

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introductior

Model

Material

Results

Final remarks

Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model

Alexandre Wadoux¹ Dick Brus² Miguel Rico-Ramirez³ Gerard Heuvelink¹

¹Environmental sciences, Soil Geography and Landscape group University of Wageningen, Netherlands

²Environmental Sciences, Soil, Water and Landuse group Alterra, Netherlands

³Civil engineering, Water and Environment Management group University of Bristol, United Kingdom

October 10, 2016

Introduction

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Conventional geostatistical models assume that the property being monitored is the realisation of a second-order stationary random process

$$Z(s) = \mu + \varepsilon(s)$$

 $\mu = constant$

$$Cov(\varepsilon(s), \varepsilon(s+h)) = C(h)$$

if $h = 0 => Cov(\varepsilon(s), \varepsilon(s)) = Var(\varepsilon(s)) = C(0)$

Introduction

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Conventional geostatistical models assume that the property being monitored is the realisation of a second-order stationary random process

$$Z(s) = \mu + \varepsilon(s)$$

 $\mu = constant$

$$Cov(\varepsilon(s), \varepsilon(s+h)) = C(h)$$

if $h = 0 => Cov(\varepsilon(s), \varepsilon(s)) = Var(\varepsilon(s)) = C(0)$

But this is often an invalid assumption => can be checked with exploratory analysis of the observed data

Expectation

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Objectives...

- Account for non-stationarity in the mean and variance of rainfall
- 2 Optimize the sampling locations of rain gauges for mapping rainfall over time

Introduction

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Simple solutions exist for non-stationarity

In the mean

$$Z(s) = m(s) + \varepsilon(s)$$

and in the variance

 $Z(s) = m(s) + \sigma(s) \cdot \varepsilon(s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ⊙へ⊙

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introductior

Model

Material

Results

Final remarks

Mean rainfall at location s

 $Z(s) = \sum_{k=0}^{K} \beta_k f_k(s) + \sum_{l=0}^{L} \kappa_l g_l(s) \cdot \varepsilon(s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ⊙へ⊙

Universal kriging for merging

In matrix notation

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

 $\mathbf{C} = \textit{diag}\{\mathbf{G}\kappa\} \cdot \mathbf{R} \cdot \textit{diag}\{\mathbf{G}\kappa\}^T \text{ is the variance-covariance matrix}$

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

DUICS

Universal kriging for merging

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

 $\mathsf{Z} = \mathsf{F}\boldsymbol{eta} + \underbrace{\mathsf{G}\boldsymbol{\kappa}\cdot\boldsymbol{arepsilon}}_{\mathsf{C}}$

 $\mathbf{C} = diag\{\mathbf{G}\kappa\} \cdot \mathbf{R} \cdot diag\{\mathbf{G}\kappa\}^T \text{ is the variance-covariance matrix}$

Predictions at new location

In matrix notation

$$\hat{\mathbf{z}}(\boldsymbol{s}_0) = \mathbf{f}(\boldsymbol{s}_0)^T \hat{\boldsymbol{\beta}} + \mathbf{g}(\boldsymbol{s}_0)^T \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\varepsilon}}(\boldsymbol{s}_0)$$

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Universal kriging for merging

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

$Z = F\beta + G\kappa \cdot \varepsilon$

 $\mathbf{C} = diag\{\mathbf{G}\kappa\} \cdot \mathbf{R} \cdot diag\{\mathbf{G}\kappa\}^T \text{ is the variance-covariance matrix}$

Predictions at new location

In matrix notation

$$\hat{\boldsymbol{\mathsf{z}}}(\boldsymbol{s}_0) = \boldsymbol{\mathsf{f}}(\boldsymbol{s}_0)^T \hat{\boldsymbol{\beta}} + \boldsymbol{\mathsf{g}}(\boldsymbol{s}_0)^T \hat{\boldsymbol{\kappa}} \cdot \hat{\boldsymbol{\varepsilon}}(\boldsymbol{s}_0)$$

Prediction error variance at new location

$$\sigma^2(\boldsymbol{s}_0) = \boldsymbol{c}(0) - \boldsymbol{c}_0^T \boldsymbol{C}^{-1} \boldsymbol{c}_0$$

prediction error variance of the residuals

+
$$(\boldsymbol{f}_0 - \boldsymbol{\mathsf{F}}^T \boldsymbol{\mathsf{C}}^{-1} \boldsymbol{c}_0)^T (\boldsymbol{\mathsf{F}}^T \boldsymbol{\mathsf{C}}^{-1} \boldsymbol{\mathsf{F}})^{-1} \boldsymbol{f}_0 - \boldsymbol{\mathsf{F}}^T \boldsymbol{\mathsf{C}}^{-1} \boldsymbol{c}_0)$$

error variance of the trend

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ りゅう

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

With exponential correlogram, $r(h) = c_0 + (1 - c_0) \{ exp(\frac{-3h}{a}) \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ⊙へ⊙

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

With exponential correlogram, $r(h) = c_0 + (1 - c_0) \{exp(\frac{-3h}{a})\}$

We need to estimate $\Phi = [\kappa_i, c_0, a]$, and β_i

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

With exponential correlogram, $r(h) = c_0 + (1 - c_0) \{exp(\frac{-3h}{a})\}$

We need to estimate $\Phi = [\kappa_i, c_0, a]$, and β_i Independant of β_i , Restricted loglikelihood:

$$\ell(\Phi|\mathbf{z}) = Constant - rac{1}{2}In|\mathbf{C}| - rac{1}{2}In|\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}| - rac{1}{2}\mathbf{y}^{T}\mathbf{C}^{-1}(\mathbf{I} - \mathbf{Q})\mathbf{z}$$

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

With exponential correlogram,

$$r(h) = c_0 + (1 - c_0) \{exp(\frac{-3h}{a})\}$$

We need to estimate $\Phi = [\kappa_i, c_0, a]$, and β_i Independant of β_i , Restricted loglikelihood:

$$\ell(\Phi|\mathbf{z}) = Constant - rac{1}{2}In|\mathbf{C}| - rac{1}{2}In|\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}| - rac{1}{2}\mathbf{y}^{T}\mathbf{C}^{-1}(\mathbf{I} - \mathbf{Q})\mathbf{z}$$

 β_i are estimated with GLS using REML estimates of kappa, c_0 and a.

Case study

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Mode

Material

Results

Final remarks

Illustration with a simple case, daily rainfall mapping with radar and rain-gauge

Sac

э

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

 $Z(s) = \sum_{k=0}^{K} \beta_k f_k(s) + \sum_{l=0}^{L} \kappa_l g_l(s) \cdot \varepsilon(s)$

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Mode

Material

Results

Final remarks

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introductior

Mode

Material

Results

Final remarks

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Mode

Material

Results

Final remarks

DQC

æ

Model calibration

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Example, February 11th, 2010...

Parameter	Estimated value	Associated to
<i>C</i> ₀	0.0001278	nugget
a1	8914	range [meters]
β_1	-0.02205	intercept
β_2	-0.1141	radar image
β_3	1.967e-05	distance from radar*radar image
β_4	0.1771	previous estimated rainfall map
κ_1	0.3699	intercept
K2	4.555e-11	elevation*radar image
K3	6.445e-06	distance from radar*radar image
κ4	1.35e-10	beam blockage*radar image

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 • ���

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introductior

Mode

Material

Results

Final remarks

Minimizing the variance criterion by a random search called Spatial Simulated Annealing (SSA)

$$Criterion = \frac{1}{T} \frac{1}{|A|} \int_{t=0}^{T} \int_{s \in A} Var(Z(s, t) - \hat{Z}(s, t)) ds dt$$
(1)

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introductior

Model

Material

Results

Final remarks

Minimizing the variance criterion by a random search called Spatial Simulated Annealing (SSA)

$$Criterion = \frac{1}{T} \frac{1}{|A|} \int_{t=0}^{T} \int_{s \in A} Var(Z(s, t) - \hat{Z}(s, t)) ds dt$$
(1)

Simulated annealing iterations

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Sampling design optimisation for radar-rain gauge merging

Wadoux et al. 2016

Introductio

wodei

Material

Results

Final remarks

Initial

Optimized

◆□ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Sampling design optimisation

Final remarks

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ ・ りゅう

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Decrease of the rainfall prediction error variance is obtained by the optimized rain-gauge network

- It pays off to place rain-gauges at locations where the radar imagery is inaccurate
- 2 Uniform distribution of rain-gauge over the study area is also important

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Interesting for:

- Fast radar-gauge merging accounting for the radar uncertainty (and soon the rain-gauge uncertainty too)
- The optimisation method could be applied to specific targets (flood forecasting)

Sampling design optimisation for radar-rain gauge merging

Wadoux et al., 2016

Introduction

Model

Material

Results

Final remarks

Thank you for your attention

This project has received funding from the European Unions Seventh Framework Programme for research, technological development and demonstration under grant agreement no 607000.