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Abstract: Precipitation is the most active flux and major input of hydrological systems. Precipitation controls hydrological 
states (soil moisture and groundwater level), and fluxes (runoff, evapotranspiration and groundwater recharge). 
Hence, precipitation plays a paramount role in urban water systems. It controls the fluxes towards combined sewer 
tanks and the dilution of chemical and organic compounds in the wastewater. Furthermore, small catchments (i.e., 
areas of about 20 ha) have a fast response to precipitation. Therefore, catchment average precipitation is a key 
component in urban water models. However, average catchment precipitation is not always accurately known when 
measured at rain gauges, because the location of the gauge might be outside the catchment boundaries or does not 
reflect the entire catchment. The objective of this paper is to develop a method to estimate the precipitation in a 
catchment given a known precipitation time series at a location outside of the catchment, while quantifying the 
uncertainty associated with the estimation. We developed a multivariate autoregressive time series model for 
conditional simulation of precipitation time series. The case study is a small sub-catchment (16.5 ha) in Luxembourg. 
The time series of precipitation outside of the sub-catchment are available for two stations and cover the year 2010. 
We calibrated the model using the R-package ‘mAr’ and applied the developed conditional simulation algorithm to 
generate multiple realisations of precipitation time series. The results show that the proposed method is suitable to 
estimate time series of precipitation at ungauged sites and can quantify the associated uncertainty. 
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1. INTRODUCTION  

Precipitation is the most important flux and major input of hydrological systems. Precipitation 
controls hydrological states as soil moisture and groundwater level, and fluxes as runoff, 
evapotranspiration and groundwater recharge (Guan et al., 2009). Hence, precipitation plays a 
paramount role in urban water systems. It controls the fluxes towards storage tanks of combined 
sewer overflows (CSOs) and the dilution of chemical, organic and biological compounds in the 
wastewater. Furthermore, small catchments (i.e. areas of about 20 ha or smaller) have a fast 
response to precipitation input. Therefore, catchment average precipitation is a key component in 
urban water models. However, average catchment precipitation is not always accurately known 
when measured at rain gauges, because the location of the gauges might be outside the catchment 
boundaries or do not reflect the entire catchment at one location. 

The objective of this paper is to develop and present a method to estimate the precipitation in a 
specific catchment given a known precipitation time series in a location outside of the catchment 
under analysis, while also quantifying the uncertainty associated with the estimation. After model 
implementation, simulated precipitation time series can then be used in urban water models for 
Monte Carlo uncertainty propagation analysis to reach more robust results for urban water system 
design and associated potential environmental and economic impacts. 
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2. MATERIALS AND METHODS 

2.1 Multivariate autoregressive time series modelling 

The set-up of the case study provides two measured time series of precipitation, one at the rain 
gauge 1, RM(t), inside the catchment, and one outside the catchment, rain gauge 2, RM2(t) (see 
Figure 1). However, we need to estimate the precipitation at the sub-catchment level, R(t). We 
model the precipitation in the sub-catchment as: 

 

where δ(t) is defined as the ratio of RM(t) and R(t), the statistical properties of which are derived 
using measured time series of RM(t) and RM2(t). We assume that R(t), RM(t) and δ(t) are log-
normally distributed stochastic processes, so that: 

 

which we write as : 

 

LR(t), LRM(t) and Lδ(t) are modelled using a first-order multivariate autoregressive process 
model. Given Equation 3, we only need to model LRM(t) and Lδ(t) as (Luetkepohl, 2005): 

 

where µR = E(LRM); µδ = E(Lδ); A11, A12, A21, A22 are the coefficients of the autoregressive (AR) 
model; εR and εδ are zero-mean, normally distributed white noise processes. 

We need to calibrate this model, i.e. estimate the parameters µR, µδ, A11, A12, A21, A22, σR
2, σδ2 and 

ρRδ, where σR
2 = Var(εR), σδ2 = Var(εδ), and ρRδ is the correlation between εR and εδ. The parameters 

σR
2, σδ2 and ρRδ are needed to account for cross-correlation. We use the R package ‘mAr’ (Barbosa, 

2015) to calibrate the model given the two time series LRM and Lδ. For this, we derive Lδ by taking 
the difference of LRM and LRM2, in other words we assume that the time series RM and R have 
similar multivariate behaviours as time series RM and R. Note that the rain gauge associated with 
time series RM2(t) is about the same distance from the first rain gauge as the sub-catchment. 

We derive a time series of δ by dividing the RM data by the RM2 data, for times when both RM > 
0 and RM2 > 0, i.e. we create a bivariate time series of RM and δ. Next, we generate time series 
LRM(t) and Lδ(t) by taking log[RM(t)] and log[RM2(t)/RM(t)]. 

2.2 Conditional time series simulation 

Given the calibrated model we need to simulate from Lδ(t). This simulation should be 
conditional to LRM. We define: 

 

and therefore we have: 
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Figure 1. Schematic definition of the case study set-up. Rain gauge 1 = RM(t); rain gauge 2 = RM2(t);  
rain required = R(t) 

At each time step we need to simulate X2(t+1) given X1(t), X1(t+1) and X2(t). If we assume ρRδ = 
0, then X2(t+1) is given by: 

 

where X1(t), X2(t), A21, A22 are known, and ε1(t+1) is a normally distributed white noise process with 
mean 0 and variance σ2

2. If we assume ρRδ ≠ 0, this case is not straightforward, because X1(t+1) and 
X2(t+1) are also ‘directly’ correlated so that X1(t+1) has to be included in the conditional 
distribution. We can write: 

 

with 

 

Y follows a multivariate normal distribution with mean vector µ and variance-covariance matrix 
Ʃ (Box et al., 2008): 

 

where µ1 = 3x1, µ2 = 1x1, Ʃ11 = 3x3, Ʃ12 = 3x1, Ʃ21 = 1x3, Ʃ22 = 1x1. Solving Equation 11, we then 
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know: 

 

so we can simulate from Y2 = X2(t+1) by sampling from this conditional normal distribution. 
Therefore, we need to derive vector [µ1, µ2] and the variance-covariance matrix Ʃ. The first is 
straightforward because we centred X1 and X2 on zero: 

 

Regarding the calculation of the variance-covariance matrix Ʃ, we assume stationarity for 
variances and covariances, not depending on time, so the initial effect fades out. Therefore, we can 
define: 

 

We can demonstrate that the components of the Ʃ matrix are defined as: 

 

 

 

 

 

 

 

 

2.3 Case study 

The case study is located at Goesdorf, a small sub-catchment (16.5 ha) of the Haute-Sure system 
in the Northwest of Luxembourg. We know the time series of precipitation outside of the Goesdorf 
sub-catchment at two locations: Dahl (around 2 Km from the CSO tank Goesdorf) and Esch-sur-
Sûre (around 3.5 km from the CSO tank Goesdorf). The time series of precipitation provided by the 
Luxemburgish Administration des services techniques de l’agriculture (ASTA) 

(http://www.asta.etat.lu), covers the year 2010 with measurements at 10 minutes resolution. The 
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precipitation stations are provided with Lambrecht 15188 tipping bucket rain gauges with a 
resolution of 0.1 mm per tip, and a surface of the round reception area of 200 cm2. We have 52,556 
observations for each time series. The total precipitation at Esch-sur-Sûre is 658.6 mm, and 758.7 
mm at Dahl. The time series of precipitation were validated by the Observatory for Climate and 
Environment (OCE) of the Luxembourg Institute of Science and Technology (LIST). 

3. RESULTS 

3.1 Multivariate autoregressive time series modelling 

Two observed ASTA time series, Esch-sur-Sûre and Dahl (Figure 2), were used for the 
calibration of the multivariate autoregressive model. Before we could calculate of δ(t) (Eq. 1) we 
applied a Daniell Kernel (R Core Team and contributors worldwide, 2017) to smooth the time series 
and avoid the sudden tipping bucket effect in the measurements (Table 1). Only those values of 
precipitation above 0.1 mm were smoothed. Then, the time series were filtered and posteriorly 
computed the ratio between them. The filter creates two new time series for the cases where the 
value of precipitation is higher than 0.01 mm for both time series to compute the ratio. The length 
of the resulting filtered time series was 6,454 observations. Finally, the ratio between the time series 
was computed. 

 
Table 1. Daniell Kernel for smoothing the observed time series of precipitation 

Index Factor 
-2 0.1111 
-1 0.2222 
0 0.3333 
1 0.2222 
2 0.1111 

 
We defined the log-transform of the observed filtered time series, LRM(t), and the ratio, Lδ(t), 

and checked the normality assumption. The log-transform of the time series is fairly normal for the 
observed, LRM(t), and the ratio, Lδ(t), time series. Also, we checked the autocorrelation function 
(ACF) of these time series and both follow a similar pattern. 

Given the LRM(t) and Lδ(t) we calibrated the multivariate autoregressive model for order one 
(Equation 4) using the ‘mAr’ R-package. Table 2, summarises the calibrated parameters of the 
model. 

3.2 Conditional time series simulation 

Upon calibration of the multivariate autoregressive model, we proceeded with the conditional 
simulation of Y2 or X2(t+1) (Equation 12). For this, we compute the Ʃ matrix given the parameters 
of the model (Table 2). Table 2 also presents the calculated values of the components of Ʃ. 

Once the components of Ʃ matrix are calculated, we developed an algorithm for simulating Y2 
given the known values of Y1 i.e. X1(t), X1(t+1) and X2(t). Then, we added the mean to the time 
series Y2, backtransformed the lognormal values to compute the required precipitation time series at 
the sub-catchment R(t) according to Equation 1. Figure 3 shows the observed, RM(t) at Esch-sur-
Sûre, and the simulated, R(t) at Goesdorf, precipitation time series of the case study. 

4. DISCUSSION 

According to McMillan et al. (2011), traditional calibration methods do not take into account 
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input error, which leads to bias in parameter estimation and possible misleading model predictions. 
Several studies have proposed precipitation multipliers for overcoming this issue and taking into 
account precipitation input uncertainty in hydrological model calibration and prediction (McMillan 
et al., 2011; Leta et al., 2015; Del Giudice et al., 2016). Based on data from a dense gauge and 
radar network, McMillan et al. (2011) validated and confirmed the suitability of a multiplicative 
error model. Moreover, they showed that the lognormal multiplier distribution is a good 
approximation to the true error characteristics. 

 
Table 2. Calibrated parameters of the multivariate autoregressive model for LRM(t) and Lδ(t) and components of Ʃ 

Parameter Value Component Value 
µR 2.8550080 C11 0.00639559 
µδ 0.1019426 C33 0.00388534 
A11 0.9564952 C13 -0.00135028 
A12 0.0397994 C12 0.00617109 
A21 0.0242934 C34 0.00339810 
A22 0.8830385 C23 -0.00144617 
σR

2 0.0724132 C14 -0.00103698 
σδ2 0.0795191   
ρRδ -0.0387570   

 

 

Figure 2. Observed precipitation time series of the case study: Esch-sur-Sûre and Dahl. 

We proposed a multivariate autoregressive model for conditional simulation of input 
precipitation based on a multiplicative error model in the lognormal distribution. This method is 
essentially the same as the application of a Kalman filter/smoother (Kalman, 1960; Webster and 
Heuvelink, 2006). From a mathematical-statistical point of view we addressed the same principle of 
Kalman filter, i.e. to compute the conditional probability distribution given the available time series 
at each time step, sample from it and move to the next time point. Despite the goodness of the 
proposed method, some cases show an overestimation of the simulated precipitation, mainly due to 
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high values of the ratio for the multiplicative factor δ(t). This behaviour is also recognised by 
McMillan et al. (2011), who stated that the multiplicative factor used in their study “does not 
capture the distribution tails, especially during heavy rainfall where input errors would have 
important consequences for runoff prediction” 

Note also that we ignore the change-of-support effect because the sub-catchment area is much 
greater than a point. Future research may address this issue of support. 

 

Figure 3. Observed and simulated precipitation time series of the case study: simulation at Goesdorf. 

5. CONCLUSIONS 

Catchment average precipitation is a major driving force and key component in urban water 
models. However, average catchment precipitation is not always accurately known when measured 
at rain gauge, because the location of the gauge might be outside of the catchment boundaries or 
does not reflect the entire catchment at one location. To overcome this issue, we developed a 
method to estimate the precipitation in a catchment given a known precipitation time series at a 
location outside of the catchment, while quantifying the uncertainty associated with the estimation. 
A first-order multivariate autoregressive model for conditional simulation of input precipitation 
based on a multiplicative error model was proposed. This method is essentially the same as the 
application of a Kalman filter/smoother. Although the goodness of the proposed method, some 
cases show an overestimation of the simulated precipitation due to high values of the ratio for the 
multiplicative factor. This behaviour is also recognised in the literature.  

The simulated precipitation time series can be used in urban water models for uncertainty 
propagation analysis to reach more robust results for urban water system design and associated 
potential environmental and economic impacts. 
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