

Dissemination Seminar: Modelling of Urban Flood Flows

A practitioner viewpoint of urban flood modelling and industrial research needs

Prof. Chris Digman

25th January 2018

Agenda

- 1. Research needs
- 2. How we use urban flood models
- 3. How we undertake flood modelling
- 4. The challenges we face
- 5. Research needs

Go to....

glsr.it/2aa336df

What are your research needs????

		5 0
Recent	- Top Voted	
neccin		

Investment decisions

Business planning

Individual scheme decisions

Strategic assessment of risks – but differing levels of detail

Understanding problems

- Help to determine the causes and mechanism
- Help to understand the extents
- Vital to ensure the right solution can be developed

Predicting events and incidents

32mm/hr

10mm/hr

Smm/h

4mm/h

2mm/hr

1mm/h

0.5mm/hr

0.25mm/hr

0.01mm/h

Pump Running

Pump Available

Pump Unavailable

- Become more proactive in our response to flooding
- Help to prepare for flooding
- Manage an event as it happens
- Efficient clean up afterwards

Plan and respond to flooding due to other causes issues

Apply rainfall to the mesh and ignore the need for interaction with the below ground system

- Above ground routing only
- Make an allowance for the below ground system performance
- Representative for more extreme events

1D simulation of below ground and stored or lost flooding at nodes

- Cones influence model performance
- Water out would not always go back in
- Creates significant uncertainties when estimating property flooding

Enable the model to flood on to the mesh and back through nodes 1D-2D

- Commonly applied
- Coarse or detailed application makes it very flexible
- Typically uses nodes to enable flooding
- Still ignores some of the likely locations of interaction
- Topography granularity

Become more detailed with gully and connections modelled

Use a 2D approach to replicate runoff on the surface

But we should not forget the most frequent urban flooding risk

Computational accuracy under all conditions

- Accuracy & application of the equations for below and above ground
- Operational performance
 - Mechanical
 - Silt and sediment movement
 - Interventions

Spatial rainfall representation and short term forecasting

- Accurate measurement spatially for model validation and confidence
- Prediction in the next 24 hours for operational planning & response
 - Where
 - Quantity

Rain Music (2012)

Getting the right level of integration to account for the appropriate level of interaction

Key elements in predicting flood risk rest with the quality of the data

Ability to enhance accuracy automatically with the larger data sets available

Underlying model confidence for the purpose being used for

Key research needs to address

Key research needs to enhance urban flood modelling

- Runoff (for 1D and 2D models) fundamental research
- Improved understanding of measurement, identification and replication of infiltration entering systems
- Sediment entry, tracking and movement and its impact on performance
- Continue to improve the replication of the interaction between the 1D and 2D (minor and major) – boundary conditions
- Real time dynamic modelling with self learning and uncertainty assessment/quantified

What were yours.....

Questions

chris.digman@stantec.com

