

Department of Civil, Environmental and Mechanical Engineering

International Association for Hydro-Environment Engineering and Research

upported by pain Water and IWHR, China 5th IAHR EUROPE CONGRESS New challenges in hydraulic research and engineering Trento12-14 June, 2018

Flood prediction in a compound channel using machine learning techniques

Vasilis Bellos^{1,2}, Juan Pablo Carbajal³, Joao Paulo Leitao³

¹CH2M, UK

²National Technical University of Athens (NTUA), Greece

³Swiss Federal Institute of Aquatic Science and technology (EAWAG), Switzerland

Flood prediction

- Water surface elevation at inundated areas in respect to time
- Flood warning schemes
- Fast and accurate results
- Models
 - uncertainty
- Observed data
 - lack of data

Flood models

- Phenomenological models
- Empirical models
- Conceptual models
- Low-fidelity models
- Physically-based models
- Detailed models
- Fine models
- High-fidelity models

- fast but not accurate results

accurate but no fast results

Flood models

- Phenomenological models
- Empirical models
- Conceptual models

fast but not accurate results

- Low-fide is model strained with data derived by detailed
 Physically-based models simulators
- Detailed models
- Fine models
- High-fidelity models

accurate but no fast results

Example

- Topography \rightarrow compound channel
 - → synthetic flood hydrograph
 - \rightarrow water surface elevation in respect to time
 - → FLOW-R2D model
 - → Gaussian Process based

Emulator

Simulator

• Input

• Output

Topography

Output

Simulator

- FLOW-R2D model
- Solving the 2D-SWE using FDM
- Modified McCormack numerical scheme
- Artificial viscosity is added
- Water depth threshold for wet/dry modelling
- Manning equation
 - friction modelling
 - effective slope for upstream boundaries

Emulator

- 3 water depth time series
 - time-parameterized 3D curve
- Decomposition
 - time dependant singular vectors
- Gaussian Process
 - linear mean function
 - square exponential covariance functions
 - optimization of hyperparameters

Training phase

- Training dataset
- Testing dataset
- Parametric space

- \rightarrow 140 samples
- \rightarrow 60 samples
- → $Q_{p}[400,600] \text{ m}^{3}/\text{s}$ $t_{p}[0.5,1.0] \text{ h}$ $\theta[2.5,3.5]$

Emulator error

Conclusions

- Significant acceleration of the simulations
 - magnitude of hours \rightarrow magnitude of seconds
- Small emulator error
- Feasible to use detailed simulators
 - flood warning schemes
 - uncertainty quantification
 - designing
 - ...
- Challenges
 - computational budget
 - time-varying input and output

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 607000.

www.quics.eu