FloodEvac Bilaterale Forschungszusammenarbeit für die zivile Sicherheit zwischen Deutschland und Indien BMBF-Verbundprojekt: Verletzbarkeit von Transport-Infrastrukturen -Warnung und Evakuierung bei Hochwasser

Indo-German Initiative for Civil Security Research

INTERACT Dissemination Event 25.01.2018

BMBF Project FloodEvac

Workpackage 2:

Flood Modeling and Flooded Areas

Jorge Leandro, Markus Disse, Amin Kanwal, Iris Konnerth, Punit Bhola

Technical University of Munich

Chair of Hydrology and River Basin Management

Transfer methodologies between India and Germany

FloodEvac - Flood Modeling and Flooded Areas

City of Kulmbach and Upper Main Catchment

Case study

City of Kulmbach and Upper Main Catchment

Case study

City of Kulmbach and Upper Main Catchment

Case study

Bratwurst

Model Concept

DYNAMIC AND COMPLEX: THE GLOBAL WATER CYCLE

Model Concept

DYNAMIC AND COMPLEX: THE GLOBAL WATER CYCLE

Hydrological Model Input (LARSIM)

Hydrological Model Input (LARSIM)

Ground level, slope, land use, field capacity, stream geometry

• climatological gauges

Hydraulic Model Input (HEC-RAS 2D, Hydro-AS 2D)

Land use + Digital Elevation Model

- 62 % Agriculture and grass
 land
- 26 % Urban area, including industrial use, residential area, and infrastructure
- The rest is distributed between water bodies (7 %) and forest (5 %)

Legend

ΠП

For

ТШ

Sources of Uncertainty

Sources of uncertainties (modified Buchholz, 2000)

Model Concept uncertainty chain into forecasts

ТШП

Historical Rainfall

- > Realistic scenarios based on the observed precipitation time series
- Independent of the return period
- Inclusion of the spatial uncertainty

ТШП

Historical Rainfall

ТШ

Historical Rainfall

Rainfall temporal distributions

LARSIM

(Large Area Runoff Simulation Model)

Model Structure

FLOODEVAC

G

LARSIM Soil Module

Parameters of the soil module

ТШП

Parameter Sensitivity

Tabelle 2: Parametersenitivität – Sensitivitätsindex – Grenzwert HQ1

Para- meter	SI Köd- nitz HW	SI Kauern- dorf HW	SI Kem- mern HW	SI HW Mittel	SI Köd- nitz NW	SI Kauern- dorf NW	SI Kem- mern NW	si nw	SI Köd- nitz	SI Kauern- dorf	SI Kem- mern	SI Mittel Gesamt	Kom: mentar
EQD	1.003	1.008	0.772	0.947	0.340	0.363	0.321	0.371	0.340	0.363	0.321	0.380	37. 1
beta	1.120	0.896	0.919	0.893	0.953	1.003	1.027	1.068	0.953	1.003	1.027	1.080	
IGt	0.927	0.932	0.534	0.728	0.166	0.185	0.152	0.180	0.166	0.185	0.152	0.186	
KG	0.501	0.390	0.400	0.387	0.335	0.317	0.350	0.335	0.335	0.317	0.350	0.341	() ()
KWD	0.443	0.353	0.361	0.343	0.272	0.259	0.288	0.270	0.272	0.259	0.288	0.275	
EQD2	0.417	0.412	0.121	0.321	0.012	0.013	0.017	0.013	0.012	0.013	0.017	0.014	Nicht genutzt
Dmax.	0.580	0.305	0.196	0.308	0.224	0.165	0.182	0.214	0.224	0.165	0.182	0.220	
A1	0.211	0.240	0.191	0.267	0.024	0.039	0.031	0.039	0.025	0.039	0.031	0.041	92. 1
SRet	0.190	0.360	0.208	0.260	0.028	0.035	0.030	0.040	0.028	0.035	0.031	0.041	
WZBo.	0.449	0.449	0.200	0.251	0.304	0.338	0.239	0.295	0.304	0.338	0.239	0.302	Nicht genutzt
A0	0.136	0.159	0.152	0.210	0.022	0.028	0.024	0.033	0.022	0.028	0.025	0.035	1
EKL	0.136	0.159	0.152	0.210	0.022	0.028	0.024	0.033	0.022	0.028	0.025	0.035	
EKR	0.136	0.159	0.152	0.210	0.022	0.028	0.024	0.033	0.022	0.028	0.025	0.035	
KEZG	0.200	0.200	0.199	0.174	0.200	0.200	0.200	0.196	0.200	0.200	0.200	0.200	
BSF	0.191	0.099	0.083	0.154	0.276	0.232	0.220	0.267	0.276	0.232	0.220	0.271	92. 1
EKM	0.266	0.082	0.517	0.153	0.074	0.045	0.150	0.057	0.074	0.045	0.150	0.057	
A2	0.284	0.188	0.085	0.139	0.015	0.013	0.013	0.011	0.015	0.014	0.013	0.012	
EQI	0.090	0.223	0.113	0.092	0.175	0.239	0.155	0.202	0.175	0.239	0.155	0.207	
Abso	0.063	0.102	0.057	0.062	0.014	0.017	0.012	0.016	0.014	0.017	0.012	0.016	11
EQB	0.015	0.018	0.034	0.025	0.320	0.344	0.343	0.355	0.320	0.343	0.341	0.355	32
Dmin	0.019	0.012	0.017	0.016	0.030	0.030	0.033	0.045	0.030	0.030	0.033	0.045	<u>i</u>
WZPf	0.028	0.014	0.020	0.016	0.064	0.067	0.065	0.067	0.064	0.067	0.065	0.067	
MAuf	0.003	0.001	0.002	0.003	0.022	0.036	0.029	0.052	0.022	0.038	0.029	0.052	
NKor	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Kfeld	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Nicht aktiv
KBoEeu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Nicht aktiv

Calibration

Shuffled-Complex-Evolution-Algorithmus (SCE-UA)

Calibration

Shuffled-Complex-Evolution-Algorithmus (SCE-UA)

Calibration and validation

Shuffled-Complex-Evolution-Algorithmus (SCE-UA)

Simulationsganglinien Validierungsperiode

FLOODEVAC

G

Calibration and validation

Shuffled-Complex-Evolution-Algorithmus (SCE-UA)

Simulationsganglinien Validierungsperiode

Uncertainty Estimation with Monte-Carlo-Simulations

ТШ

ТШ

Dynamic Inundation Maps

Kulmbach 2006-05-28 23:00:00

Dynamic Inundation Maps

Kulmbach 2006-05-29 03:00:00

ТШ

Uncertainty Bands for Flood Forecast

May 2006

Forecast modus (under development)

Outlook

- Maps of time-dependent water depth and flow velocities as separate maps
- Database to retrive the flood maps

 Hourly updated maps for a flood event

SOULCE. WISDOW, W. WISIK EL al 2013

Faculty of Civil, Geo and Environmental Engineering Chair of Hydrology and River Basin Management

FloodEvac

Bilaterale Forschungszusammenarbeit für die zivile Sicherheit zwischen Deutschland und Indien BMBF-Verbundprojekt: Verletzbarkeit von Transport-Infrastrukturen -Warnung und Evakuierung bei Hochwasser

INTERACT Dissemination Event 25.01.2018

University Sheffield.

Jorge Leandro, Markus Disse, Amin Kanwal, Iris Konnerth, **Punit Bhola Technical University of Munich** Chair of Hydrology and River Basin Management