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propagation, a copula approach. 
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1- Dissolved oxygen predictions in 
integrated urban water systems 
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1- Dissolved oxygen predictions in 
integrated urban water systems 

 
!Y (t) = M (x0, I (t),θ )

Y (t) = M (x0, I (t),θ )+ ε

Y (t) = {Q1(t),DO1(t)}
θ → {kBOD , kCOD , kNH 4 ....}
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2- Uncertainty propagation 

Monte Carlo Forward (pseudo-random Sampling) 

M (x0, I (t),θ )

1- Describe probability 
distribution of Inputs/
parameters 

2- Draw samples from 
uncertain variables and 
evaluate the model 

3- Analysis of outputs 
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2- Uncertainty propagation 
Monte Carlo Forward (pseudo-random Sampling) 

Step 1- Describe probability distribution pollutant mean concentrations 

-  Pollutant natural 
variability 

-  Non-Gaussian 
marginals 

-  Highly correlated 
variables 
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4- Step 2 Sampling from the joint 
parameter distribution 

 
Building a Copula distribution 

Create samples from a set of variables which 
have arbitrarily distributed marginals and 
present a certain structural correlation. 

 

X = [X1, X2,…, Xn ]
T

Fi (Xi ) = P[Xi ≤ x] C :[0,1]n = P[Ui ≤ u]

(U1,U2,...,Un ) = (F1(X1), F2 (X2 ),..., Fn (Xn ))

Marginal 
Distribution 
Information 

Uniform joint distribution 
with correlation information 
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4- Step 2 Sampling from the joint 
parameter distribution 

 
Building a Copula distribution 

Create samples from a set of variables which 
have arbitrarily distributed marginals and 
present a certain structural correlation. 

 

X = [X1, X2,…, Xn ]
T

Fi (Xi ) = P[Xi ≤ x]

Gaussian Copula 

Pseudo-code: 
1- Describe marginal CDF    
2- Describe Rank Correlation 
3- Perform Cholesky Decomp 
4- Generate n samples (Std Gaussian) 

5- Correlate them 
6- Generate Copula samples 
7- Reshape to Marginals  
  

Fi 
R 

R=AAT 

Z~Nd(0,I) 
X= ZA 

U=(ϕ(Xi)) 
Y=(Fi

-1(Ui)) 
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4- Step 2 Sampling from the joint 
parameter distribution 
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5- Step 3 Propagate samples:  
Does correlation matter? 

150 km
100 km

100 km

Radar De Bilt

Radar Den Helder

Eindhoven

Veldhoven

Valkenswaard
Eersel

Bergeyk

Geldrop

Nuenen

Mierlo

Leende

Heeze

BorkelLuyksgestel

Meerhoven

Aalst

Radar



10 

•  Four stochastic pollutant concentration models: 
Pollutant Correlation 

Sp
at

ia
l C

or
re

la
tio

n Random marginal Samples 
(Spatially random) 

Copula marginal Samples 
(Spatially random) 

Random marginal Samples 
(Spatially homogeneous) 

Copula marginal Samples 
(Spatially homogeneous) 

5- Step 3 Propagate samples:  
Does correlation matter? 
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5- Step 3 Propagate samples:  
Does correlation matter? 



12 

4- Example: Does correlation matter? 
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5- Summary 

 

•  Accounting for correlation at pollutant mean concentration 
vectors has an effect of the parametric uncertainty of DO 
dynamics. 

 
 
•  Copula distributions can easily be implemented in sampling 

schemes for non-Gaussian correlated multivariate spaces 
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