wotl 0.018 0.013 0.019

Wl 0.068 0.061 0.082
R2 Wotl 0.997 0.996 0.992

Wl 0.986 0.985 0.982
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